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Adaptive mesh refinement method.
Part 2: Application to tsunamis propagation.

Kévin Pons, Mehmet Ersoy, Frédéric Golay and Richard Marcer

Abstract Numerical simulations of multi dimensional large scale fluid-flows such
as tsunamis, are still nowadays a challenging and a difficult problem. To this pur-
pose, a parallel finite volume scheme on adaptive unstructured meshes for multi di-
mensional Saint-Venant system is presented. The adaptive mesh refinement (AMR)
method is based on a block-based decomposition (called BB-AMR) which allows
quick meshing and easy parallelisation. The BB-AMR method is equipped with an
Automatic Mesh Refinement Threshold (AMRT) which allows to improve the over-
all accuracy, efficiency and save the computational time of the AMR method. The
AMRT method is constructed from the decreasing rearrangement function of the
mesh refinement criterion which allows to catch relevant scales to refine. In prac-
tice, we are able to reach a good balance between the accuracy and the computa-
tional cost with an automatic threshold instead of a ”user”-fixed one. This approach
makes the AMR method robust and almost parameterless. The numerical method is
validated successfully for several tsunamis propagation test cases.
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Université de Toulon, IMATH EA 2134, 83957 La Garde, France, e-mail: Frederic.Golay@
univ-tln.fr

Richard Marcer
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1 Introduction

Tsunamis are generally referred to any impulsed gravity wave. It can be generated
by many sources. The most common tsunamis are a consequence of earthquakes
and landslides. Such events can displace a very large volume of water from its equi-
librium. The displaced water mass, under the gravity action, attempts to come back
to its equilibrium generating gravity waves. Depending of the tsunami source, the
order of magnitude of a tsunami wave length is generally larger than ten kilometers.
Since this horizontal length is much larger than the oceans depth, vertically inte-
grated model are generally used for tsunamis propagation. One of the most simple
and one of the most relevant model among depth-averaged equations is the Saint-
Venant model (also called Non Linear Shallow Water – NLSW), see for instance
[21, 22, 32]. Nevertheless, due to the non-dispersive behaviour of this set of equa-
tions, the numerical results for some tsunamis problem may lead to under forecast-
ing, for instance, premature breaking-waves. To be more accurate in that case, the
use of dispersive and fully nonlinear equations are necessary, such as Green-Naghdi
equations ([38, 33, 10]) or some non-hydrostatic models ([46, 26]). However, al-
most all dispersive models are based on the hyperbolic structure of the Saint-Venant
equations. Therefore, in this work, we restrict ourselves to the Saint-Venant model
and the generalisation to dispersive models can be easily adapted.

Solving accurately this model over very large ranges in spatial scale with high
resolution inexorably leads to heavy computational time [31, 32, 1]. In principle,
Adaptive Mesh Refinement (AMR) [6] or Adaptive Moving Mesh (AMM) [2] meth-
ods allow to solve in a reasonable CPU time these equations adjusting the computa-
tional effort locally to maintain a quiet uniform level of accuracy. The first one relies
on macro cells which can be refined (and then possibly coarsened) while the other
method allows all mesh nodes to move to generate big or small cells (with a fixed
nodes number for all the simulation). The zones where the mesh needs to be moved
or refined is determined thanks to a mesh refinement criterion. Depending on the
application, equations and numerical methods, a variety of different criteria might
be used based on an error estimation procedure or a feature detection technique.
Basically, the zones where a given threshold is exceeded are moved or refined. In
particular, for AMR methods, the more the threshold is small, the more accurate is
the result to the expense of the computational time. We focus in the rest of the paper
to AMR method.

• The overall efficiency and accuracy of the AMR method can be improved using
an Automatic Mesh Refinement Threshold (AMRT) [29] based on the decreasing
rearrangement of the mesh refinement criterion function. The decreasing rear-
rangement provides a description of the criterion in terms of local maxima which
are sorted canonically from the smallest to the largest. Thus, this method allows
in practice to set the threshold automatically small enough to catch the most rel-
evant scales to refine with a simple mesh refinement criterion. The method does
not require accurate error estimate generally hard to obtain and provided case by
case. The method needs only an error indicator as a mesh refinement criterion
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to provide relevant numerical results having a good balance between the accu-
racy and the computational cost of the numerical method. Moreover, the AMRT
method is almost parameterless while the most of the AMR methods are based
on a ”user calibrated” threshold, case-dependent, which requires time and effort
to set it correctly (see for instance [11]). One can easily adapt the parameterless
method to AMM methods.

• Next, the overall performance of the method can be improved in a parallel frame-
work and more specifically with a Block-Based AMR method [16]. Each block
corresponds to the initial unstructured mesh and according to the mesh refine-
ment procedure each block can be sub-divided. The cells of each block are re-
distributed in a fixed number of domains. The number of domain being fixed,
each domain are loaded in a given MPI process. The BB-AMR technique pro-
vides an efficient control of the shared memory leading to well-balanced com-
putational time between cores by domain-like decomposition. Nevertheless, data
locality is critical to obtain good performance since the memory access times
are not uniform and may become expensive. Consequently, the re-meshing step
has to be carefully managed. Taking advantage of such a block-based structure
(as in domain decomposition), we can define two different time-step: the first
one is based on the (micro-)CFL δ tn condition (i.e computed through the finest
cells) which ensures the stability of the numerical scheme. The second one is a
(macro-)CFL ∆ tn > δ tn condition based on the finest block and it corresponds
to the re-meshing time step. Thus, the global stability of the scheme is preserved
for any time and the re-meshing cost is minimised.

In this paper, we present the AMRT method and we focus on its efficiency for
the two-dimensional Saint-Venant equations in the context of tsunami propagation.
The method is validated through several test cases.

The paper is organized as follows: the first section of the paper is devoted to
the presentation of the tsunami model (Sect. 2.1) and its finite volume approxima-
tion (Sect. 2.2). The second section is dedicated to the presentation of the multi
dimensional finite volume solver on unstructured meshes with AMRT (Sect. 3.1)
and the Block-Based Adaptive Mesh Refinement technique (Sect. 3.2). The compu-
tational results are compared to experimental data in Sect. 4. The first test case (Sect.
4.1) concerns the flume experiments conducted at Oregon State University [36, 35].
These experiments involve the propagation, run-up and reflection of high amplitude
solitary waves on a reef. The second test case (Sect. 4.2) is the propagation of a soli-
tary wave over a complex three dimensional shallow shelf [25]. In this experiment,
the propagation, run-up, drying and flooding phenomena are involved. The last test
case (Sect. 4.3) concerns the Monai-Walley tsunami run-up onto a complex three
dimensional beach [23].

