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Adaptive mesh refinement method.
Part 2: Application to tsunamis propagation.

Kévin Pons, Mehmet Ersoy, Frédéric Golay and Richard Marcer

Abstract Numerical simulations of multi dimensional large scale fluid-flows such
as tsunamis, are still nowadays a challenging and a difficult problem. To this pur-
pose, a parallel finite volume scheme on adaptive unstructured meshes for multi di-
mensional Saint-Venant system is presented. The adaptive mesh refinement method
is based on a block-based decomposition (called BB-AMR) which allows quick
meshing and easy parallelization. The main difficulty addressed here concerns the
selection of the mesh refinement threshold which is certainly the most important
parameter in the AMR method. Usually, the threshold is calibrated according to the
test problem to balance the accuracy of the solution and the computational cost.
To avoid ”hand calibration”, we apply an automatic threshold method based on the
decreasing rearrangement function of the mesh refinement criterion. This method
is applied and validated successfully to the one and two dimensional non homoge-
neous Saint-Venant system through several tsunamis propagation test cases.
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1 Introduction

Tsunamis are generally referred to any impulsed generated gravity wave. It can be
generated by many sources. The most common tsunamis are a consequence of earth-
quake, landslide and volcanic explosion. Such events can displace a very large vol-
ume of water from its equilibrium. The displaced water mass, under the gravity ac-
tion, attempts to come back to its equilibrium generating gravity waves. Depending
of the tsunami source, the order of magnitude of a tsunami wave length is around ten
kilometers. Since this horizontal length is much larger than the oceans depth, verti-
cally integrated model are generally used for tsunamis propagation. One of the most
simple model is the Saint-Venant model. These equations are a non-linear hyper-
bolic system of partial differential equations for which whose solutions may contain
shock waves. For this model, the characteristic propagation speed in any direction,
is

c =
√

gh(x, t)

where h(x, t) stands for the water elevation above the bathymetry Z(x) and x ∈ R2.
These equations, being derived under the assumption of a hydrostatic pressure field
(see for instance [11, 20, 7]), are well-known to be non-dispersive. It is also inter-
esting to highlight that close to the shore, the shoaling phenomenon can be observed
(i.e. whenever the wave starts to compress horizontally and grows vertically). For
high shoaling effect, the non-linearities may become preponderant and the wave
can break down. Because of the unique vertical evaluation, the solution of the Saint-
Venant system cannot take into account such a solution. Nevertheless, a breaking
wave can be represented by a shock solution. More precisely, the speed of propaga-
tion and the amplitude of the breaking wave are rather well-represented through the
shock wave ones, see for instance [5]. Therefore, the propagation of a tsunami can
be described quite accurately by the Saint-Venant equations.

However, solving accurately this model over very large ranges in spatial scale
inexorably leads to heavy computational time [23, 24, 1]. Thus, Adaptive Mesh Re-
finement (AMR) methods allows, in principle, to solve in a reasonable CPU time
these equations adjusting the computational effort locally to maintain a uniform
level of accuracy. On one hand, the overall performance of the method can be im-
proved in a parallel framework and more specifically with a Block-Based AMR
method [14]. The BB-AMR technique provides an efficient control of the shared
memory leading to well-balanced computational time between cores by domain-like
decomposition. Nevertheless, data locality is critical to obtain good performance
since the memory access times are not uniform and may become expensive. Conse-
quently, the re-meshing step has to be carefully managed. Taking advantage of such
a block-based structure (as in domain decomposition), we can define two different
time-step: the first one is based on the CFL condition (i.e computed through the
finest cells) while the second one is defined at the level of the block. The stability
of the scheme is thus respected for any time and the re-meshing cost is minimized.
On the other hand, the overall accuracy of the AMR method can be improved us-
ing an Automatic Mesh Refinement Threshold (AMRT) [22]. The AMRT technique
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provides an efficient reading of the mesh refinement criterion yielding to an auto-
matic threshold which avoids unnecessary mesh refinement. As a consequence, only
pertinent regions are refined which may lead to a non negligible gain of computa-
tional time when compared to a fixed threshold. The AMRT method is based on the
decreasing rearrangement of the mesh refinement criterion function and studied in
details in [22]. It yields to a parameterless AMR method. Let us highlight that the
most of the AMR methods are based on a ”user calibrated” threshold α depending
on the test case (see for instance [8]).

