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Abstract—This paper presents the development of a
collaborative event-based control applied to the problem of
consensus and formation of a group of VTOL-UAVs (Vertical
Take-off and Landing, Unmanned Aerial Vehicles) . Each
VTOL-UAV decides, based on the difference of its current state
(linear position and velocity) and its latest broadcast state, when
it has to send a new value to its neighbors. The asymptotic
convergence to average consensus or desired formation is depicted
via numerical simulations.

I. INTRODUCTION

Motivated by applications in physics, biology and
engineering the study of consensus of collections of agents
(or dynamic systems) has become an important topic in
control theory. Roughly speaking, consensus means to reach an
agreement regarding a certain quantity of interest that depends
on the state of all agents. A consensus algorithm (or protocol)
is an interaction rule that specifies the information exchange
between an agent and all of its neighbors on the network.
Consensus problems have a long history in computer science
and form the foundation of the field of distributed computing
[1]. Distributed computation over networks has a tradition in
systems and control theory e.g. [2] and [3].
Cooperative distributed control strategies for multiple vehicles
have gained increased attention in recent years in the control
community, owing to the fact that such strategies provide
attractive solutions to large-scale multi-agent problems, both
in terms of complexity in the formulation of the problem,
as well as in terms of the computational load required for
its solution. As an important branch of cooperative control,
distributed cooperative attitude control for multiple rigid
bodies has received much research attention. The motivation
to consider rigid body dynamics comes from the fact that
rigid body describes a very large class of physical systems
of practical interest, e.g. spacecraft, UAVs, robot manipulators
and wearable robots [4], [5].

An important aspect in the implementation of distributed
algorithms is the communication and controller actuation
schemes. With the development of embedded, miniaturized
and interconnected systems, there is a growing interest in
Networked Control Systems (NCSs) where the control loop
is closed over a communication link [6], [7]. A network has
several advantages, like flexibility in the configuration of the
communication structure and the number of interconnected

systems. However, it also has a considerable impact on the
performance, notably because of communication delays and
packet losses which avoid real-time control constraints to be
meet and can even cause the instability of the control loop.

Recently, published works addressed resource aware
implementations of the control law using event-based
sampling, where the control law is event-driven. Such a
paradigm calls for resources whenever they are indeed
necessary, that is for instance when the dynamics of the
controlled system varies, i.e. when some events occur. The
development of event-based control strategies have their
origins in the seminal works [8] and [9] where the the first
event driven PID was developed. Event-based control usually
relies on a triggering algorithm which takes the form of an
event function e : X → R that indicates if one needs (e ≤ 0)
or not (e > 0) to update the control value. X in general
represents the state space. The basic event-based control
strategies consist in level-crossing approaches like in [10]
where X represents the output system. Other level-crossing
approaches were reported in [11][12]. In more sophisticate
approaches, the function e takes the current state x as input and
a memory m of x last time e became negative as in [13], [20].
Recent advances in event-triggered control can be classified
into two main categories, Periodic Event-triggered Control
scheme (PETC) and Continuous Event-triggered Control
scheme (CETC). For PETC, a periodic sampling is given
and the event function indicates the control must be updated
at the next sampling instant [14] whereas in the Continuous
Event-triggered Control scheme (CETC), the control function
is updated instantaneously after the zeroing of the event
function [15], [16], [17], [13].

In the context of cooperative distributed control, the
event-based paradigm appears as a mean to reduce the
communication bandwidth in the network since, contrary
to the classical scheme, an event-based control invokes
a communication between the different agents only when
a certain condition is satisfied. In [18] an event-based
implementation of the consensus protocol is presented. In
the aforementioned work all agents continuously monitor
their neighbors states, then each agent updates its control
law not only at its own event-times, but also whenever
one of its neighbors triggers an event. Later in [19] these
disadvantages are addressed, and the authors developed an