Unless otherwise indicated, bold characters are used for vector notation and wT

denotes the transpose of the vector w.
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2 Equations, properties and finite volume approximation

In this section, we present the Saint-Venant equations which are the standard and one
of most the simple governing model used for tsunami propagation. We first recall
its mathematical and physical properties which are useful for numerical purposes,
such as the entropy inequality. Then, we present the multi dimensional finite volume
approximation.

2.1 Saint-Venant equations and entropy inequality

The two dimensional non linear Saint-Venant system is

∂th+div(huuu) = 0

∂t(huuu)+div
(

huuu⊗uuu+
g
2

h2I
)
=−gh∇Z

(1)

where the unknowns h(xxx, t) and uuu(xxx, t) = (u1(xxx, t),u2(xxx, t)) are respectively the
height of the water and the depth-averaged velocity of the water at a space-time
point (xxx, t), xxx = (x1,x2) ∈R2 is the space coordinate, t > 0 is the time, g is the grav-
itational constant set to 9.81m/s2, Z(xxx) is the bottom surface elevation and I is the
identity matrix.

The three equations above express respectively, the conservation laws of mass
and momentum driven by the fluxes

fff 1(www) =

 hu1
hu2

1 +
g
2 h2

hu1u2

 and fff 2(www) =

 hu2
hu1u2

hu2
2 +

g
2 h2


and forced through the source GGG(xxx,www) = (0,−gh∂x1 Z(xxx),−gh∂x2Z(xxx))T where the
conservative variable www = (h,hu1,hu2)

T . Noting fff (www) = ( fff 1(www), fff 2(www))
T , System

(1) reads in its vectorial form

∂twww+div fff (www) = GGG(xxx,www) . (2)

System (2) is strictly hyperbolic on the set {h(xxx, t) > 0}. It is well-known that
solving equations (2) with high accuracy is a challenging problem since solutions
can and will breakdown at a finite time, even if the initial data are smooth, and de-
velop complex structure (shock wave interactions). In such a situation, the unique-
ness of the (weak) solution is lost and is recovered by completing the system (2)
with an entropy inequality of the form:

S (xxx, t) =
∂ s(xxx,www)

∂ t
+divψψψ(s(xxx,www))≤ 0 , (3)
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where (s,ψψψ) stands for a convex entropy-entropy flux pair [37, 4]. The quantity S
is called the entropy production. This inequality in equation (3) is used to select the
physical relevant solution. Moreover, the entropy satisfies a conservation equation
only in regions where the solution is smooth and an inequality when the solution
develops shocks. In simple case, it can be proved that the missing term in (3) to
make it an equality is a Dirac mass. Therefore, the entropy production can be seen
as a ”smoothness indicator” at the numerical level, see for instance [34, 11].

For the Saint-Venant system (2), a convex entropy-entropy flux pair is given by

s(xxx,www) =
h |u|2

2
+

gh2

2
+ghZ(xxx), ψψψ(s(xxx,www)) =

(
s(xxx,www)+

gh2

2

)
u

where |u|2 = u2
1 +u2

2.

2.2 Finite volume approximation

The computational domain Ω ⊂Rd , d = 1 or 2, is split into a set of control volumes,
also referred as cells, Ω = ∪kCk of mesh size |Ck|. The source term is upwinded at
the cell interface through the hydrostatic reconstruction [3]. As a consequence the
obtained numerical scheme is well-balanced on fixed grid [3, 39] that is to say, it
preserves the still water steady states

h+Z = constant (4)

and the positiveness of the water height. In the framework of adaptive mesh, we
refer to [22, 9, 30] and the reference therein.

2.2.1 Semi-discrete approximation

In order to get the semi-discrete approximation we proceed in two steps:

Step 1: we first construct an approximation for the homogeneous system. On a
given cell Ck, noting wk(t)

wwwk(t)'
1
|Ck|

∫
Ck

www(xxx, t) dx1dx2

the approximation of the mean value of the unknown www(xxx, t) on Ck at time t, and
integrating (2) over each cell, we obtain:∫

Ck

∂www(t)
∂ t

dx1dx2 + ∑
a

∫
∂Ck/a

fff (t,www) ·nnnk/ads = 0 (5)
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where nnnk/a denotes the unit normal vector on the boundary ∂Ck/a between cells
k and a.
Next, F

(
wwwk(t),wwwa(t),nnnk/a

)
the flux approximation being written

FFF
(
wwwk(t),wwwa(t),nnnk/a

)
≈ 1
|∂Ck/a|

∫
∂Ck/a

fff (t,www) ·nnnk/ads ,

the semi-discrete finite volume approximation of equations (2) (see for instance
[15, 41, 13]) is obtained:

∂wwwk(t)
∂ t

+
1
|Ck|∑a

|∂Ck/a|FFF
(
wwwk(t),wwwa(t),nnnk/a

)
= 0 (6)

where FFF
(
wwwk(t),wwwa(t),nnnk/a

)
is defined via the Godunov solver, i.e. computed

with the exact solution of the 1D Riemann problem at the interface k/a with the
states wwwk(t) and wwwa(t). A second order approximation in space, the MUSCL re-
construction is also implemented (see for instance [15, 41, 11]). To be consistent
with the above discretisation of the equations (2), note that the entropy inequality
(3) is approximated as follows

Sk(t) =
∂ sk(t)

∂ t
+

1
|Ck|∑a

|∂Ck/a|φφφ
(
wwwk(t),wwwa(t),nnnk/a

)
(7)

where φφφ(wwwk(t),wwwa(t),nnnk/a) represents the entropy flux calculated from the reso-
lution of the Riemann problem at the interface of cells k and a as done above.

Step 2: To take into account the source term GGG, we use the hydrostatic reconstruc-
tion. For each interface, the numerical flux FFF

(
wwwk(t),wwwa(t),nnnk/a

)
is replaced by

the flux at left hand side FFFk
(
wwwk(t),wwwa(t),nnnk/a,∆Zk/a

)
and the right hand side

FFFa
(
wwwk(t),wwwa(t),nnnk/a,∆Zk/a

)
of the interface k/a. These new fluxes are given

by

FFFk
(
wwwk(t),wwwa(t),nnnk/a,∆Zk/a

)
= FFF

(
www∗k ,www

∗
a,nnnk/a

)
+

 0
g
2 (h

2
k− (h∗k)

2)n1
g
2 (h

2
k− (h∗k)

2)n2


FFFa
(
wwwk(t),wwwa(t),nnnk/a,∆Zk/a

)
= FFF

(
www∗k ,www

∗
a,nnnk/a

)
+

 0
g
2 (h

2
a− (h∗a)

2)n1
g
2 (h

2
a− (h∗a)

2)n2


by means of reconstructed states (satisfying the still water steady state equation
(4))

w∗k = (h∗k ,uk) , w∗a = (h∗a,ua) ,

h∗k = max(0,hk−max(0,∆Zk/a)) , h∗a = max(0,ha−max(0,−∆Zk/a)) .

