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4Institut de Physique du Globe de Strasbourg, UMR 7516, Université de Strasbourg/EOST, CNRS, France
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S U M M A R Y
The geocentre motion is the motion of the centre of mass of the entire Earth, considered
an isolated system, in a terrestrial system of reference. We first derive a formula relating
the harmonic degree-1 Lagrangian variation of the gravity at a station to both the harmonic
degree-1 vertical displacement of the station and the displacement of the whole Earth’s centre
of mass. The relationship is independent of the nature of the Earth deformation and is valid for
any source of deformation. We impose no constraint on the system of reference, except that its
origin must initially coincide with the centre of mass of the spherically symmetric Earth model.
Next, we consider the geocentre motion caused by surface loading. In a system of reference
whose origin is the centre of mass of the solid Earth, we obtain a specific relationship between
the gravity variation at the surface, the geocentre displacement and the load Love number
h′

1, which demands the Earth’s structure and rheological behaviour be known. For various
networks of real or fictitious stations, we invert synthetic signals of surface gravity variations
caused by atmospheric loading to retrieve the degree-1 variation of gravity. We then select
six well-distributed stations of the Global Geodynamics Project, which is a world network
of superconducting gravimeters, to invert actual gravity data for the degree-1 variations and
determine the geocentre displacement between the end of 2004 and the beginning of 2012,
assuming it to be due to surface loading. We find annual and semi-annual displacements with
amplitude 0.5–2.3 mm.
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1 I N T RO D U C T I O N

According to Hoffmann-Wellenhoff & Moritz (2005), Petit &
Luzum (2010) or Wu et al. (2012), the geocentre is defined as
the centre of mass CM of the system made up of the solid Earth
and its fluid envelopes. Its motion in an inertial system of reference
is determined by the forces exerted on the Earth by other celestial
bodies. We will call geocentre motion the motion of CM with re-
spect to a given terrestrial system of reference, which is therefore
non-inertial.

The geocentre motion is associated with the long-wavelength
deformation of the Earth due to surficial and internal processes.
In a reference frame whose origin is either the centre of surface
figure CF of the solid Earth surface or the centre of mass CE of the
solid Earth, its magnitude reaches a few millimetres at the seasonal
timescale and is mainly due to the redistribution of mass of the
continental water, the oceans and the atmosphere (e.g. Dong et al.

1997; Blewitt et al. 2001; Feissel-Vernier et al. 2006; Rietbroek et al.
2012; Wu et al. 2012). The geocentre is also subject to a secular
drift induced by both the present-day ice mass change in Greenland
and Antarctica and the isostatic adjustment that followed the last
Pleistocene deglaciation (Greff-Lefftz 2000; Métivier et al. 2010).
Therefore, the accurate determination of the geocentre motion can
provide significant insights into global change effects, which include
mean sea level rise.

Moreover, the knowledge of the centre of mass position is es-
sential to establish a Terrestrial Reference Frame (TRF). Indeed,
the deformation of the Earth surface can be observed with geode-
tic observing systems such as Global Navigation Satellite Systems
(GNSS), Very Long Baseline Interferometry, Satellite Laser Rang-
ing (SLR) and Doppler Orbit determination and Radiopositioning
Integrated by Satellite. It is described by the relative position of each
point at the surface of the Earth in a Terrestrial Reference System
(TRS). A TRF is a realization of a TRS obtained by providing a
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set of globally distributed station coordinates (e.g. Altamimi et al.
2011). To accurately describe the motion of Earth’s surface, the
TRF needs to be determined with a high level of accuracy (Plag
et al. 2009).

A TRF is established by using positioning observations deter-
mined by one or several geodetic systems (e.g. Altamimi et al.
2007, 2011; Rülke et al. 2008) and corrected for known phenomena,
such as the solid Earth tides, ocean tides and atmospheric loading
(McCarthy & Petit 2004; Collilieux et al. 2010; Petit & Luzum
2010). The International Terrestrial Reference Frame (ITRF) is the
TRF that results from combining all the geodetic techniques men-
tioned above. The ITRF origin is, however, currently determined
with SLR data only (Altamimi et al. 2007, 2011). Because of the
linear kinematic model employed to describe the time evolution of
the coordinates of the ITRF stations, the ITRF origin is a long-term
average of CM (Wu et al. 2012). As a result, the ITRF origin is not
the instantaneous CM but moves with respect to CM. The methods
used to estimate geocentre motion from GPS data are described by
Dong et al. (2003). Wu et al. (2012) also described those methods,
as well as inverse methods involving additional sets of data such as
GRACE (Gravity Recovery And Climate Experiment) gravity data
and data-assimilated ocean bottom pressure models (Rietbroek et al.
2012).