event-based control strategy for multi-agent average consensus
where measurement broadcasts are scheduled in an event-based
fashion, such that continuous monitoring of the neighbors
states is no longer required.
Although the aforementioned approaches have shown benefits,
these works were developed in a continuous event-triggered
context, which means that the event-triggered condition has to
be monitored continuously and it is necessary to guarantee non
zero inter-execution time (Zeno behavior).
The control strategy proposed in the present paper is more
in the spirit of the one proposed in [19]. However, the main
difference is that the event-triggered condition is verified only
periodically, and at every sampling period it is decided whether
or not to broadcast a new state value to its neighbors, such
that all agents states converge to the average of their initial
conditions. With the proposed approach a minimal sampling
period is guaranteed ( the control can not be updated more
often than the a priori given sample period ) i.e., no Zeno
behavior is guaranteed.
The proposed control technique is applied to the problem
of consensus and formation of a group of VTOL-UAVs.
Hence, each VTOL-UAV decides, based on the difference
of its current state (linear position and velocity) and its
latest broadcast state, when it has to send a new value
to its neighbors. The asymptotic convergence to average
consensus is guaranteed under such an event-triggered strategy.
Numerical simulation are performed for the consensus of
four quadrotors, where the effectiveness is illustrated via the
comparison to traditional time-scheduled control. Besides the
development of a collaborative event-triggered control, the
hoped-for contribution of this paper is that of unification, so
that the reader can see how mixing topics such as Unmanned
Aerial Vehicles, nonlinear attitude control, and event-triggered
collaborative control.
The paper is structured as follows. Section II contains
mathematical preliminaires. In section III, the attitude control
is given and an event-based strategy for position and
velocity consensus is presented. Section IV is devoted to
simulation results, which show the effectiveness of the
proposed algorithm. Finally, in section V some conclusions
are presented.

II. PRELIMINARIES

A. Graph theory

Consider G = {V, E} consisting of a set of vertices (or
nodes) V = 1, ..., N and edges E . If there is an edge (i, j)
between nodes i and j, then i and j are called adjacent, i.e.
E = (i, j) ∈ V × V : i, j adjacent. G is called undirected if
(i, j) ∈ E ⇔ (i, j) ∈ E . The adjacency matrix A is defined
by aij = 1 if i and j are adjacent and aij = 0 otherwise. A
path from i to j is a sequence of distinct nodes, starting from
i and ending with j, such that each pair of consecutive nodes
is adjacent. If there is a path from i to j, then i and j are
called connected. if all pairs of nodes in G are connected, then
G is called connected. The distance d(i, j) between two nodes
is the number of edges of the shortest path from i to j. The
diameter d of G is the maximum distance d(i, j) over all pairs
of nodes. The degree matrix D of G is the diagonal matrix with
elements di equal to the cardinality of node i’s neighbor set
Ni = {j ∈ V : (i, j) ∈ E . The Laplacian matrix L of G is
defined as L = D−A. For undirected graphs, L is symmetric

and positive semi-definite, i.e., L = LT ≥ 0. The row sums
of L are zero. Thus, the vector of ones 1 is an eigenvector
corresponding to eigenvalue λi(G) = 0, i.e., L1 = 0. For
connected graphs, L has exactly one zero eigenvalue, and the
eigenvalues can be listed in increasing order 0 = λ1(G) <
λ2(G) ≤ ... ≤ λN (G). The second eigenvalue λ2(G) is call
the algebraic connectivity.

B. VTOL-UAVs model

Firstly, assume that a VTOL-UAV can be modeled as
a rigid body (see Fig. 1). Then, consider two orthogonal
right-handed coordinate frames: the body coordinate frame,
Eb = [~e b1 , ~e

b
2 , ~e

b
3 ], located at the center of mass of the rigid

body and the inertial coordinate frame, Ef = [~e f1 , ~e
f

2 , ~e
f

3 ],
located at some point in the space. The rotation of the body
frame Eb with respect to the fixed frame Ef is represented
by the attitude matrix R ∈ SO(3) = {R ∈ R3×3 : RTR =
I, detR = 1}.