In theses formula, ∆Zk/a stands for the jump of Z across the interface k/a. The
scheme is by construction well-balanced, i.e., the still water steady states are ex-
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actly satisfied (see [30] for further details). Finally, the numerical entropy fluxes
are replaced with the reconstructed one as done above for the numerical fluxes
FFF .

2.2.2 Time integration

The time integration of eqs. (6) and (3) can be achieved in a classical way either
by a Runge-Kutta or Adams-Bashforth scheme. For instance, by integrating eq. (6)
(and (3)) during the time step ]tn, tn+1[ of length δ tn and by evaluating the numerical
fluxes at time tn, the well-known second order Runge-Kutta method is

wwwk(tn+1) = wwwk(tn)−
δ tn
|Ck|∑a

|∂Ck/a|FFF
(
wwwk(tn+1/2),wwwa(tn+1/2),nnnk/a

)
(8)

where

wwwk(tn+1/2) = wwwk(tn)−
δ tn

2|Ck|∑a
|∂Ck/a|FFF

(
wwwk(tn),wwwa(tn),nnnk/a

)
.

Remark 1. Note that, even if the Adams-Bashforth scheme is known to be less stable
and less accurate, it can be easily handled in the framework of local time stepping
to save computational time as done by Ersoy et al. [11]. Therefore, the code can
support sub-cycling in time.

To be consistent with the discretisation of equation (8), a discrete version of the
entropy production, called numerical density of entropy production S n

k , is defined
by integrating the equation (7) with a second order Runge-Kutta scheme.

3 BB-AMR method

Defining a robust mesh refinement criterion for multi dimensional configurations
is not enough to design a suitable numerical solver. The mesh refinement thresh-
old and the treatment of data are also crucial points and in particular the way to
distribute refined cells and to share the memory in a parallel process. This point is
handled within an Automatic Mesh Refinement Threshold framework in a hierarchi-
cal Block-Based way called BB-AMR. The global strategy to adapt the mesh and to
manage data are presented.

3.1 AMR and Automatic thresholding methods

Numerical approximation of equations (7) leads to the so-called numerical density
of entropy production which is a measure of the amount of violation of the entropy
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equation (as a measure of the local residual as in [6, 18, 20, 19]). Therefore, the
numerical density of entropy production provides information on the need to locally
refine the mesh (e.g. if the solution develops discontinuities) or to coarsen the mesh
(e.g. if the solution is smooth and well-approximated), see for instance [34, 12]. As
shown in [34], if the numerical entropy flux is well-chosen, the entropy production
S built on first order monotone schemes is almost everywhere negative definite.
Some positive overshoots of the entropy production S are possible for non mono-
tone data but their amplitude decreases fast under grid refinement for smooth flow.
Moreover, as numerically shown for one dimensional hyperbolic equations [12, 29]
and for multi dimensional flows [16], the support of the relative error almost coin-
cides with the support of the numerical density of entropy production for first and
second order schemes but the absolute magnitude maxk

∣∣S n
k

∣∣ is not representative
of the error. Therefore, it is important to emphasize that the numerical density of
entropy production is not an error estimate, or derived from, but only an error in-
dicator. Thus, the numerical density of entropy production does not allow to relate
to the equidistribution of the error as for a priori or a posteriori based error criteria
which are generally hard to obtain.

In what follows, we define the quantity Sn
k =

∣∣S n
k

∣∣ also referred as the local
numerical entropy production. The local numerical entropy production is compared
to Sm = 1

|Ω | ∑k Sn
k . In practice, two coefficients 0 6 βmin 6 βmax 6 1 are thus defined

to determine the ratio of numerical production of entropy leading to mesh refinement
or mesh coarsening.

For each cell Ck:

• if Sn
k > Smβmax, the mesh is refined and,

• if Sn
k < Smβmin the mesh is coarsened whenever it is possible following the rule

defined later.

This approach is certainly the most simple and the most relevant for smooth flows.
For discontinuous flows, the comparison of the error indicator to the mean value
Sm may lead to some problems to catch relevant small scales to be refined. In Fig.
1, we have illustrated formally a discontinuous flow, see Fig. 1(a), and a smooth
one, see Fig. 1(b). In Fig. 1(a), the peak localised at x = xB = 3.75 corresponds
either to a sharp gradient or a discontinuity in the solution while the other part is the
region where the solution is smooth. One can see in Fig. 1(a) that if the parameters
βmin is not set small enough then the smooth part is not refined and only a small
region around the sharp gradient or the discontinuity of the solution is refined. This
is exactly what we mean by ”some problems to catch relevant small scales to be
refined”. As illustrated in Fig. 1(b) and in general for smooth flows, the mean value
Sm allows to catch relevant scales to be refined.

Therefore, the parameters βmin and βmax have to be well-chosen (see for instance
[29, Section 4] for a review of some thresholding methods). The threshold param-
eters βmin and βmax are thus user-calibrated for each problem to reach a good com-
promise between computational cost and accuracy. More precisely, βmin and βmax
allow to set a percentage of mesh refinement and mesh coarsening with respect to
the quantity Sm. It is not surprising that these settings will deteriorate or improve the
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x

0 1xA 2 3 xB 4 5

S
(x
)

0

2

4

6

8

10
S(x)
Sm = 2.4004

(a) S(x) with a = 200, b = 1000 (b) S(x) with a = 2, b = 10

Fig. 1 Comparison of the mean value Sm for two given criterion profiles S(x) = aexp(−b(x−
xB)

2)+exp(−5(x−xA)
2) where xA = 1.25 and xB = 3.75. S represents either a discontinuous flow

(left) or a smooth flow (right).

accuracy of the numerical solution. For instance, the more βmin and βmax is small,
the more accurate are the results to the expense of the computational time. Cal-
ibrating such parameters is a computational waste of time especially for real life
numerical simulations which can take several hours to several weeks of computa-
tions. Unless to have an error estimate, the adaptive method with an error indicator
has a major drawback concerning the selection of the threshold parameters βmin and
βmax. For the sake of simplicity, assuming βmin = βmax = 1, one way to overcome
this problem is to set the threshold α automatically. Since α = Sm is in general too
high for discontinuous flows and large enough for smooth flows (as illustrated in
Fig. 1), it is then natural to look for α in the interval (0,Sm].

In what follows, we focus on the one dimensional problem because it is easier to
visualise. Keeping in mind that we want to catch relevant small scales to be refined,
we look for an automatically set threshold α ∈ (0,Sm] such that for each cell Ck, if
Sn

k > α the mesh is refined otherwise the mesh is coarsened.