According to Altamimi et al. (2011), the ITRF origin accuracy
achievable is at the level of or better than 1 cm. To improve that
accuracy and, therefore, our understanding of global geodetic and
geophysical phenomena, whose precise measurements depend on
the position of the ITRF origin, we will develop a suggestion made
by Plag et al. (2007) and investigate the constraints that ground grav-
ity observations, which constitute a data set independent from the
reference frame, can bring on the geocentre position. Two questions
then arise: (1) what is the analytical relationship between geocentre
displacement and surface gravity variation and (2) would the latter
be detectable by superconducting gravimeters (SG), which are the
most accurate relative gravimeters? The main aim of this study is
to answer both questions.

The paper is organized as follows. In Section 2, we establish
a general relationship, valid in any reference frame whose origin
initially coincides with the entire Earth’s centre of mass, between the
harmonic degree-1 gravity variation at a station, the displacement
of the station and the geocentre motion. Next, in Section 3, we
consider the usual treatment of surface loading with a Love number
approach to derive a relationship between the gravity variation at the
surface and the displacement of the whole Earth’s centre of mass in
a system of reference whose origin is the centre of mass of the solid
Earth. Section 4 is devoted to the computation of the power spectral
density (PSD) of data acquired with an SG installed in Strasbourg,
France. The PSD allows us to check that the annual gravity signal
associated to the geocentre motion might be above the noise level. In
Section 5, we invert ground gravity variation to retrieve its degree-1
components. The inversion of synthetic signals allows us to study
the influence of the world distribution of the gravity stations on
the quality of the retrieved degree-1 components. We then invert
gravity data provided by six well-distributed stations of the Global
Geodynamics Project (GGP; Hinderer & Crossley 2000), which is
a world network of 38 SG stations, between 2004 and 2012. From
the inverted degree-1 gravity variations, we derive time-series for
the geocentre displacement by assuming that it is due to surface
loading and estimate the annual and semi-annual displacements.
We conclude in Section 6.

2 G R AV I T Y VA R I AT I O N D U E T O
M O T I O N O F E A RT H ’ S C E N T R E
O F M A S S

We consider a spherical model of the whole Earth whose mass is
M and radius, a. The system of reference is chosen in a such a way
that its origin initially coincides with the centre of mass CM. We
denote by r the radial coordinate of the spherical polar coordinates
(r, θ , ϕ), θ being the colatitude and ϕ, the longitude. The gravity
g0(r) at r ≥ a is

g0(r ) = − G M

r 2
er , (1)

where er is the radial unit vector pointing outward. g0(r) is the
gradient of the gravitational potential V0(r)

g0(r ) = −∇V0(r ), (2)

where

V0(r ) = − G M

r
. (3)

Let us assume that the initial spherical configuration is slightly
perturbed. A particle initially at r is therefore displaced to r + s,
where s is the displacement vector in a given system of reference.
We impose no specific requirements to the system of reference
other than its origin must initially coincide with the initial position
of Earth’s centre of mass CM. The change in gravity the particle
experiences is the Lagrangian variation of gravity, which we shall
denote by gδ . The gravity variation at r is the Eulerian variation g�

that is related to the Eulerian variation of the gravitational potential
V� by

g� = −∇V �. (4)

If there are no other attracting masses than the Earth itself, a
gravimeter moving with the ground would measure gδ while an
instrument fixed at r would measure the gravity variation g�.

In a first-order approximation, the infinitesimal Lagrangian per-
turbation gδ is related to V� by (Dahlen & Tromp 1998, p. 64)

gδ = −∇V � + s · ∇g0. (5)

For a spherical reference configuration, the radial component of this
equation is

gδ = −∂V �

∂r
− U

dg0

dr
, (6)

where U is the radial displacement. At r = a, this becomes

gδ(a) = − ∂V �

∂r

∣∣∣∣
r=a

+ 2
U (a)

a
g0(a). (7)

When the total external gravitational potential V = V0 + V� is de-
composed in a series of spherical harmonics, its degree-1 terms are
directly related to the position (xCM, yCM, zCM) of CM (Hoffmann-
Wellenhoff & Moritz 2005, pp. 56–64):

V = c
1V sin θ cos ϕ + 0

1V cos θ + s
1V sin θ sin ϕ, (8)

where(
c
1V, s

1V, 0
1V

) = −g0

(
xCM, yCM, zCM

)
(9)

The negative sign comes from our definition of the gravitational
potential which is the opposite of the definition by Hoffmann-
Wellenhoff & Moritz (2005).
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The three degree-1 coefficients c
1V �, 0

1V � and s
1V � of the Eu-

lerian variation of the potential are therefore proportional to the
components sCM

x , sCM
y and sCM

z of the displacement of CM with
respect to the system of reference:

(
c
1V �, s

1V �, 0
1V �

) = −g0

(
sCM

x , sCM
y , sCM

z

)
(10)

so that

V � = −g0 sCM
r , (11)

where sCM
r is the CM displacement in the direction of r. From now

on, U(a) and g0(a) will be simply denoted by U and g0, respectively.
The Lagrangian radial gravity variations of harmonic degree 1 at
the surface are then given by

(
c
1gδ, s

1gδ, 0
1gδ

) = 2

a
g0

(
c
1U − sCM

x , s
1U − sCM

y , 0
1U − sCM

z

)
(12)

where c
1U , 0

1U and s
1U are of course the degree-1 components of the

radial surface displacement U. Thus, gδ is

gδ = 2

a
g0

(
U − sCM

r

)
. (13)

We can quickly show from this formula that gδ is independent of the
system of reference, provided its origin initially coincides with the
centre of mass of the spherically symmetric Earth model. Indeed,
if we consider two systems of reference with two different origins
in motion with respect to each other, the expressions of both the
relative displacements s and sCM in the two systems of reference
will differ by a quantity which is the displacement of one origin
with respect to the other. The difference between U and sCM

r in the
right-hand side of eq. (13) therefore makes the relative displacement
of the two origins cancel out.

gδ being measured by a gravimeter moving with the ground and
U being obtained by positioning measurements, the formula (12)
provides a means to compute the displacement of the centre of mass
with respect to the system of reference. For a difference U − sCM

r

equal to 1 mm, the gravity variation given by eq. (13) is approxi-
mately 3 10−10g0 or 300 nGal = 3 nm s−2.

It should be noted that eq. (12) is valid for any kind of degree-1
deformation, whatever its cause and the Earth’s rheological be-
haviour. In the next section, we derive a specific formula for the
geocentre motion caused by surface loading.

3 S U R FA C E L OA D I N G

Most often, studies of the motion of the centre of mass have their ori-
gin in surface loading problems. Love numbers are then frequently
used to relate the gravity variations, surface displacement and cen-
tre of mass displacement to the load (e.g. Blewitt 2003). In this
section, we connect this Love number approach to the formula (12)
established in the previous section.

If we denote by c
1σ , 0

1σ and s
1σ the three degree-1 components

of the surface mass load σ , similarly to the notation for the com-
ponents of the Earth gravitational potential in eq. (8), the degree-1
gravitational acceleration due to the load m

1 gload derives from the
potential

m
1 φ(r ) = −4πGa3

3r 2
m
1 σ , (14)

where m stands for c, 0 or s. The degree-1 load Love numbers h′
1 and

k ′
1 for the radial displacement and perturbation of the gravitational

potential are defined, respectively, by

m
1 U = −

m
1 φ(a)

g0
h′

1 (15)

and

m
1 V � = (

1 + k ′
1

)
m
1 φ(a). (16)

Relation (16) expresses that the total potential variation is the sum
of the gravitational potential of the load and the perturbation of
the Earth’s self-gravitational potential, which is proportional to the
former. Because of the spherical symmetry of the initial configu-
ration, h′

1 and k ′
1 do not depend on m. It is obvious from eqs (10)

and (16) that k ′
1

CM = −1 in a system of reference whose origin is
CM. In such a system, h′

1
CM = −1.288 for the PREM elastic Earth

model (Dziewonski & Anderson 1981). In a CE frame, k ′
1

CE = 0
and h′

1
CE = −0.288. Further discussion of the load Love numbers

in different reference frames can be found in Blewitt (2003).
Before we launch into the calculation of m

1 gδ , we remind the
reader how the analogue tidal problem is usually solved. The tidal
gravimetric factor δ
 is a dimensionless number defined, for a given
harmonic degree 
, by the ratio between the Lagrangian gravity
variation measured at the surface and the tidal attraction m′


 gtide

(Hinderer et al. 1991):

m′

 gδ = m′


 gtideδ
, (17)

where m′ is the harmonic order. Since we assume that the Earth
deformation is linearly proportional to the perturbing potential, the
gravimetric factor, like the tidal Love numbers h
 and k
 defined
similarly to h′


 and k ′

 with the load potential replaced by the tidal

potential, depends on the Earth model and its rheological behaviour
but is independent of the perturbation itself. The gravity variation
at the surface is made up of three terms: the direct attraction of the
perturbing body gtide, the gravity variation due to the displacement
of the gravimeter in the surrounding gravity field and the gravity
variation due to mass redistribution inside the Earth. δ
 is therefore
given by

δ
 = 1 + 2



h
 − 
 + 1



k
. (18)

In the case of a loading problem, Longman (1963) showed that,
right under the load, a relation similar to eq. (17) also holds:

m′

 gδ = m′


 gload

(
1 + 2



h′


 − 
 + 1



k ′




)
. (19)

Right above the load, the relation between m′

 gδ and m′


 gload is slightly
different because m′


 φ is proportional to r
 inside the Earth and
proportional to r−
 − 1 outside. It is

m′

 gδ = m′


 gload

(
1 − 2


 + 1
h′


 + k ′



)
, (20)

which gives

m
1 gδ = m

1 gload
(
1 − h′

1 + k ′
1

)
, (21)

for 
 = 1.
To establish a correspondence between eqs (12) and (21), we

must relate m
1 gload to the displacement of the centre of mass CM.