In this paper, we present a multi dimensional finite volume numerical scheme
to solve accurately and fast non-linear hyperbolic systems of conservation laws in
the context of parameterless BB-AMR framework. The AMR method has been first
presented by Ersoy et al. [8] for the one-dimensional gas dynamics equations for
ideal gas and extended to the BB-AMR method in the case of the two and three
dimensional two-fluids flows [14, 1]. Finally, the AMRT has been first presented by
Pons and Ersoy [22].

The first section of the paper is devoted to the presentation of the model govern-
ing equations (Sect. 2.1) and the finite volume approximation (Sect. 2.2). The second
section is dedicated to the summarized presentation of the multi dimensional finite
volume solver on unstructured meshes with an Automatic Mesh Refinement Thresh-
old (Sect. 3.1) and a Block-Based Adaptive Mesh Refinement technique (Sect. 3.2).
The model confrontation againts experiments and the numerical validation is pre-
sented in the last section (Sect. 4). The first test case (Sect. 4.1) concerns the flume
experiments conducted at Oregon State University [26, 25]. These experiments in-
volve the propagation, run-up and reflection of high amplitude solitary waves on a
reef. The second test case (Sect. 4.2) is the propagation of a solitary over a complex
three dimensional shallow shelf [19]. In this experiment, the propagation, run-up,
drying and flooding phenomena are involved. The last test case (Sect. 4.3) concerns
the Monai-Walley tsunami run-up onto a complex three dimensional beach [17].

2 The Saint-Venant equations

As motivated in the introduction, the Saint-Venant system is one the simplest depth-
averaged model able to describe accurately the propagation of a tsunami. In this sec-
tion, we first present the Saint-Venant equations and we recall its properties. Then,
we present the multi dimensional finite volume approximation. Unless otherwise
indicated, bold characters are used for vector notation.

2.1 Description of the model

The two dimensional non linear Saint-Venant system is
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∂th+div(huuu) = 0

∂t(huuu)+div
(

huuu2 +
g
2

h2I
)
=−gh∇Z

(1)

where the unknowns h(x, t) and uuu(x, t) = (u1,u2) are respectively the height of the
water and the depth-averaged velocity of the water at a space-time point (x, t),
x = (x1,x2) ∈ R2 is the space coordinate, t > 0 is the time, g is the gravitational
constant g≈ 9.81m/s2, Z(x) is the bathymetry term and I is the Identity matrix.

The three equations above express respectively, the conservation laws of mass
and momentum in x1 and x2 direction driven by the fluxes

fff 1(www) =

 hu1
hu2

1 +
g
2 h2

hu1u2

 and fff 2(www) =

 hu2
hu1u2

hu2
2 +

g
2 h2


and forced through the source

GGG(x,www) =

 0
−gh∂x1Z
−gh∂x2Z


where the conservative variable www is

www(x, t) =

 h
hu1
hu2

 .

In its vectorial form, System (1) reads

∂twww+div fff (www) = GGG(x,www) (2)

where fff (www) = ( fff 1(www), fff 2(www)).
System (2) can be also written in a quasi-conservation form as follows

∂tw+
i=2

∑
i=1

Ai∂xiw = GGG(x,w) (3)

where Ai is the Jacobian matrix in the xi direction

Ai =
∂ fff i

∂www
.

From a numerical viewpoint, the two dimensional non conservative form (3) are
less useful than in the one dimensional case since a simultaneous diagonalisation
of A1 and A2 is not possible. Therefore the most of the schemes are based on a
normal flux formulation as performed in this paper (see Sect. 2.2). In particular, in
the case of Cartesian meshes, the flux formulation reduces to the one dimensional
flux in the (1,0) and (0,1) directions. Therefore, without loss of generality, for any
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given control volume VVV ⊂ R2× [0,T ] of outward unit normal vector n = (n1,n2),
the Saint-Venant system (2) satisfies the following properties

Theorem 1.
1. System (2) is strictly hyperbolic on the set {h(x, t) > 0} where the eigenvalues

are

λ1(h,u) = u ·n−
√

gh, λ2(h,u) = u ·n, λ3(h,u) = u ·n+
√

gh,

and the right eigenvectors are

r1(h,u) =
(

1,u1−
√

ghn1,u2−
√

ghn2

)T
,

r2(h,u) =
(

0,−
√

ghn2,
√

ghn1

)T
,

r3(h,u) =
(

1,u1 +
√

ghn1,u2 +
√

ghn2

)T
.