Remark 2. As it is, such a strategy is time consuming because the mesh would flip-
ping back and forth between fine and coarse grids. Therefore in practice, once the
threshold parameter α is set ”correctly”, one can define the two quantities βmin and
βmax to define a buffer region where the mesh is left alone. For instance, the top 10%
is refined and the bottom 10% is coarsened while the rest of the mesh remains at the
same level of refinement. Let us also add that even if βmin is set to 1, the method
will detect automatically pertinent scales.

Following [29], a relevant way to define automatically the threshold α , referred
as αPE in the sequel, is to construct it such that

f (αPE) = max
0<α6Sm

f (α) with f (α) = αd(α) (9)
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In this expression, d : R→ R+, α 7→ meas{S(x) > α} is the decreasing rearrange-
ment, also known as the distribution function, of the mesh refinement criterion S.
meas{X} stands for the Lebesgue measure of the set X . For instance in Fig. 1(b),
for α = Sm, d(α) = meas{S(x) > α} = l1+ l2. The decreasing rearrangement d
provides a complete description of the criterion in terms of local maxima which are
sorted canonically from the smallest to the largest. Following [29], assuming that
the function S admits a finite number of strict local maxima, then d is only con-
tinuous and each singularity of its derivative corresponds to a local maximum as
displayed in Fig. 2 for discontinuous flows and smooth flows. For instance in Fig.
2(b), the first singularity of d is localised at α = αA = 1 and it corresponds to the
first local maximum αA = S(xA) of S at xA = 1.25 in Fig. 1(b). The second sin-
gularity at α = αB = 2 (see Fig. 2(b)) represents the maximum αB = S(xB) of S at
x = xB = 3.75 (see Fig. 1(b)). For discontinuous flows, due to the large peak, a zoom
in is necessary to display the local maximum in xA, from the distribution function d,
as shown in Fig. 4(a).

However in these examples with the distribution function only, it is hard to com-
pute numerically a threshold α close to the first local maximum αA which repre-
sents the so-called ”relevant scales to be refined”. Therefore, we use the ”weighted
distribution function” f (α) = αd(α) which is represented in Fig. 3 and 4(b) for
discontinuous flows and smooth flows. As proved in [29, Corollary 1], the function
f transforms almost the inflexion points of d in local maximum. As a consequence,
the relevant threshold αPE is in general smaller than αA for discontinuous flows
or equal to Sm for smooth flows. Moreover, the threshold αPE is easier to compute
numerically from f than d.

We have illustrated the computed threshold for the previous example for dis-
continuous flows in Fig. 5(a) (see also a zoom in displayed in Fig. 4(b)) and for
smooth flows in Fig. 5(b). With this method in practice, we can compute the rele-
vant threshold to refine for both flows. Namely, the threshold αPE verifies the de-
sired behaviour αPE < Sm for discontinuous flows and αPE ≈ Sm for smooth flows.
Thus, the presented AMR process, in comparison with existing methods, is almost
parameterless.

Following [29], from a numerical viewpoint, the distribution function is defined
as follows. For each time step, let us consider a given discrete mesh refinement
criterion S(x) = ∑

N
k=1 Sn

k1Ck(x) where N is the number of cells at time tn and 1Ck(x)
is the indicator function of the mesh Ck. Let (α j)06 j6M be an increasing sequence
of M+1 threshold parameter such that

(α j)06 j6M =

(
Sm

(
j

M

)β
)

06 j6M

(10)

Then, the distribution function d j = d(α j) is given by

d j = #{k ; Sn
k > α j} (11)
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Fig. 2 Decreasing rearrangement d(α) of S(x) = aexp(−b(x− xB)
2)+ exp(−5(x− xA)

2), where
xA = 1.25 and xB = 3.75, for discontinuous flow (left) and smooth flow (right).
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Fig. 3 Function f of S(x) = aexp(−b(x− xB)
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1.25 and xB = 3.75, for discontinuous flow (left) and smooth flow (right).

where # is the number of elements in the set {Sn
k > α j}. In [29, Section 4], it is

shown that the method is quite insensitive to the parameter β , set to 2 here. For all
applications M is fixed to M = 1000 points. Interested readers can found details in
[29] and a review of existing threshold methods.

3.2 Mesh refinement process and data management

For the one dimensional case, the local mesh refinement procedure is constructed
following dyadic tree applied at each time step. “Macro cells” are used to be easily
refined by generating hierarchical grids. Each cell can be split in two. For stability
reasons, the mesh refinement level cannot exceed 2 between two adjacent cells as
detailed in [11] and recalled hereafter. By convention, if the maximum the level of
refinement is lmax = 1 then the mesh is not adapted.

The multi dimensional extension of the mesh refinement procedure is a diffi-
cult task. Interesting works have been presented for 2D Cartesian grid or quad-tree
[5, 43, 27, 44], octree for 3D simulations [24, 14], and anisotropic AMR [8, 17].
For the Saint-Venant system (1) the extension from 1D to 2D leads naturally to
quad-tree meshing. But, the presence of a complex moving interface (composed of
rarefaction and shocks) implies to re-mesh at each time step, which is obviously
a costly process. Guided by the need to reach a relevant compromise between the
contradictory aims of solution accuracy and computing speed, a regular block-based
mesh approach is introduced, somehow like in [42, 45]. If the mesh is not refine at
each time step, the patch where the grid should be refine must be enlarged. The grid
generation in the framework of BB-AMR can be developed as follow.

• Firstly, the initial computational domain is divided in several quadrilateral ele-
ments, called blocks as represented in Fig. 6(a).
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• Secondly, we define for each block a discretization nx in x-direction, ny in y-
direction and a level of refinement lr such that the total number of cell in x-
direction of the block will be 2lr nx. As the mesh refinement level cannot exceed
2 between two adjacent blocks (see [11]), the level of mesh refinement is auto-
matically adapted if necessary as illustrated in Fig. 6(b) for the blocks B5 and
B2.

• Thirdly, in order to balance the CPUs load, the cells of each block are almost
equi-distributed in a fixed number of domains according to the Cuthill-McKee
numbering, see Fig. 6(c).

• The unstructured mesh1 is built for each domain. At the interface between two
domains, ghost cells are created in order to transfer the necessary data to the
explicit time integration scheme at each time step. The number of domain being
fixed, each domain are loaded in a given MPI process. These MPI processes are
then load on a fixed number of cores (not necessary the same).

• The re-numbering and re-meshing being expensive, the mesh is unchanged dur-
ing a ”macro-time” step ∆ tn > δ tn, called AMR time-step, given by the smallest
size block |Bk| (rather by the smallest size cell |Ck| 6 |Bk|) and the maximum
velocity. The (micro-)time step δ tn is the usual time step, computed with the
smallest size cell, required to the time advancement to ensure the stability of the
scheme.