That we will do in the CE frame. First, we note that the position
vector rload of the centre of mass of the load has components

rload = (x load, yload, zload) = 4πa3

3 M load

(
c
1σ, s

1σ, 0
1σ

)
, (22)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/206/2/1431/2606038 by guest on 14 O

ctober 2021



1434 Y. Rogister et al.

where Mload is the mass of the load. Consequently, above the load,
the harmonic components of its gravitational potential (14) are

(
c
1φ, s

1φ, 0
1φ

) = − G M load

r 2
(x load, yload, zload). (23)

Second, in the system of reference whose origin is the centre of
mass CM of the system made up of the solid Earth and the load,
rload and the position rCE of the centre of mass CE of the solid Earth
obey the relation

M loadrload + MCErCE = 0, (24)

where MCE is the mass of the solid Earth. Eq. (24) is the very
definition of CM. If, initially, CM and CE coincide, the displacement
of CE in the CM frame is rCE and is the opposite of the displacement
sCM of CM in the CE frame: rCE = −sCM. Since

m
1 gload = −∂ m

1 φ

∂r
(25)

and k ′
1

CE = 0, we therefore have at the surface

(
c
1gδ, s

1gδ, 0
1gδ

) = 2

a
g0

(
h′

1
CE − 1

) (
sCM

x , sCM
y , sCM

z

)
(26)

in the CE frame. For the elastic PREM model, we have approxi-
mately

gδ = 3.966 10−6sCM m s−2 (27)

if sCM is expressed in metre. A 1 mm displacement of CM with
respect to CE therefore gives a gravity variation of approximately
400 nGal = 4 nm s−2.

As a consistency check of our results, combining eq. (12) with
eq. (26) yields(

c
1U, s

1U, 0
1U

) = h′
1

CE (
sCM

x , sCM
y , sCM

z

)
(28)

in the CE frame, in agreement with eqs (13) and (14) of Blewitt
(2003).

It is noteworthy that neither eq. (12) nor eq. (26) depend on the
tangential displacement or Love number l ′

1
CE, which is defined by a

relation similar to eq. (15) with h′
1

CE replaced by l ′
1

CE and the radial
displacement m

1 U replaced by the tangential scalar of the spheroidal
displacement field.

In the next two sections, we explore how ground gravity data
provided by the GGP network of 38 SG stations (Fig. 2), eqs (12) or
(26) might offer valuable information on the geocentre motion com-
plementary to the methods based on satellites-only observations.

4 P OW E R S P E C T R A L D E N S I T Y O F
G R AV I T Y DATA F RO M
S U P E RC O N D U C T I N G M E T E R S

Geophysical data and models of mass redistribution in the atmo-
sphere, ocean, surface water and glaciers (Dong et al. 1997) or
satellite observations of the displacement of geodetic stations (Ble-
witt et al. 2001; Wu et al. 2012) have revealed annual and seasonal
geocentre and stations displacements with amplitude of order of
a few millimetres either in a CE or CF frame. As mentioned in
Sections 2 and 3, the gravity variation given by eq. (13) is approx-
imately 300 nGal = 3 nm s−2 for a difference U − sCM

r equal to
1 mm and the gravity variation given by eq. (26) is approximately
400 nGal = 4 nm s−2 for a CM displacement of 1 mm caused by
surface loading on an elastic Earth model. According to fig. 2 of
van Camp et al. (2005), an annual gravity signal of a few microgals
is possibly detectable with a single SG. The signal would contain
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Figure 1. Residual power spectral density of a 18-yr long series (1996–
2014) of gravity data recorded with the superconducting gravimeter C026 at
the Strasbourg station. 160 656 samples at a sampling rate of 1 hr were used.
At a period of one year, the noise level is approximately −83 dB. Gravity
variations larger than 620 nGal = 6.2 nm s−2 would therefore be above the
noise level. Also shown is the 300 nGal = 3 nm s−2 level equivalent to a
degree-1 gravity variation generated by a difference of 1 mm between the
displacement of the Earth’s centre of mass CM and the radial displacement
of the station (eq. 13).

the total gravity variation, not only the degree-1 variation. That de-
tectability threshold is largely confirmed by the residual PSD, shown
in Fig. 1, of the total gravity variation recorded at the Strasbourg
station between 1996 and 2014.