Ef

~ef
3

~ef
2

~ef
1

T

~e2
b

~e1
b

~e3
b

Fig. 1. Body-fixed and inertial reference frame

The cross product between two vectors ξ, χ ∈ R3 is
represented by a matrix multiplication [ξ×]χ = ξ × χ, where
[ξ×] is the well known skew-symmetric matrix.
The n-dimensional unit sphere embedded in Rn+1 is denoted
as Sn = {x ∈ Rn+1 : xTx = 1}. Members of SO(3) are often
parametrized in terms of a rotation β ∈ R about a fixed axis
ev ∈ S2 by the map U : R× S2 → SO(3) defined as

U(β, ev) := I3 + sin(β)[e×v ] + (1− cos(β))[e×v ]2 (1)

Hence, a unit quaternion, q ∈ S3, is defined as

q :=

(
cos β2
ev sin β

2

)
=

(
q0

qv

)
∈ S3 (2)

qv = (q1 q2 q3)T ∈ R3 and q0 ∈ R are known as the vector
and scalar parts of the quaternion respectively. q represents an
element of SO(3) through the map R : S3 → SO(3) defined
as

R := I3 + 2q0[q×v ] + 2[q×v ]2 (3)

Note that R = R(q) = R(−q) for each q ∈ S3, i.e.
quaternions q and −q represent the same physical attitude.
Denoting by ω = (ω1 ω2 ω3)T the angular velocity vector of
the body coordinate frame, Eb relative to the inertial coordinate
frame, Ef , expressed in Eb, the kinematics equation is given
by (

q̇0

q̇v

)
=

1

2

(
−qTv

I3q0 + [q×v ]

)
ω =

1

2
Ξ(q)ω (4)

The attitude error is used to quantify the mismatch between
two attitudes. If q defines the current attitude quaternion and



qd is the desired quaternion, i.e. the desired orientation, then
the quaternion that represents the attitude error between the
current orientation and the desired one is given by

q̃ = q−1
d ⊗ q = (q̃0 q̃

T
v )T (5)

where q−1 is the complementary rotation of the quaternion
q which is given by q−1 = (q0 − qTv )T and ⊗ denotes
the quaternion multiplication [22]. In the case that the current
quaternion and the desired one coincide, the quaternion error
becomes q̃ = (±1 0T )T .
As it was mentioned before, the quaternion representation is
redundant. As a consequence, the error mathematical model
has two equilibrium and this fact must be considered in the
stability analysis [23].
Now, consider a group of N -VTOL UAVs modeled as rigid
bodies (see Fig. 2). Then according to the aforementioned
and to [21], the six degrees of freedom model (position and
attitude) of the system can be separated into translational and
rotational motions, represented respectively by ΣTi

and ΣRi

in equation (6) and (7).

ΣTi :





ṗi = vi

v̇i = g~e f3 −
1

mhi

RTi Ti~e
b

3i

(6)

ΣRi :





q̇i =
1

2
Ξ(qi)ωi

Jiω̇i = −[ω×i ]Jωi + Γi

(7)

with i ∈ N = {1, ..., N}. mhi denotes the mass of the ith
VTOL-UAV and Ji its inertial matrix expressed in Ebi . g is
the gravity acceleration and ~e b3i

= ~e f3 = (0 0 1)T . pi ∈ R3

represents the position of the aircraft’s center of gravity, which
coincides with the origin of frame Ebi , with respect to frame
Ef , vi ∈ R3 its linear velocity in Ef , and ωi ∈ R3 denotes
the angular velocity expressed in Ebi . Γi ∈ R3 depends on
the couples generated by the actuators, aerodynamic couples
and external couples (environmental forces). In this paper,
it is assumed that these torques are only generated by the
actuators. −Ti~e b3i

is the total thrust, expressed in Ebi .
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Fig. 2. Group of N -VTOL UAVs

III. ATTITUDE AND POSITION CONTROL

In this subsection, a control law that stabilizes the system
described by (6) and (7) is proposed.

Definition 3.1: Given a positive constant M , a continuous,
nondecreasing function σM : R→ R is defined by

(1)σM (s) = s if |s| < M ;
(2)σM (s) = sign(s)M elsewhere;

(8)

Then, one has the following result reported previously in
[21] for the attitude stabilization of rigid bodies.