For each refined cells (or blocks), averaged values are projected onto each sub-cell
and fluxes are computed as simply as possible to avoid heavy computation following
Osher and Sanders [28]. Even if the Osher and Sanders projection leads to non
conservative and non consistent scheme at the space-time grid between two levels of
refinement, it has the advantage to be less time consuming than complex approach
such as [5, 40, 11]. Let us also note that the apparent loss of consistency on the
local truncation error seems not to affect the actual error of the scheme (see for
instance [7, 39]). Therefore, a simple issue is proposed in [11]. As said above, the
loss of the consistency and conservativity error can be minimised using smoothing
grid technique, that is to say, we prevent two adjacent cells from having a level
difference greater than two. More Details on the BB-AMR can be found in [16, 1].

Finally, to compute the threshold automatically in any dimensional framework,
the decreasing rearrangement d of the mesh refinement criterion function S is de-
fined (cf. eq. 11). Then, the threshold is automatically defined as explained in the
previous section (cf. eq. 9). In the context of Block Based AMR, if one cell or more
of any block has a criterion below the threshold, then the entire block is refined.

Remark 3 (A comment on the Osher and Sander projection for vertically averaged
Saint-Venant system). To be rigorous with respect to the underlying physical prop-
erties of the system, the projection have to be mass, momentum and energetically
conservative. The smoothing grid technique works well for the most of the system
but may fails for vertically averaged models like Saint-Venant equations. The main

1 The Cartesian grids used in this chapter are treacherous because there are often associated to
structured mesh. This choice has been done to get a simple meshing tool but is unstructured by
construction.



14 Kévin Pons, Mehmet Ersoy, Frédéric Golay and Richard Marcer

(a) Initial blocks (b) Block Bi (nx,ny, lr) (c) Refined mesh and domains

Fig. 6 Illustration of the BB-AMR process

reason is related to the topography variation which set some difficulties for this sim-
ple projection method. As it is for any three dimensional models, the bathymetry
does not act on the flow as a boundary condition but acts directly into the model
as a source term. As a consequence, we have to pay attention to the new definition
of the bathymetry onto the new refined or coarsened mesh as done in, for instance,
[5, 22, 30] which propose to interpolate the free surface η = h+Z instead of the
conservative variable h. This interpolation strategy prevents the introduction of new
extrema in the water surface elevation and preserves a flat sea surface. In that paper,
the simple approach developed in [30] is used. This method is mass conservative and
allows the computation of the solution close to or at dry states near the shore, be-
ing well-balanced by construction if the initial scheme is. For the ease of the reader
and for the simplicity of the reader we describe the method in the one dimensional
framework: let us denote C0 the initial cell of length |C0| and, C00 and C01 the two
sub-cells of length |C00| and |C01|, then

step 1 (mass conservation property): For a constant density of water ρ , the mass
is conserved if and only if∫

old mesh
ρdV =

∫
new mesh

ρdV ⇐⇒ ρ|C0|h0 = ρ (|C00|h00 + |C01|h01)

(12)

Keeping in mind that h = η − Z and we impose η = cst for steady states, this
relation yields to

Z0 = η

(
1− |C00|
|C0|

− |C01|
|C0|

)
+
|C00|
|C0|

Z00 +
|C01|
|C0|

Z01

Straightforwardly, if |C00| = |C00| = |C0|
2 , the mass conservation is satisfied if

Z0 =
Z00+Z01

2 .
step 2 (mesh refinement): Once the bathymetry is defined, the water height is re-

constructed from hi = max(0,ηi−Zi) and the free surface conservation η = cste



Part 2: Application to tsunamis propagation. 15

yielding to h0i = max(0,h0 + z0− z0i) where the max plays a crucial role near
shore for dry states. The water speed u0i is reconstructed form the momentum
conservation relation similar to the previous one.

step 2 (mesh coarsening): In that case, to go from the fine grid values to a coarse-
grid value we average by setting h0 =

|C00|h00+|C01|h01
|C0|

and define the water speed

u0 =
|C00|h00u00+|C01|h01u01

|C0|h0
.

4 Numerical validations

We now focus on the overall performance of the BB-AMR scheme with automatic
thresholding confronted to experimental and state-of-the-art numerical results2. For
each test case, the numerical simulations are carried out on adaptive grids (using
the BB-AMR method previously presented) and on uniform grids. The minimum
adaptive cell size δxadaptive is equal to the uniform one δxuni f orm. The comparisons
of both simulations allow to show the reliability and the efficiency of the BB-AMR
method. To simplify the analysis, we have considered only 1 domain, i.e., 1 proces-
sor. Interested readers can found a detailed numerical study with several domains in
[16]. For all computations,

• the MUSCL reconstruction and the Runge Kutta method are used to achieve a
second order scheme in space and time.

• to simplify the analysis and to focus on the automatic threshold, we have chosen
βmin = βmax = 1. Indeed, one can improve the above results by setting 0< βmin <
βmax < 1.

• the CFL number is set to 0.9,
• For the sake of simplicity, the re-meshing time step is fixed constant to 0.25 s.

This choice roughly verifies the macro CFL condition.
• the code is written in Fortran 90, compiled with gfortran on Linux ma-

chine Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz.

4.1 Solitary wave propagation over a two dimensional reef

This benchmark aims to reproduce a set of laboratory experiments carried out at
the O.H. Hinsdale Wave Research Laboratory, Oregon State University (OSU, see
Roeber et al. [36] and Roeber and Cheung [35]). These experiments involve the
propagation, run-up, splash-up and reflection of high amplitude solitary waves on
two-dimensional reefs. Their purpose is on one hand to investigate processes re-
lated to breaking, bore formation, dispersion, and passage from sub- to super-critical
flows, and on the other hand, to provide data for the validation of near-shore wave

2 The numerical soft used for the following test cases is the EOLENS code developed by the Institut
de Mathématiques de Toulon (IMATH) and Principia.
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models in fringing reef. Even if the Saint-Venant model (2) is not relevant for dis-
persive flows, we show, through this test case, that globally experimental data are
well-reproduced and the cells are well-refined thanks to the automatic thresholding
technique.

4.1.1 Experimental settings

The geometry of the test considered here is shown in Fig. 7. The length of the basin
is of 104 m, however the computational domain is delimited by a reflecting wall
placed at x = 83.7 m. The reef starts at x = 25.9 m with a nominal slope of 1/12.
The actual slope is such that the height of 2.36 m is reached after x = 28.25 m. At
this station a 0.2 m height crest is mounted. The offshore slope of the crest is the
same of the reef, and the length of its plateau is of 1.25 m. The on-shore side has a
slope of 1/15 giving a nominal length for the crest basis of 6.65 m (using the actual
offshore slope, a crest basis of 6.644 m is obtained). This gives an offshore length
of the crest slope (starting at x = 28.25 m) of 2.4 m. Thus, the bathymetry is

Z(xxx) =


−2.5 if x < 25.9 ,
(x−25.9)

30.8 2.565−2.5 if 25.9 < x < 56.7 ,
0.065 if 56.7 < x < 57.65 ,
(57.95−x)

3 0.2+0.0650 if < 56.7 < x < 60.95 ,
−0.1360 if x > 60.95 .