2. For smooth solutions, the mean velocity u satisfies:

∂tu+u ·∇u+g∇(h+Z) = 0 . (4)

3. For smooth solutions, the still water steady state, i.e. for uuu = 0, reads

gh+gZ = constant . (5)

4. System (2) admits a mathematical entropy :

E(h,u,x) =
h |u|2

2
+

gh2

2
+ghZ(x)

which satisfies the entropy (energy) relation

∂tE(h,u,x)+div
((

E(h,u,x)+
gh2

2

)
u
)
≤ 0 (6)

where |u| := u2
1 +u2

2 .

Proof. Let VVV ⊂R2× [0,T ] of border ∂V and of outward unit normal vector n. Then,
let us integrate System (2) on VVV and apply the Green formula:

∂t

∫
VVV

w dx+
∫

∂VVV
f(w) ·n dv =

∫
VVV

GGG(x,WWW ) dx .

The Jacobian matrix in the primitive variable of the flux across the normal n is then
defined as

Jac =
(

∂www
∂WWW

)−1
∂ f ·n
∂w

(
∂www
∂WWW

)
where
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∂ f ·n
∂w

=

 0 n1 n2
(gh−u2

1)n1−u1u2n2 2u1n1 +u2n2 u1n2
−u1u2n1 +(gh−u2

2)n1 u2n1 u1n1 +2u2n2


so that λi is the i− th eigenvalue and ri is the i− th right eigenvector of the matrix
Jac:

Jac =

 0 n1 n2
(gh−u2

1)n1−u1u2n2 2u1n1 +u2n2 u1n2
−u1u2n1 +(gh−u2

2)n1 u2n1 u1n1 +2u2n2

 .

The item 2. and 3. are obtained through a simple calculation. Finally, for smooth
solutions, the entropy equality (6) is obtained as the results of of h×(4)·u+

(
∂th+

div(huuu)
)(

gh+gZ
)

which ends the proof. ut

Remark 1. We recall that the solutions of the above System (2) can exhibit in finite
time discontinuities, corresponding to hydraulic jumps or bores, even if the initial
data www(x,0) = www0(x) is smooth. It can be recovered by completing System (2) with
the entropy inequality (6). Even if we are not able to prove the uniqueness in the
multi dimensional case, this inequality allows to select the physical relevant solu-
tion and provide a “smoothness” indicator since the entropy satisfies a conservation
equation only in regions where the solution is smooth and an inequality when the
solution develops discontinuities. Thus, the discrete quantity S, called the numerical
density of entropy production, can be considered as a measure of the amount of vi-
olation of the entropy equation (as pointed out in [4, 16]). Therefore it can be used
as a suitable mesh refinement criterion as an ”error indicator”, see Sect. 3 and [8].

2.2 Finite volume approximation

The computational domain Ω ⊂ Rd is split into a set of control volumes, also re-
ferred as cells, Ω = ∪kCk of mesh size |Ck|. The source term is upwinded at the
cell interfaces through an hydrostatic reconstruction [2] to obtain a well-balanced
scheme.

On a given cell Ck, noting wk(t)

wwwk(t)'
1
|Ck|

∫
Ck

www(x, t) dxxx

the approximation of the mean value of the unknown www(x, t) on Ck at time t, and
integrating (2) over each cell, we obtain:∫

Ck

∂www(t)
∂ t

+ ∑
a

∫
∂Ck/a

fff (www(t)) ·nnnk/a ds = 0
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where nnnk/a denotes the unit normal vector on the boundary ∂Ck/a between cells k
and a.