Theorem 3.2: Consider the ith rigid body rotational
dynamics described by (7) and the attitude error defined in (5)
with the following bounded control inputs Γi = (Γ1

i Γ2
i Γ3

i )
T

such that

Γli = −σM l
i

(
κiω

l
i

ρli
+ κiq̃

l
vi

)
(9)

where i ∈ N = {1, ..., N}. σM l
i
(·) with l ∈ {1, 2, 3}

are saturation functions as defined above. M l
i represents the

physical bound on the jth torque of the ith rigid body. κi is a
real parameter such that 0 < κi ≤ minlM

l
i/2. ρli are strictly

positive real parameters. Then the inputs (9) asymptotically
stabilize the rigid body to the desired attitude qdi (i.e. q̃0i =
1, q̃vi = 0, ωi = 0) with a domain of attraction for the attitude
error and angular velocity equal to S3 × R3 \ (−1 0T 0T )T .

Proof: The proof follows the one presented in [21].

Now, the objective is to design a control law which
stabilizes a group of VTOL-UAV to a certain position in the
space (consensus problem), having the attitude stabilization
problem solved. Consider (6) and (7). Note that the rotation
matrix Ri can be parameterized in function of Euler angles,
through the map R(φ, θ, ψ) : R3 → SO(3)

R = R(φ, θ, ψ) =
( Cψ Cθ Sψ Cθ −Sθ

Cψ Sθ Sφ− Sψ Cθ Sφ Sθ Sψ + Cψ Cφ Cθ Sφ
Cψ Cφ Sθ + Sψ Sφ Sθ Sψ Cφ− Cψ Sφ Cθ Cφ

)
,

(10)

Assume that using the control law (9), one can stabilize
the yaw dynamics of ith VTOL, that is ψi = 0. Then, after a
sufficiently long time, system (6) becomes:

(
ṗxi

ṗyi
ṗzi

)
=

(
vxi

vyi
vzi

)
, (11)

(
v̇xi

v̇yi
v̇zi

)
=




− Ti

mi
senθi

Ti

mi
senφi cosθi

Ti

mi
cosφi cosθi − g


 (12)

θi and φi can be viewed as an intermediate input to
control (11)-(12). With an appropriate choice of these target
configuration as proposed in [24], [25], it will be possible to



transform (11)-(12) into three double integrators. For this, let
us define

φdi := arctan

(
ryi

rzi + g

)
,

θdi := arcsin


 −rxi√

r2
xi

+ r2
yi + (rzi + g)2




(13)

where rxi
, ryi and rzi will be defined after. Then, choose as

positive thrust the input control

Ti = mi

√
r2
xi

+ r2
yi + (rzi + g)2 (14)

By taking (13)-(14), it follows

Σxi
:=

{
ṗxi = vxi

v̇xi
= rxi

(15)

Σyi :=

{
ṗyi = vyi
v̇yi = ryi

(16)

Σzi :=

{
ṗzi = vzi
v̇zi = rzi

(17)

Now the aim is to adapt and apply a control law and
a triggering rule, previously developed in [19], in order
to determine, based on local information, when the ith
VTOL-UAV (agent) has to trigger and broadcast a new state
value to its neighbors, such that all agents’ states converge to
the average of their initial conditions. Each agent consists of a
position controller as show in Fig. 3 In this case the position
controller of system i monitors its own state ξi = (pTi vTi )T

continuously. Based on local information, it decides when
to broadcast its current state over the network. The latest
broadcast state of system i given by ξ̂i = ξi(t

i
k), t ∈ [tik, t

i
k+1[,

where ti0, t
i
1, t

i
2... is the sequence of event times of agent i.

Hence a simple consensus algorithm to reach an agreement
regarding the state of N VTOL-UAVs can be expressed:

rxi =
∑

j∈Ni

(p̂xi − p̂xj )− µ
∑

j∈Ni

(v̂xi − v̂xj )

ryi =
∑

j∈Ni

(p̂yi − p̂yj )− µ
∑

j∈Ni

(v̂yi − v̂yj )

rzi =
∑

j∈Ni

(p̂zi − p̂zj )− µ
∑

j∈Ni

(v̂zi − v̂zj )