The initial depth at still water is h0 = 2.5 m, yielding to a partially submerged
crest, and a depth behind it (on-shore side) of 0.14 m. The initial solution consists of
a solitary wave of amplitude A = 0.75 m providing a non linearity ratio of A

h0
= 0.3.

For numerical purpose, the initial data consist of a solitary wave centered at x0 =
17.6 m of amplitude

η(x,0) := h(x,0)+Z(xxx) =
A

cosh
(√

3A
(4h3

0)
(x− x0)

)2 (13)

and velocity
u(x,0) =

√
g(h0 +A)η(0,x)/h0 (14)

which corresponds to the experimental data at the dimensionless time t̃ = t
√

g
h0

=

55.03 as displayed in Fig. 8(a).

4.1.2 Numerical results vs experimental results

Figures 8(a) and 8(b) shows the propagation of the solitary wave over the slope
starting at x = 25.9 m. Figure 8(c) represents the surface elevation at the dimen-
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Fig. 7 Experimental settings and wave gauges locations

sionless time t̃ ≈ 69 where the wave develops into a plunging breaker onto the reef
crest3. From an experimental viewpoint, t̃ ≈ 69 corresponds to the subsequent time
of overturning of the free surface. In Fig. 8(d), the wave hitting the reef creates a
downstream and upstream propagating bore as shown in Fig. 8(e). The downstream
propagating bore is reflected at the end wall at x = 83.7 m and propagates in oppo-
site direction as displayed in Fig. 8(f).

In Figs. 8(a)–8(f), the experimental surface elevation (represented with blue cir-
cles) for several dimensionless time t̃ are compared to the obtained numerical re-
sults (green and red lines-circles). The numerical solution is computed on a uni-
form grid (green lines-circles) composed of 1000 cells and on an adaptive grid (red
lines-circles) initially composed of 200 blocks, composed initially with 1 cell, with
lmax = 3 where lmax is the maximum level of the mesh refinement. Free boundary
condition at x = 0 m and reflecting boundary condition at x = 83.7 m are imposed.

The obtained numerical results, as shown in Figs. 8(a)–8(f), are rather well-
computed when compared to experimental data. However, the wave height is slightly
underestimated (see Fig. 8(c)) while the hydraulic bore height is overestimated (see
Fig. 8(d)).

We now compare in Figs. 9(a)–9(f), the computed and the experimental water
elevation at the wave gauges displayed in Fig. 7. The oscillating shape of the exper-
imental measures almost corresponds to dispersive effects which cannot be detected

3 The authors would thanks V. Roeber who provide the experimental data for this test case.
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Fig. 8 Surface profiles of solitary wave propagation over an exposed reef crest. Confrontation of
experimental data (blue circles) to numerical data computed on a uniform grid (solid green line)
and on an adaptive grid (solid red lines). The solid cyan line represents the mesh level and the black
one the bathymetry
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with the Saint-Venant model (2). However, the shape of the numerical results almost
coincides with the experimental data for wave gauges located before x = 54.4 m as
shown in Figs. 9(a)–9(c). The point x = 54.4 m is located just before the crest and
in particular it corresponds to the region where the overturning of the free surface is
experimentally observed. Numerically a small shift is observed in Figs. 9(d)–9(f).

4.1.3 AMR performance

We now compare the performance of the adaptive and uniform method. The adaptive
scheme uses an average of 281 (varying up to 506) cells against 1000 cells (see
Fig. 10(b)) for the uniform one and the CPU-time is almost around 7 s against 30 s
respectively. This computational time can be improved if the top 10% is refined and
the bottom 10% is coarsened for instance.

We observe that the results on adaptive grid are similar to the uniform grid ones
and computed about 4 times faster. We see also in Figs. 8(a)-8(f) that for each time
step, the threshold parameter is automatically well-set to capture efficiently the re-
gion to refine (see also Fig. 10(a)). During the first 50 non-dimensional time, we
have already pointed out that the solitary wave propagates and splash-up. This phe-
nomenon is characterized by a steep gradient flow followed by a discontinuous flow
for the Saint-Venant system, see Fig 8. In view of the remarks in Sect. 3.1, we ob-
serve that for almost all t̃ ∈ (55,100), the threshold is set to αPE < Sm. For t̃ > 100,
the flow is almost smooth and therefore αPE ≈ Sm. It is also interesting to high-
light that only the region of interest are automatically refined as shown in Fig. 8(e).
Therefore, we recover the desired behavior predicted by Pons and Ersoy [29, Section
4]. Moreover, in view of the confrontation with the computation on uniform grid,
this test shows the reliability/efficiency of the automatic selection of the threshold
for multiple scale flows.

4.2 Solitary wave propagation over an irregular three-dimensional
shallow shelf

In this test case, the numerical simulation of a solitary wave propagation over a com-
plex three dimensional bathymetry is performed. This test case was experimentally
introduced in [25] to understand the turbulence and kinematic properties associated
with a breaking solitary wave. In this experiment, the propagation, run-up, drying
and flooding phenomena are involved.

4.2.1 Experimental settings

A laboratory experiment was conducted in a large wave basin which was 48.8 m
long and 26.5 m wide at Oregon State University for which free surface elevations
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Fig. 9 Surface profiles of solitary wave propagation in time at wave gauges 1 to 6. Confrontation
of experimental data (solid blue line) to numerical data computed on a uniform grid (solid green
line) and on an adaptive grid (solid red line)
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Fig. 10 Time evolution of the mesh refinement threshold and the number of cells

and fluid velocities were recorded at several locations by wave gauges (WG) and
velocity captors (ADV). A single solitary wave of height of 39 cm at x = 5 m is
produced with a piston-type wave-maker. The bathymetry begins with a flat part
allowing to generate a solitary wave. Then, starting at x = 10.2 m of the wave-
maker and extending to x = 25.5 m, a complex three dimensional shelf is built as
illustrated in Fig. 11. The associated slope to this zone is variable but less and less
steep. Beyond that, a very small one dimensional slope finishing on a flat onshore
zone is built. The experimental basin is closed by walls. Water height and velocities
are recorded during 45 s. Finally, the material used for the walls and the bathymetry
is made of smooth concrete so that one can assume almost a frictionless flow. For
further informations on this experiment, interested readers can found more details
in [25].