Before the PSD of Fig. 1 has been computed, the raw data had
first been corrected for the oceanic and solid Earth tides by using
the models NAO99 of Matsumoto et al. (2000) and DDW99 of De-
hant et al. (1999), which include the main semi-annual, monthly,
fortnightly, ter-monthly, diurnal, semi-diurnal and higher frequency
tidal waves. For the annual wave, we use eq. (17) for an elastic
Earth model with a real gravimetric factor δ2 equal to 1.16. The
effects of the local atmospheric pressure were also removed, the
local barometric admittance being −3 nm s−2 hPa−1, as well as
the gravity effect of polar motion, the pole coordinates being pub-
licly available on the International Earth Rotation Service website.
The residual PSD has then been estimated using a modified Welch
periodogram. The PSD of a Gaussian white noise is σ 2

G T0, where σ G

is the standard deviation and T0 is the sampling rate, and the PSD
of an undamped harmonic signal of amplitude A is A2NT0/4, where
N is the number of samples. Consequently, the signal-to-noise ratio
is AσG

√
N/2. The PSD of Fig. 1 has been computed with segments

of N/4 points, an overlapping of N/8 points and the two parameters
T0 = 3600 s and N = 160 984, giving a total duration of 6694 d.
It shows that at the annual period, the noise level is about −82 dB,
which implies that an annual gravity variation larger than 620 nGal
= 6.2 nm s−2 can be detected. If it was a degree-1 variation, it would
be equivalent to a difference U − sCM

r of 2 mm.
In the following, we will invert ground gravity data to retrieve

the three degree-1 components (c
1gδ, s

1gδ, 0
1gδ) of the gravity vari-

ation. We will use a stacking method that was initially proposed
by Courtier et al. (2000) to search for the degree-1 Slichter modes,
which are the three translation modes of the Earth’s inner core.
It consists in inverting time variations of gravity recorded at the
surface of the Earth, the data being weighted by the degree-1
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spherical harmonics evaluated at the station coordinates. This stack-
ing method has been successfully applied to the first detection of the
seismic mode 2S1 by using data from the GGP network (Rosat et al.
2003). Prior to the estimate of the geocentre motion from data of
the GGP network, which is sparser than the global GPS network, we
first need to perform tests with synthetic gravity signals to eliminate
as much as possible any bias due to the network configuration.

5 I N V E R S I O N O F G RO U N D G R AV I T Y
DATA

5.1 Tests with synthetic gravity signals

The tests we perform consist in inverting synthetic gravity varia-
tions for various sets of gravity stations, either real or fictitious,
the number of stations ranging down from 6 up to 180. The total
synthetic gravity variation at a station is obtained by computing the
Earth’s elastic response to the atmospheric loading quantified by
pressure data provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF) spanning the years 2002–2012.

To do so, we first decompose the ECMWF surface pressure fields
into a sum of spherical harmonics with components m


 P . The system
of reference is such that the z-axis is the pole axis and the x- and
y-axes are in the equatorial plane, with x directed in the Greenwich
meridian plane and y to the east. The components of the surface
mass load are related to m


 P by

m

 σ =

m

 P

g0
. (29)

This surface mass distribution generates, above the load, the gravi-
tational potential

m

 φ(r ) = − 4πGa

2
 + 1

(a

r

)
+1
m

 σ . (30)

Eq. (14) is a specific case of eq. (30) for 
 = 1. m

 gload then derives

from m

 φ(r ).

Second, using eq. (20) with load Love numbers for PREM
(Dziewonski & Anderson 1981), we obtain the gravity variation
m

 gδ , in particular m

1 gδ given by eq. (21). We assume that the oceans
respond as an inverted barometer to the atmospheric pressure varia-
tions. Indeed, the main periodic component of the geocentre motion
is annual, which is long enough for the oceans to compensate for
the atmospheric pressure changes by adjusting their surface level
according to the inverted barometer hypothesis.

Third, the synthetic signals are the sum of m
1 gδ and Gaussian white

noise with a standard deviation of 2 nm s−2. This arbitrarily chosen
but meaningful value can be compared to the standard deviation of
m
1 gδ which ranges from 4 to 8 nm s−2, depending on the location.

Fourth and final, we invert the synthetic signals by using the
stacking method of Courtier et al. (2000) to obtain the degree-1
gravity variations m

1 ginv that we compare to the degree-1 synthetic
gravity variations m

1 gδ with the help of the relative error of the
temporal residuals defined in the frequency domain by

me =
√√√√∑(

m
1 ginv − m

1 gδ
)2

∑(
m
1 gδ

)2
, (31)

the sums extending over gravity values computed at frequencies
included in the range [10−8, 10−7] Hz, which brackets the annual
frequency. Table 1 sums up the relative errors estimated for eight
networks shown in Figs 2 and 3:

Table 1. Relative error me (in per cent) defined by eq. (31) in the annual
band [10−8, 10−7] Hz for the inversion of synthetic data which are the
Earth’s elastic response to atmospheric loading provided by actual pres-
sure data from the ECMWF between 2002 and 2012. The eight networks,
which consist in sets of locations where the synthetic data are computed, are
described in the text. Some locations correspond to stations of the GGP net-
work, others correspond to fictitious stations. NY and SY are GGP stations
at Ny-Ålesund, Svalbard and Syowa, Antarctica, respectively.