Next, F
(
wwwk(t),wwwa(t),nnnk/a

)
the flux approximation being written

FFF
(
wwwk(t),wwwa(t),nnnk/a

)
≈
∫

∂Ck/a

fff (www(t)) ·nnnk/ads ,

the semi-discrete finite volume approximation of Eqs. (2) (see for instance [12, 27,
9]) is obtained:

∂wwwk(t)
∂ t

+
1
|Ck|∑a

FFF
(
wwwk(t),wwwa(t),nnnk/a

)
= 0 (7)

where FFF
(
wwwk(t),wwwa(t),nnnk/a

)
is defined via the Godunov solver, i.e. it is computed

with the exact solution of the 1D Riemann problem at the interface k/a with the
states wwwk(t) and wwwa(t) (for further details see, for instance, [27]).

The source term is upwinded at the cell interface following the hydrostatic re-
construction. It means that for each interface, the numerical flux

FFF
(
wwwk(t),wwwa(t),nnnk/a

)
is replaced by the flux at left hand side FFFk

(
wwwk(t),wwwa(t),nnnk/a,∆Zk/a

)
and the right

hand side FFFa
(
wwwk(t),wwwa(t),nnnk/a,∆Zk/a

)
of the interface k/a. These new fluxes are

constructed as follows

FFFk
(
wwwk(t),wwwa(t),nnnk/a,∆Zk/a

)
= FFF

(
www∗k ,www

∗
a,nnnk/a

)
+

 0
g
2 (h

2
k− (h∗k)

2)n1
g
2 (h

2
k− (h∗k)

2)n2


FFFa
(
wwwk(t),wwwa(t),nnnk/a,∆Zk/a

)
= FFF

(
www∗k ,www

∗
a,nnnk/a

)
+

 0
g
2 (h

2
a− (h∗a)

2)n1
g
2 (h

2
a− (h∗a)

2)n2


by means of reconstructed states (satisfying the still water steady state equation (5))

w∗k = (h∗k ,uk) ,

w∗a = (h∗a,ua) ,

h∗k = max(0,hk−max(0,∆Zk/a)) ,

h∗a = max(0,ha−max(0,−∆Zk/a)) .

In theses formula, ∆Zk/a stands for the jump of Z across the interface k/a. The
scheme is therefore well-balanced by construction, i.e., the still water steady states
are exactly satisfied.

Finally, Equations (2) are completed with the entropy inequality (6). Follow-
ing Ersoy et al. [13, 8], the entropy inequality (6) is approximated using the semi-
discrete finite volume scheme (7). The obtained discrete quantity, called the numer-
ical density of entropy production, is then used as a mesh refinement criterion (see
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Remark 1, Sect. 3 and [8, 22]). For further details on the construction of the numer-
ical scheme we refer to [8] since the definition of the numerical fluxes reduces to a
one dimensional computational at each interface k/a.

3 BB-AMR method

Defining a robust mesh refinement criterion for multi dimensional configurations
is not enough to design a suitable numerical solver. The mesh refinement thresh-
old and the treatment of data are also crucial points and in particular the way to
distribute refined cells and to share the memory in a parallel process. This point is
handled within an Automatic Mesh Refinement Threshold framework in a hierarchi-
cal Block-Based way called parameterless BB-AMR. The global strategy to adapt
the mesh and how to manage data are presented.

3.1 AMR and Automatic thresholding methods

The efficiency of the numerical density of entropy production (see Remark 1) as a
relevant mesh refinement parameter have been already demonstrated in a previous
work [8]. It has been numerically observed (and from theoretical considerations)
that the production of the numerical density of entropy is almost zero for smooth
solution and non-positive when the solution develops discontinuities. As a conse-
quence, the mesh is automatically and proportionally (with respect to the produc-
tion) refined inside area where the production is non zero. More precisely, Ersoy
et al. [8] have demonstrated that, for the one dimensional gas dynamics equation,
the support of the relative error coincides with the support of the numerical density
of entropy production. The extension toward the multi dimensional case is detailed
in the case of two-fluid flows in [14]. Therefore, according to the finite volume
approximation defined in Sect. 2.2, a local numerical entropy production Sn

k is com-
puted with absolute value on each cell at time tn and compared to a mesh refinement
threshold α > 0. Finally, for each cell Ck:

• if Sn
k > α , the mesh is refined and,

• if Sn
k < α the mesh is coarsened.