4.2.2 Numerical vs experimental results

The domain is numerically extended to x = −5 m with a water depth of 78 cm
to impose a solitary wave instead of reproducing the wave maker movement. The
simulated solitary wave is a first order solution of the Boussinesq equation (see
equations (13) and (14)) with x0 = 5 m and A

h0
= 0.5. For computational purpose, we

have considered 128 initial blocks composed of 7 500 (varying up to 25 000) cells
for the initialization of the adaptive computation and almost 33 000 cells for uniform
mesh computation. The simulation time is 30s. Reflecting boundary conditions are
prescribed to walls.

To illustrate the main propagation phenomena, we have displayed the numerical
solutions calculated at time t = 0.5 s (see Fig. 12), t = 2.5 s (see Fig. 13), t = 5.75 s
(see Fig. 14) and t = 23.75 s (see Fig. 15). The Fig. 12 represents the profile of
the solitary wave which propagates towards the coast. Figures 13 and 14 show re-
spectively the wave hitting the conic island and then the beginning of the flooding.
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Fig. 11 Experimental settings

Figure 15 shows the flow after the wave run-up and its reflection on the right side of
the domain.



Part 2: Application to tsunamis propagation. 23

Fig. 12 Numerical result for the water height at time t = 0.5s . The colours correspond to the
magnitude of the kinetic energy

Fig. 13 Numerical result for the water height at time t = 2.5s. The colours correspond to the
magnitude of the kinetic energy
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Fig. 14 Numerical result for the water height at time t = 5.75s. The colours correspond to the
magnitude of the kinetic energy

Fig. 15 Numerical result for the water height at time t = 23.75s. The colours correspond to the
magnitude of the kinetic energy
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The global numerical results are now confronted to the experimental data recorded
at the waves gauges 2, 4, 6 and 7 (WG) for the water height, see Fig. 11 and 16, and
to the velocity captors 2 and 3 (ADV) for the first u component of the velocity
vector, see Fig. 11 and 17. For the wave gauge 2 to 7 (see Figs. 16(a)–16(d)), the
global shape of the free surface is in a good agreement with the experimental data
but some differences are observed. The numerical solution computed with the Saint-
Venant system (2) slightly underestimates the water level at the wave gauge 2 (see
Fig. 16(a)) and overestimates at the wave gauge 4 (see Fig. 16(b)). Moreover, the
numerical solution is rather accurate up to time t = 15 s at the wave gauges 6 and
7 (see Fig. 16(c) and 16(d)). For t > 15 s , the dispersive effects, not reproduced
with the Saint-Venant system, begin significant and induce slightly different results
between experimental and numerical data. Similar conclusion can be drawn up for
the first component of the vector velocity on the captor 2 (see Fig. 17(a)) and 3 (see
Fig. 17(b)). Globally, the numerical results on this test case are in a good agreement
and can be improved with a dispersive model.
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Fig. 16 Free surface results at different positions : experimental data versus numerical simulation
with and without mesh adaptivity
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Fig. 17 Velocity results at different positions : experimental data versus numerical simulation with
and without mesh adaptivity

4.2.3 AMR performance

To highlight the efficiency of the mesh refinement parameter and the automatic se-
lection of the threshold, the numerical density of entropy production (without abso-
lute value) and the associated mesh are displayed at several times in Figs. 18–21,
(time t = 0.5 s in Fig. 18, for t = 2.5 s in Fig. 19, for t = 5.75 s in Fig. 20 and for
t = 23.75 s in Fig. 21). The time evolution of the mesh refinement threshold select-
ing the region to be refined is shown in Fig. 22(a). It can be noticed that according
to the complex flow zones the numerical density of entropy production indicates
which areas need to be refined. Secondly, the mesh density is well distributed on
these zones which illustrate the efficiency of the automatic thresholding method.

For instance, in Fig. 14, the region which needs to be refined is clearly the zone
around the ”conic island”. According to Fig. 20, the numerical density of entropy
production in this area shows that the local maxima (lowest value without the abso-
lute value) are of almost of order 0.005 and clearly follows the wave front. We see
in Fig. 22(a), approximately at time t = 5.75 s, that the threshold is automatically
fixed to almost 0.001 and therefore allows to perform a suitable refinement in the
region of interests as observed in Fig. 14 or 20.

Compared to the computation on a uniform grid (see Figs. 16 and 17), the adap-
tive mesh refinement scheme requires only an average of 13000 cells against 33000
cells (see Fig. 22(b) for the number of cells for all the simulation). For the same
accuracy, the adaptive scheme allows to save almost 60% of cells with respect to the
uniform mesh. During the adaptive simulation, the maximum refined area is reached
around the time t = 12 s which corresponds to the time where the free surface oscil-
lates behind the island and the wave run-up on the ”coast”. This result makes sense
because the mesh has to follow a lot of oscillation and not only a solitary wave.
Globally, all these cells saved allow to speed up the computation by 2.5 time for this
test case.
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Fig. 18 Time evolution of the adaptive mesh : t = 0.5s. The colours correspond to the numerical
density of entropy production S

Fig. 19 Time evolution of the adaptive mesh : t = 2.5s. The colours correspond to the numerical
density of entropy production S
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Fig. 20 Time evolution of the adaptive mesh : t = 5.75s. The colours correspond to the numerical
density of entropy production S

Fig. 21 Time evolution of the adaptive mesh : t = 23.75s. The colours correspond to the numerical
density of entropy production S
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Fig. 22 Time evolution of the mesh refinement threshold and the number of cells

4.3 Tsunami runup onto a complex three dimensional
Monai-Walley beach

This test case concerns the Hokkaido-Nansei-Oki tsunami, in 1993, that struck the
Okushiri Island in Japan. The tsunami run-up records was about 30 m height and the
currents speed of order 10-18 m/s for which relevant high-quality data were saved.
4 The largest value run-up (32 m) was recorded near the Monai-Walley beach.

4.3.1 Experimental settings

To understand this complex run-up, a 1/400 scale laboratory model of Monai was
realized in a large-scale tank of 205 m long, 6 m deep, and 3.5 m wide at the Central
Research Institute for Electric Power Industry (CRIEPI) in Abiko (Japan). The off-
shore incident wave on a water depth d = 13.5 cm is prescribed. There are reflective
side-walls at y = 0 and 3.5 m as for the x boundaries. The bathymetry as well as the
coastal topography reproduced in the laboratory experiment are represented5 in Fig.
23(b) and 23(c) .

The input wave at x= 0 m is a leading-depression height of−2.5 mm with a crest
of 1.6 cm, as displayed in Fig. 23(a). In the experiment, the waves are measured at
thirteen locations and complete time histories are given at three locations, (x,y) =
(4.521, 1.196), (4.521, 1.696), and (4.521, 2.196) in meters, see also [23]. In contrast
with the previous experimental test cases, the dispersive phenomena can be fully
neglected here.