Network ce se 0e

1 Locations of 38 GGP stations 7.4 6.2 5.9
2 Locations of 6 GGP stations 6.3 6.4 6.3
3 Network 2 + Tahiti + Hawaii 6.4 6.3 6.3
4 Network 2 + NY + SY 7.3 5.9 6.2
5 Network 3 + NY + SY 7.2 6.0 5.9
6 180 gridpoints 6.9 6.0 6.1
7 62 continental points 7.4 6.5 6.2
8 118 oceanic points 5.5 6.1 5.8

Figure 2. GGP network, which includes 38 superconducting gravimeters
(white diamonds, blue rectangles and green stars), and two fictitious stations
in Tahiti and Hawaii. Network 2 of Table 1 is made of the six stations
pictured by blue rectangles (CA = Cantley (Canada), BH = Bad Homburg
(Germany), KA = Kamioka (Japan), TC = Tigo-Concepción (Chile), SU
= Sutherland (South Africa), CB = Canberra (Australia)). The two green
stars are polar stations in Ny-Ålesund (NY), Svalbard and Syowa (SY),
Antarctica.

(i) Locations of the 38 GGP stations pictured by white diamonds,
blue rectangles and green stars in Fig. 2.

(ii) Locations of six GGP stations with a homogeneous world
distribution, pictured by blue rectangles in Fig. 2.

(iii) Same six locations as in Network 1 plus two fictitious stations
in Tahiti and Hawaii pictured by red dots in Fig. 2.

(iv) Same six locations as in Network 1 plus two locations corre-
sponding to two polar GGP stations at Ny-Ålesund (NY), Svalbard
and Syowa (SY), Antarctica, pictured by green stars in Fig. 2.

(v) Same eight locations as in Network 3 plus the two locations
NY and SY.

(vi) Set of 180 fictitious stations regularly distributed at the sur-
face of the Earth (Fig. 3).

(vii) Subset of Network 6 made of 62 continental stations pic-
tured by black dots in Fig. 3.

(viii) Subset of Network 6 made of 118 oceanic stations pictured
by blue diamonds in Fig. 3.

What could be called the minimum error of the inversion pro-
cedure is obtained by inverting, for any network, synthetic grav-
ity data not containing additional white noise. The relative errors
would be zero if the inversion procedure was exact but we find
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Figure 3. 180 gridpoints forming Network 6 in Table 1. The 62 black dots
are fictitious land stations and the 118 blue diamonds are fictitious ocean
stations.

me = 6.1 per cent, which is also the errors obtained with the syn-
thetic data of Network 6, which include white noise. The reason that
the error for this network, which is the densest network we consider,
is unchanged with additional noise is that in the annual band the
added noise is much smaller than the signal and does not deteriorate
the results of the inversion when the density of the gravity stations
over the world is high enough.

When discussing the results of Table 1, one should keep in mind
the relation (26) between the degree-1 gravity variations and the
geocentre displacement when a load deforms the surface of the
Earth. It shows how, in that case, the uncertainty in the estimate of
degree-1 gravity variations directly translates into uncertainty in the
geocentre displacement. The errors on the c, s and zero components
of the degree-1 gravity variations are actually errors on the x-, y-
and z-components of the geocentre displacement, respectively.

Although the number of stations varies a lot, from 6 to 180, the
errors are roughly the same for the eight networks, from 5.9 to
7.8 per cent. Of course, the best network, which performs equally
well for the three components of the geocentre displacement, is

Network 6, which is the densest network. The variations of the
relative errors between the networks can be explained by the ge-
ographical distributions of the stations. For instance, adding two
polar stations to either Network 2 or 3 diminishes a little the error
on the polar component of the geocentre displacement. Another
example is the better determination of the x-component of the geo-
centre displacement with a network of oceanic stations than with
a network of continental stations because there are more oceanic
stations close to both the Greenwich meridian in the Atlantic Ocean
and the antipodes in the Pacific Ocean.