In the literature, the threshold parameter α is determined according to the simulated
case requirements, to reach a relevant compromise between computational cost and
accuracy. Moreover, the smaller α is, the more accurate the results are at the expense
of CPU time and yields to unnecessary refinement. To obtain a suitable balance
between computational cost and accuracy, following [22], we set automatically the
threshold α = αPE such that

αPEd(αPE) = max
0<α6Sm

(αd(α))
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where d is the decreasing rearrangement (also known as the distribution) function
of the mesh refinement criterion S (here the absolute value of the numerical density
of entropy production) and Sm its mean value. More precisely, for each threshold
α ∈ (0,Sm], d(α) is the Lebesgue measure of the set d(α) = {S(x) > α} and pro-
vides a complete description of the criterion in terms of local local maxima which
are sorted canonically (from the smallest to the largest). In practice, the thresh-
old αPE verifies the desired behavior, namely αPE < Sm catching the smallest local
maxima for discontinuous flows and αPE≈ Sm for smooth flows. As a consequence,
it allows to reach a relevant compromise between computational cost and accuracy
by indicating efficiently the cells to be refined. Therefore, the presented AMR pro-
cess, in comparisons with existing methods, is now parameterless.

From a numerical viewpoint, the distribution function is defined as follows. Let
us consider a given discrete mesh refinement criterion S(x, tn) = ∑

N
k=1 Sn

k1Ck(x)
where N is the total number of cells at time tn and 1Ck(x) is the indicator func-
tion of the set Ck. Let (α j)06 j6M be an increasing sequence of M+1 threshold pa-

rameter such that (α j)06 j6M =

(
Sm

(
j

M

)β
)

06 j6M
. Then, the distribution function

d j = d(α j) is given by
d j = #{k ; Sn

k > α j}

where # is the number of elements in the set {Sn
k > α j}. In [22, Section 4], it is

shown that the method is quite insensitive to the parameter β , set to 2 here. For all
applications M is fixed to M = 1000 points. Interested readers can found details in
[22].

3.2 Data management

For the one dimensional case, the local mesh refinement procedure is constructed
following dyadic tree applied at each time step. “Macro cells” are used to be easily
refined by generating hierarchical grids. Each cell can be split in two. Dyadic cells
graph are thus produced, in basis 2 numbering, to allow a quick computing scan to
determine the adjacent cells. For stability reasons, the mesh refinement level cannot
exceed 2 between two adjacent cells. More details can be found in [8].

The multi dimensional extension of the mesh refinement procedure is a diffi-
cult task. Interesting works have been presented for 2D Cartesian grid or quad-tree
[3, 29, 21, 30], octree for 3D simulations [18, 10], and anisotropic AMR [6, 15].
For the Saint-Venant system (1) the extension from 1D to 2D leads naturally to
quad-tree meshing. But, the presence of a complex moving interface (composed of
rarefaction and shocks) implies to re-mesh at each time step, which is obviously a
costly process. Guided by the need to reach a relevant compromise between the con-
tradictory aims of solution accuracy and computing speed, a Cartesian block-based
mesh approach is introduced, somehow like in [28, 31]. If the mesh is not refine at
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each time step, the patch where the grid should be refine must be enlarged. The grid
generation in the framework of BB-AMR can be developed as follow.

• Firstly, the initial computational domain is divided in several hexahedral ele-
ments, called blocks. For the sake of simplicity, Fig. 1(a) represents a regular
quadrilateral mesh.

• Secondly, we define for each block a discretization nx in x-direction, ny in y-
direction and a level of refinement lr such that the total number of cell in x-
direction of the block will be 2lr nx. As the mesh refinement level cannot exceed
2 between two adjacent blocks, the level of mesh refinement is automatically
adapted if necessary (as for example for the blocks B5 and B2 in Fig. 1(b))

• Thirdly, in order to balance the CPUs load, the cells of each block are re-
distributed in a fixed number of domains according to the Cuthill-McKee num-
bering, see Fig. 1(c).

• Finally, the unstructured mesh is built for each domain.

For each refined cells (or blocks), averaged values are projected on each sub-cell
and fluxes are computed as simply as possible to avoid heavy computation. At the
interface between two domains, ghost cells are created in order to transfer the nec-
essary data to the explicit time integration scheme at each time step.The number of
domain being fixed, each domain are loaded in a given MPI process. These MPI
processes are then load on a fixed number of cores (not necessary the same).