(18)

with µ > 0. Let us define the stack vectors px(t) =
(px1

(t)...pxN
(t))T , py(t) = (py1(t)...pyN (t))T , pz(t) =

(pz1(t)...pzN (t))T , vx(t) = (vx1(t)...vxN
(t))T , vy(t) =

(vy1(t)...vyN (t))T , vz(t) = (vz1(t)...vzN (t))T , and p̂x(t) =
(p̂x1

(t)...p̂xN
(t))T , p̂y(t) = (p̂y1(t)...p̂yN (t))T , p̂z(t) =

(p̂z1(t)...p̂zN (t))T , v̂x(t) = (v̂x1
(t)...v̂xN

(t))T , v̂y(t) =
(v̂y1(t)...v̂yN (t))T , v̂z(t) = (v̂z1(t)...v̂zN (t))T Furthermore,
let us define the following measurement errors for the linear
position and velocity

epx,i(t) = p̂xi(t)− pxi(t)

epy,i(t) = p̂yi(t)− pyi(t)
epz,i(t) = p̂zi(t)− pzi(t)
ep,i(t) = (eTpx,i e

T
py,i e

T
pz,i)

T

(19)

evx,i(t) = v̂xi
(t)− vxi

(t)

evy,i(t) = v̂yi(t)− vyi(t)
evz,i(t) = v̂zi(t)− vzi(t)
ev,i(t) = (eTvx,i e

T
vy,i e

T
vz,i)

T

(20)

Hence, the control law (18) can be rewritten as

rx = −L(px(t) + µvx(t) + epx(t) + µevx(t))

ry = −L(py(t) + µvy(t) + epy (t) + µeyx(t))

rz = −L(pz(t) + µvz(t) + epz (t) + µezx(t))

(21)

where epx(t), epy (t), epz,(t), evx(t), evy (t), evz (t) are the
measurement errors stack vectors. Then, the closed-loop
system becomes

(
ṗx
v̇x

)
= Υ

(
px
vx

)
−
(

0 0
L L

)
ex(t) (22)

where

Υ =

(
0 I
−L −µL

)
(23)

and

ex(t) =

(
epx(t)
µevx(t)

)
(24)

a similar procedure can be done for y and z coordinates. Define
the average velocity b(x,y,z) and the average position a(x,y,z)+
b(x,y,z)t of all the agents, with

ax =
1

N

∑

i∈V
pxi

(0), ay =
1

N

∑

i∈V
pyi(0), az =

1

N

∑

i∈V
pzi(0)

bx =
1

N

∑

i∈V
vxi(0), by =

1

N

∑

i∈V
vyi(0), bz =

1

N

∑

i∈V
vzi(0)

(25)

Then, on a has the following result

Corollary 3.3: Consider the group of VTOL-UAVs
(11)-(12) with control laws (13)-(14) and (18). Suppose the
trigger function is given by

fi(t, ep,i(t), ev,i(t)) =‖ (eTp,i(t) µe
T
v,i(t))

T ‖
− (c0 + c1e

−αt)
(26)

with constants c0, c1 > 0 and c0 + c1 > 0, and 0 <
α <| Re(λ3(Υ)) |. Then, for all initial conditions ξi(0) =
(pTi (0) vTi (0))T the average velocity and average position
consensus are reached, with an error that depends on the value
of c0 of the trigger function, the eigenvalues of Υ and the
number of agents in the graph [19].

Remark 3.4: Consensus algorithms can be extended to
formation control if the formation is represented by vectors
of relative positions of neighboring agents. Let us denote by



∆(·)ij the desired constant offset between the ith and the jth
vehicle. Then control law (18) can be modified as following

rxi
=
∑

j∈Ni

(p̂xi
− p̂xj

−∆xij
)− µ

∑

j∈Ni

(v̂xi
− v̂xj

)

ryi =
∑

j∈Ni

(p̂yi − p̂yj −∆yij )− µ
∑

j∈Ni

(v̂yi − v̂yj )

rzi =
∑

j∈Ni

(p̂zi − p̂zj −∆zij )− µ
∑

j∈Ni

(v̂zi − v̂zj )

(27)

The Fig.3 depict the control law running in the ith vehicle.
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Fig. 3. Block diagram of the even-based control strategy

IV. SIMULATIONS RESULTS

In this section, the proposed control algorithms are
verified and illustrated through simulations. The VTOL vehicle
considered in the simulation is the well known four-rotor
mini-helicopter so called quadrotor modeled as (6)-(7). Several
simulations were carried out with a focus on two main
outcomes: consensus and formation of VTOL vehicles.