Gravity variations of degree greater than 1 may induce regionally
coherent signals that may contaminate estimate of degree-1 varia-
tions. It results that the degree-1 gravity variations may be difficult
to isolate using our optimal Network 2, involving only six stations.
To assess the effect of higher harmonic degrees on the estimate of
the degree-1 gravity variations we perform a complementary test.
The largest spatial variability of changes in atmospheric surface
pressure is distributed between degrees 1 and 7, corresponding to
gravity variations of a wavelength down to 2860 km, while that
due to hydrology ranges between degrees 1 and 16, for wavelengths
down to 1250 km (de Linage et al. 2009). Given that, we use for this
test two years of the hydrology component of the updated European
Spatial Agency (ESA) Earth System Model (ESM; Dobslaw et al.
2015), from 2005 January until 2006 December. The ESA ESM is
provided as spherical harmonic coefficients or Stokes coefficients
up to degree and order 180, which correspond to a wavelength of
approximate 111 km. We first use the degree-1 Stokes coefficients
to compute the degree-1 gravity variations m

1 gδ that result from
the hydrological loading assuming the Earth’s response is elastic.
Then, we reconstruct hydrological fields by successively adding to
the degree 1 degrees 2 to 180, denoting by 
max the largest degree
term of a specific field. We use Network 2 to invert for the degree-
1 gravity variations induced by the hydrological loading from the
reconstructed fields and we assess our inversions by computing the
errors (31), plotted as a function of 
max in Fig. 4. The errors are
at the 6 per cent level when only considering degree 1 in the re-
constructed fields. They are consistent with the values in Table 1.

Figure 4. Errors, given by eq. (31), for degree-1 gravity variations obtained at the six stations of Network 2 of Table 1 by inverting synthetic hydrological
signals containing spherical harmonics terms up to degree 
max. For the three components of the degree-1 gravity variations, the errors are about 6 per cent for

max = 1, as in Table 1. They fluctuate with increasing 
max and reach almost constant values when 
max is approximately 40.
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Figure 5. (a) Spectra of the degree-1 gravity variations inverted from the gravity data acquired from late 2004 until early 2012 at the six GGP stations pictured
by blue rectangles in Fig. 2 and forming Network 2 in Table 1. (b) Black curves: components of the geocentre displacement given by eq. (26), which relates
the degree-1 gravity variations to the geocentre displacement supposedly caused by surface loading. Red curves: fits of the black curves, after removal of the
trends, with semi-annual and annual sine functions whose amplitudes and phases are given in Table 2.

As expected, gradually considering degrees up to 20 leads to larger
errors, reaching up to almost 60 per cent for 0e. Adding signals of
higher degrees leads to a convergence that is reached for degree
40. Errors converge to 18, 36 and 20 per cent for the c, s and zero
components of the degree-1 gravity variations, respectively. This
decrease of the errors by extending the hydrological fields to higher
degrees shows that any regional or local signal, which is not globally
coherent, will cancel out by stacking and hence helps in retrieving
the gravity changes coherent to all stations to all stations, that is
degree-1 variations.

To invert real data from the GGP network in the next section, we
select Network 2, which at the same time contains fewer stations

and provides almost equal errors for the three components of the
geocentre displacement because the geographical distribution of the
stations is almost symmetrical with respect to both the equator and
the Greenwich meridian.

5.2 Inversion of actual SG data

We thus pick the six stations forming Network 2 in Table 1. They are
Bad-Homburg (Germany), Cantley (Canada), Canberra (Australia),
Kamioka (Japan), Sutherland (South Africa) and Tigo-Concepción
(Chile). Any European station other than Bad-Homburg would also
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Table 2. Annual and semi-annual geocentre displacement. sCM is estimated in the CE frame, is assumedly
caused by surface loading and is obtained from eq. (26) and measurements of surface gravity variations
with Network 2 of Table 1 between 2004 and 2012. SLRsCM is estimated for the same period of time from
geocentre motion time-series derived from SLR observations (Cheng et al. 2010). For each component,
the fit is Aa cos 2π (t − t0 + γ a)/T + Asa cos 4π (t − t0 + γ sa)/T, where T = 1 yr, a and sa stand for annual
and semi-annual, respectively, and t0 is 2004 January 1.

Annual Semi-annual

Component of CM displacement Aa (mm) γ a (day) Asa (mm) γ sa (day)

sCM
x 0.5 106 1.8 171

sCM
y 1.2 271 1.5 176

sCM
z 1.6 88 2.3 1.7

SLRsCM
x 2.1 ± 0.5 315 ± 14 0.7 ± 0.3 93 ± 40

SLRsCM
y 2.6 ± 0.4 34 ± 11 0.2 ± 0.3 71 ± 68

SLRsCM
z 4.1 ± 1.3 4 ± 36 2.0 ± 1.3 186 ± 72

suit but Bad-Homburg is a good site in terms of noise levels (Rosat
& Hinderer 2011) and length of time records. We correct the raw
data from the end of 2004 until the beginning of 2012 the same way
we corrected the Strasbourg data to compute the PSD in Section 4.
Moreover, to remove the hydrological effects of high harmonic
degrees and lessen their influence on the inversion for the degree-1
gravity variations, we correct the SG data from the GRACE time-
series from degrees 2 to 50, provided by the CSR RL05 solutions.