The re-numbering and re-meshing being expensive, the mesh is finally kept con-
stant on a time interval, called AMR time-step, given by the smallest block (rather
by the smallest cell) and the maximum velocity. Details on the BB-AMR are given
in [14, 1].

(a) Initial blocks (b) Block Bi (nx,ny, lr) (c) Refined mesh and domains

Fig. 1 Illustration of the BB-AMR process
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4 Real-life Applications

We now focus on the overall performance of the BB-AMR scheme with automatic
thresholding confronted to experimental and state-of-the-art numerical results1. For
each test case, the numerical simulations are carried out on adaptive grids (using the
BB-AMR method previously presented) and on uniform grids. The comparisons of
both simulations allow to show the reliability and the efficiency of the parameterless
BB-AMR method. To simplify the analysis, we have considered only 1 domain, i.e.,
1 processor. Interested readers can found a detailed numerical study with several
domains in [14]. Moreover, unless otherwise indicated, the expression ”numerical
density of entropy production” is referred to the absolute value of the numerical
density of entropy production.

4.1 Solitary wave propagation over a two dimensional reef

This benchmark aims at reproducing a set of laboratory experiments carried out
at the O.H. Hinsdale Wave Research Laboratory, Oregon State University (OSU,
see Roeber et al. [26] and Roeber and Cheung [25]). These experiments involve
the propagation, run-up, splash-up and reflection of high amplitude solitary waves
on two-dimensional reefs. Their purpose is on one hand to investigate processes
related to breaking, bore formation, dispersion, and passage from sub- to super-
critical flows, and on the other hand, to provide data for the validation of near-shore
wave models in fringing reef. Even if the Saint-Venant model (2) is not relevant
for dispersive flows, through this test case we show that globally experimental data
are well-captured and the cells are well-refined thanks to the automatic thresholding
technique.

4.1.1 Experimental settings

The geometry of the test considered here is shown in Fig. 2. The length of the basin
is of 104 m, however the computational domain is delimited by a reflecting wall
placed at x = 83.7 m. The reef starts at x = 25.9 m with a nominal slope of 1/12.
The actual slope is such that the height of 2.36 m is reached after x = 28.25 m. At
this station a 0.2 m height crest is mounted. The offshore slope of the crest is the
same of the reef, and the length of its plateau is of 1.25 m. The on-shore side has a
slope of 1/15 giving a nominal length for the crest basis of 6.65 m (using the actual
offshore slope, a crest basis of 6.644 m is obtained). For the computations, the use
of the nominal slope values is prescribed. This gives an offshore length of the crest
slope (starting at x = 28.25 m) of 2.4 m. Thus, the bathymetry is

1 The numerical soft used for the following test cases is the EOLENS code developed by the Institut
de Mathématiques de Toulon (IMATH) and Principia.
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Z(x) =


−2.5 if x < 25.9 ,
(x−25.9)

30.8 2.565−2.5 if 25.9 < x < 56.7 ,
0.065 if 56.7 < x < 57.65 ,
(57.95−x)

3 0.2+0.0650 if < 56.7 < x < 60.95 ,
−0.1360 if x > 60.95 .

Fig. 2 Experimental settings and wave gauges locations

The initial depth at still water is h0 = 2.5 m, yielding to a partially submerged
crest, and a depth behind it (on-shore side) of 0.14 m. The initial solution consists of
a solitary wave of amplitude A = 0.75 m providing a non linearity ratio of A

h0
= 0.3.

For numerical purpose, the initial data consist of a solitary wave centered at x0 =
17.6 m of amplitude

η(x,0) := h(x,0)+Z(x) =
A

cosh
(√

3A
(4h3

0)
(x− x0)

)2 (8)

and velocity
u(x,0) =

√
g(h0 +A)η(0,x)/h0 (9)
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which corresponds to the experimental data at the dimensionless time t̃ = t
√

g
h0

=

55.03 as displayed in Fig. 3(a).