A. Quadrotor model

The quadrotor is a small aerial vehicle that belongs to the
VTOL (Vertical Taking Off and Landing) class of aircrafts. It
is lifted and propelled, forward and laterally, by controlling the
rotational speed of four blades mounted at the four ends of a
simple cross and driven by four DC Brushless motors (BLDC).
On such a platform (see Fig. 4), given that the front and rear
motors rotate counter-clockwise while the other two rotate
clockwise, gyroscopic effects and aerodynamic torques tend
to cancel each other out in trimmed flight. The rotation of the
four rotors generates a vertical force, called the thrust T , equal
to the sum of the thrusts of each rotor (T = f1 +f2 +f3 +f4).
The pitch movement θ is obtained by increasing/decreasing the
speed of the rear motor while decreasing/increasing the speed
of the front motor. The roll movement φ is obtained similarly
using the lateral motors. The yaw movement ψ is obtained by
increasing/decreasing the speed of the front and rear motors
while decreasing/increasing the speed of the lateral motors. In
order to avoid any linear movement of the quadrotor, these
maneuvers should be achieved while maintaining a value of
the total thrust T that balances the aircraft weight. In order to

model the system’s dynamics, two frames are defined: a fixed
frame in the space Ef = [~e f1 , ~e

f
2 , ~e

f
3 ] and a body-fixed frame

Eb = [~e b1 , ~e
b

2 , ~e
b

3 ], attached to the quadrotor at its center of
gravity, as shown in Fig. 4.

Fig. 4. Quadrotor: fixed frame Ef = [~ef1 , ~e
f
2 , ~e

f
3 ] and body-fixed frame

Eb = [~eb1, ~e
b
2, ~e

b
3]

The components of the control torque vector Γ generated
by the rotors are given by:

Γ1 = dbm(um3 − um4)

Γ2 = dbm(um1 − um2)

Γ3 = km(−um1 + um2 − um3 + um4)

T = bm
∑

l̄=1

4
uml̄

(28)

with d being the distance from one rotor to the center of
mass of the quadrotor. The specification and parameters of
the quadrotor, used for the simulation, are given in the Table I.

Parameter Description Value Units
m Mass 1.490 Kg
d Distance 0.27 m
Jx Inertia in x-axis 34.3 ×10−3 Kg· m2

Jy Inertia in y-axis 34.4 ×10−3 Kg· m2

Jz Inertia in z-axis 52.9 ×10−3 Kg· m2

bm Proportionality Constant 8548 N / s
km Proportionality Constant 1898 N· m / s

TABLE I. PARAMETERS OF THE SYSTEM

For this simulation, the control law (9) is implemented with
control gains: ρ1,2 = 4.2, ρ1,2 = 1.74 and κ = 0.075.

B. Consensus of VTOL vehicles

For this propose, four agents are employed, each one
represents a VTOL - UAV in simulation. The communication
graph implemented in the collaborative system is illustrated in
Fig. 5. This simulation was performed in a time stamp of 20
seconds. For the event function, c0 = 0.02 and for simplicity
c1 = 0 was chosen. The sampling time is 0.015 seconds. In
the following charts, each agent is represented with a different
color. This color code will remain the same throughout the
paper. The initial conditions for position and speed of each
agent are shown in table II.
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Initial conditions

Agent I. C. Positions I.C. Speeds

VTOL 1 [3 2 -3] [0.2 -0.3 0.02]

VTOL 2 [2 -3 -6] [-0.2 -0.03 0.2]

VTOL 3 [4 -2 -1] [-0.3 0.1 -0.04]