The multistation inversion method provides the degree-1 gravity
variations m

1 gδ whose spectra are plotted in Fig. 5(a). If the geocentre
displacement is entirely due to surface loading, it can be obtained
in the CE frame from the three components m

1 gδ by using eq. (26). It
should be noted that, before invoking eq. (26), we have not assumed
that the degree-1 gravity variations were caused by surface loading.
In Fig. 5(b) are plotted the x-, y- and z-components of the geocentre
displacement sCM as a function of time. High-frequency variations
have been removed by sampling the gravity data at 15-d intervals,
instead of the 1-hr sampling for the PSD in Fig. 1 and the spectra in
Fig. 5(a). After removal of the trends from these time-series, they
are fitted with both an annual and a semi-annual sine functions,
whose amplitudes and phases are given in Table 2. The total fits are
plotted in red in Fig. 5(b).

Table 2 of Wu et al. (2012) contains a collection of estimates of the
annual geocentre displacement published between 1997 and 2010.
Various methods based on various geodetic techniques, sometimes
combined with GRACE observations or data-assimilated ocean bot-
tom pressure model, spanning different time intervals included in
the interval 1992–2010.6, provide a large scatter of amplitudes rang-
ing between 0.0 and 4.2 mm, 1.6 and 4.9 mm and 1.5 and 7.6 mm
for the x-, y- and z-components, respectively. Estimates based on
GNSS are, however, dubious (Rebischung et al. 2014).

Our results given in Table 2 cannot be exactly compared to those
measurements. The first reason is that the displacements reported
by Wu et al. (2012) are measured with respect to CF whereas we
used a CE frame. However, this is only a minor drawback since CF
is a good approximation to CE (Dong et al. 1997; Blewitt 2003).
The second and major reason is that the time span (2004–2012)
of the ground gravity recordings we stacked does not exactly co-
incide with any of the time spans of the studies cited by Wu et al.
(2012). Nevertheless, given the large scatter of the annual geocentre
displacements provided by geodetic techniques, they are in a sat-
isfactorily good agreement with our estimates using gravity data,
especially if the errors between 18 and 36 per cent associated to the
inversion of the gravity data are taken into account.

A better comparison can, perhaps, be made with the seasonal
geocentre displacements SLRsCM between 2004 and 2012 that we

obtain from the time-series derived by Cheng et al. (2010) from
SLR tracking to LAGEOS satellites (http://grace.jpl.nasa.gov/data/
get-data/geocenter—last accessed 30 May 2016). The annual and
semi-annual components of SLRsCM are also included in Table 2. For
both sCM and SLRsCM, the z-component is larger than the other two
components, for either the annual or the semi-annual displacements.
Again, if we take into account the errors, up to 36 per cent, associated
to the inversion of the gravity data, most of the amplitudes of sCM

and SLRsCM overlap.
Until today, all the estimates of the geocentre motion have relied

on the assumption that it is caused by surface loading. One could
free oneself from that hypothesis by combining precise position-
ing measurements with observations of the gravity variations and
computing sCM in the CE frame by means of eq. (12), provided
the degree-1 station displacement can also be determined without
assuming that it is due to a surface load.

6 C O N C LU S I O N S

We have investigated the constraints that can be brought on the
geocentre motion by ground observations with SGs.

Two key results of this paper are contained in the formulae (12)
and (26). They are relations between the displacement of the centre
of mass CM of the entire Earth and the degree-1 Lagrangian gravity
variation at the surface. Eq. (12) is valid in any system of reference
and requires that the radial ground displacement be known, either
theoretically or observationally. Eq. (26) is valid in the CE frame
when the Earth is subject to a surface load. It does not require any
observation other than the gravity variation, but a spherical Earth
model must be adopted in order to determine the load Love number
h′

1
CE which is contained in the formula. Interestingly, neither (12)

nor (26) contains the horizontal displacement of the station.
We have stacked and inverted synthetic gravity signals to study

the influence of the density and geographical location of the gravity
stations on the estimate of the degree-1 gravity variation. We have
then selected six stations of the GGP (Hinderer & Crossley 2000)
that are symmetrically distributed about the equator and Greenwich
meridian. We have inverted data from 2004 until 2012 to retrieve
the degree-1 gravity variation and, using eq. (26) and the load Love
number h′

1
CE = −0.288 for the elastic PREM (Dziewonski & An-

derson 1981), we have obtained time-series for the three compo-
nents of the displacement of CM in a CE frame. The fit of the series
with annual and semi-annual signals has provided displacements
from 0.5 to 2.3 mm, which are in good agreement with estimates
from geodetic techniques such as SLR or GPS that also rely on the
assumption that the geocentre motion is due to surface loading.
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