4 Several sources and data can be found, see for instance http://nctr.pmel.noaa.gov/
benchmark/Laboratory/Laboratory\_MonaiValley/ or http://isec.nacse.
org/workshop/2004_cornell/bmark2.html
5 sources and pictures are available at http://isec.nacse.org/workshop/2004\
_cornell/bmark2.html
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Fig. 23 Experimental settings

4.3.2 Numerical vs experimental results.

The initial condition for this test case is a lake at rest and an imposed water height on
the left side wall, see Fig. 23(a). Wave gauges data 6 experimental results are given
up to time t = 100 s. However, the information concerning the input wave profile
(see Fig. 23(a)) at x = 0 m is only available up to time t = 22 s. For numerical
purpose, we prescribe for t > 22 s, a constant free surface level η = 0 m on the left
wall. In practice, due to this assumption, some artificial reflecting waves can occur
on the wave-maker beyond t > 22 s and can reach the free surface gauges around
t = 30 s. Finally, to avoid any wrong comparisons due to these artificial reflections,
the comparisons between the experimental gauges and the numerical results will be
only done over the first 30 s of the experiment.

For computational purpose, we have considered 240 initial blocks composed of 8
000 (varying up to 40 000) cells for the initialisation of the adaptive simulation and
62 000 cells for uniform mesh simulation. The time simulation is 30s. Reflecting
boundary conditions are prescribed to walls.

To illustrate this test case we show in Figs. 24–27, the propagation of the wave
at time t = 11.25 s (Fig. 24), t = 13.25 s (Fig. 25), t = 16 s (Fig. 26) and t = 17.5 s
(Fig. 27). The Fig. 24 represents the tsunami wave entering inside the computational

6 Wave gauges data are available at the address http://nctr.pmel.noaa.gov/
benchmark/Laboratory/Laboratory_MonaiValley/
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domain. The Fig. 25 shows the submersion of the conical island. Figures 26 and 27
show respectively the large flooding and run-up of the wave and its reflection on the
cliff.

Fig. 24 Numerical result for the water height at time t = 11.25s. The colours correspond to the
magnitude of the kinetic energy

The numerical solutions are now quantitatively confronted to the experimental
measures. The comparisons are shown in Fig. 28 at the three waves gauges WG 1
(see Fig. 28(a)), 2 (see Fig. 28(b)) and 3 (see Fig. 28(c)). These figures show that
the wave amplitude and the wave shape are accurately predicted at three different
location in the computed domain. As emphasized before, dispersive effects being
negligible, the numerical results are accurate. However, it can be noticed in Fig. 28
a small amplitude errors occurring at the beginning of the simulations. This error can
be attributed to the lack of accuracy of the prescribed initial condition and boundary
condition at x = 0. This problem was already encountered by Popinet [31].

4.3.3 AMR performance

To highlight the efficiency of the mesh refinement parameter and the automatic se-
lection of the threshold, the numerical density of entropy production (without abso-
lute value) and the associated mesh are displayed at several times in Figs. 29–32,
(time t = 11.25 s in Fig. 29, for t = 13.25 s in Fig. 30, for t = 16 s in Fig. 31 and for
t = 17.5 s in Fig. 32). We also display in Fig. 33(a) the evolution of the threshold
parameter which selects the region to be refined.
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Fig. 25 Numerical result for the water height at time t = 13.25s. The colours correspond to the
magnitude of the kinetic energy

Fig. 26 Numerical result for the water height at time t = 16s. The colours correspond to the mag-
nitude of the kinetic energy
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Fig. 27 Numerical result for the water height at time t = 17.5s. The colours correspond to the
magnitude of the kinetic energy

We observe mainly that the wave front and subsequent waves are very well-
captured by the criterion and the mesh refinement threshold is well chosen to re-
fine in those areas (see for instance Fig. 27 and 32). Between 3 and 7 seconds, the
tsunami propagates in the domain involving a grow-up of the number of cells. Then
the wave passes through the island and reaches the reef around 15 seconds. After
this, the wave is reflected and goes back to the wave maker with a second interac-
tion with the island. The maximum number of cells is reached when the wave is
passing on the island and begins to run-up the coast (see Figs. 30 and 33(a)), and
when the wave goes back to the wave maker. These results are coherent with the
physical process involved since it corresponds to the both times where multiple ac-
tive flow regions are observed. The overall scales of the tsunami propagation with
its reflections are very well captured as displayed in Fig. 29, Fig. 31 and Fig. 32.

Finally, the time evolution of the number of cells is represented in Fig. 33(b).
Compared to the computation on the uniform grid (see Fig. 28), the adaptive mesh
refinement method requires an average of almost 25000 cells against 62000 cells.
For the same accuracy, the AMR method allows to save almost 60% of cells with
respect to the uniform simulation. Thus, the AMR method allows to speed up the
computation almost 3 times.
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Fig. 28 Free surface results at different positions : experimental data versus numerical simulation
with and without mesh adaptivity

5 Conclusion

In this paper, we have considered the one and two dimensional non linear non dis-
persive Saint-Venant system for tsunamis propagation problems. Solving accurately
this model over very large ranges in spatial scale leads to heavy computational time.
Therefore, we have considered a well-balanced finite volume scheme in adaptive
mesh framework. The BB-AMR method is improved using an Automatic Mesh Re-
finement Threshold based on the decreasing rearrangement of the mesh refinement
criterion function [29] yielding to a robust AMR method.

To test the efficiency of the overall method, and in particular of the automatic
threshold technique, we have considered three classical large scale tsunami propa-
gation test cases involving run-up, reflection and/or flooding and drying phenomena.
As expected for the non dispersive test cases, we have obtained results in a very good
agreement. In the case of weakly dispersive flows, we have obtained some small er-
rors as pointed out before by several authors. However, the presented results can be
improved using depth-averaged dispersive model such as the Boussinesq (weakly
non linear) or the Green-Naghdi (fully non linear) one for instance.
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Fig. 29 Adaptive mesh : time t = 11.25s. The colours correspond to the numerical density of
entropy production S

Fig. 30 Adaptive mesh : time t = 13.25s. The colours correspond to the numerical density of
entropy production S
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Fig. 31 Adaptive mesh : time t = 16s. The colours correspond to the numerical density of entropy
production S

Fig. 32 Adaptive mesh : time t = 17.5s. The colours correspond to the numerical density of entropy
production S
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Fig. 33 Time evolution of the mesh refinement threshold and the number of cells

As emphasized in [29], the use of the automatic threshold allows to localise al-
most all regions to be refined balancing the computational cost and the accuracy.
The Automatic Mesh Refinement Threshold technique makes the AMR method al-
most parameterless and robust while the existing AMR methods are based on a fixed
threshold and therefore are test case-dependent.

The overall efficiency and performance of the method has been shown through
these three different test cases. Finally, let us highlight that the automatic threshold-
ing method is independent of the numerical method used and the equations solved.
Therefore it can be applied for a wide range of numerical applications.
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