VTOL 4 [-4 -1 3] [0.3 -0.1 -0.4]
TABLE II. INITIAL CONDITIONS

Note that all agents start with different initial conditions
during the simulation. The position evolution for the four
vehicles is depicted in Fig. 6. One can see that the consensus
is reached at 18 seconds. Furthermore, in Fig. 7 the velocities
evolution are shown. Note that the four vehicles reach the same
velocity in approximately 18 seconds too, i.e. they achieve
consensus.
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The difference between a continuous-time approach and an
event-triggered approach to the problem of communications
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Fig. 7. Linear velocity vectors, (vxi , vyi , vzi ) m/s.

in collaborative systems is highlighted in Fig. 8. Here, one
observes the instant when the event occurs and the vehicle
transmits its state to its immediate neighbors. During the
first seconds, there exist many events. However, the number
of events is dramatically reduced as the system reaches the
consensus. The maximum number of events per agent was
279 (VTOL 4) while the minimum was 194 (VTOL 2). Table
III presents the total number of events for each VTOL during
simulation.
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Fig. 8. Events occurrence

Consensus of VTOL

Agent Sampling time Times event-based control

VTOL 1 0.015 sec 202

VTOL 2 0.015 sec 194

VTOL 3 0.015 sec 196

VTOL 4 0.015 sec 279
TABLE III. AMOUNT OF EVENTS

C. Formation of VTOL

In this simulation, the control objective is to guarantee that
the four vehicles maintain a pre-defined formation pattern,
described by a square. The desired inter-vehicle relative
position vector is ∆ij = (∆i − ∆j) with ∆1 = (3 3 0)T ,
∆2 = (−3 3 0)T , ∆3 = (−3 − 3 0)T , ∆4 = (3 − 3 0)T .
The information flow is the one of the Fig. 5 and the initial
conditions of each vehicle are shown in table IV. The obtained
results in this case are given in Figs. 9 and 10, which depict,
respectively, the vehicle linear velocities and positions vectors
in space. One observers from these figures that the control



objective is achieved using the event-triggered strategy control.
The events occurrences are shown in Fig. 11, which illustrates
that during the first seconds there exist several occurrences and
they are reduced while the vehicle reaches the formation.

Initial conditions

Agent I. C. Positions I.C. Speeds

VTOL 1 [3 2 -3] [0.4 0.2 -0.1]

VTOL 2 [2 -3 -6] [0.2 0.3 0.1]

VTOL 3 [4 -2 -1] [0.1 0.2 0.5]

VTOL 4 [-4 -1 3] [-0.4 -0.1 0.2]
TABLE IV. INITIAL CONDITIONS
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In the classical frame (time-triggered control), the state
should be broadcast 2666 times for a span of 40 seconds,
since the sampling time is 0.015 sec. In the table V shows
quantitatively the number of events occurred. In average,
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Fig. 11. Events occurrence

the state was transmitted to its immediate neighbors only
259 times, during the 40 seconds simulation time, which
represents (in average) a reduction of 90.2%. Finally, the
Fig. 12 illustrates the vehicle position in space. In this figure
the same color code is used to identify vehicles. The figure
has three indicators, ”x” denotes the initial positions with
t = 0 sec, ”+” indicates the position of the agents with
t = 20 sec and ”o” marks the position of the same agents
with t = 30 sec.

Consensus of VTOL

Agent Sampling time Times event-based control

VTOL 1 0.015 sec 150

VTOL 2 0.015 sec 274

VTOL 3 0.015 sec 299

VTOL 4 0.015 sec 314
TABLE V. AMOUNT OF EVENTS
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Fig. 12. Evolution of the position (”x” t = 0 sec, ”+” t = 20 sec and ”o”
t=30 sec)

V. CONCLUSION

In this work, a colaborative control strategy applied the
problem of consensus and formation of a group of VTOL
is proposed. A collaborative control strategy is applied to
the problem of consensus and formation flight of a VTOL
group. The attitude control and consensus were tested and
verified in simulation. Although the operation of the designed
strategies is an important point of this work, we strongly
believe that the greatest contribution is the development of an
event-based control strategy used in the transmission of states



between agents. This event-based control algorithm reduces
the number of transmissions between agents approximately by
80 %, which demonstrate the superiority in terms of load on
the communication medium.
Future work will address the real-time experimentation of the
proposed strategy.
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