4.1.2 Numerical results vs experimental results

Figures 3(a) and 3(b) shows the propagation of the solitary wave over the slope start-
ing at x = 25.9 m. Figure 3(c) represents the surface elevation at the dimensionless
time t̃ ≈ 69 where the wave develops into a plunging breaker onto the reef crest2.
From an experimental viewpoint, t̃ ≈ 69 corresponds to the subsequent time of over-
turning of the free surface. In Fig. 3(d), the wave hitting the free surface creates a
downstream and upstream propagating bore as shown in Fig. 3(e). The downstream
propagating bore is reflected at the end wall at x = 83.7 m and propagates in oppo-
site direction as displayed in Fig. 3(f).

2 The authors would thanks V. Roeber to furnish the experimental data for this test case.
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(d) t̃ = 70.68
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(f) t̃ = 125.03

Fig. 3 Surface profiles of solitary wave propagation over an exposed reef crest. Confrontation of
experimental data (blue circles) to numerical data computed on a uniform grid (solid green line)
and on an adaptive grid (solid red lines). The solid cyan line represents the mesh level and the black
one the bathymetry

In Figs. 3(a)–3(f), the experimental surface elevation (represented with blue cir-
cles) over the bathymetry Z for several dimensionless time t̃ are compared to the
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obtained numerical results (green and red lines-circles) 3. The numerical solution is
computed on a uniform grid (green lines-circles) composed of 1000 cells and on an
adaptive grid (red lines-circles) initially composed of 200 cells/blocks with lmax = 4
where lmax is the maximum level of the mesh refinement. For both numerical ex-
periments, the CFL number is set to 0.99. Free boundary condition at x = 0 m and
reflecting boundary condition at x = 83.7 m are imposed. Table 1 summarizes the
numerical parameters used for this test case.

Adaptive mesh simulation Uniform mesh simulation

Simulation time 240 240
Number of cells 200-560 1000
Re-meshing time step 0.05 s not applicable
Time order integration 1 1
Space order integration 1 1
CFL 0.99 0.99

Table 1 Numerical parameters

The obtained numerical results, as shown in Figs. 3(a)–3(f), are rather well-
computed when compared to experimental data. However, the wave height is slightly
underestimated (see Fig. 3(c)) while the hydraulic bore propagation front height is
overestimated (see Fig. 3(d)).

We now compare in Figs. 4(a)–4(f), the computed and the experimental water
elevation at the wave gauges displayed in Fig. 2. The oscillating shape of the exper-
imental measures almost corresponds to dispersive effects which cannot be detected
with the Saint-Venant model (2). However, the shape of the numerical results almost
coincides with the experimental data for wave gauges located before x = 54.4 m as
shown in Figs. 4(a)–4(c). The point x = 54.4 m is located just before the crest and
in particular it corresponds to the region where the overturning of the free surface is
experimentally observed. It yields numerically to a small shift as observed in Figs.
4(d)–4(f).

3 Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz
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Fig. 4 Surface profiles of solitary wave propagation in time at wave gauges 1 to 6. Confrontation
of experimental data (solid blue line) to numerical data computed on a uniform grid (solid green
line) and on an adaptive grid (solid red line)
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4.1.3 AMR performance

We now compare the performance of the adaptive and uniform method. The adaptive
scheme uses an average of 356 cells against 1000 cells (see Fig. 5(b)) for the uniform
one and the CPU-time is 95 s against 210 s.

We observe that the computation on adaptive grid is comparable to the numeri-
cal solution on uniform grid and computed about 2 times faster with less cells. We
see also in Figs. 3(a)-3(f) that for each time step, the threshold parameter is au-
tomatically well-set to capture efficiently the region to refine (see also Fig. 5(a)).
During the first 50 non-dimensional time, we have already pointed out that the soli-
tary wave propagates and splash-up. This phenomenon is characterized by a steep
gradient flow followed by a discontinuous flow for the Saint-Venant system, see Fig
3. In view of the remarks in Sect. 3.1, we observe that for almost all t̃ ∈ (55,100), the
threshold is set to αPE < Sm. For t̃ > 100, the flow is almost smooth and therefore
αPE ≈ Sm. It is also interesting to highlight that only the region of interest are auto-
matically refined as shown in Fig. 3(e). Therefore, we recover the desired behavior
predicted by Pons and Ersoy [22, Section 4]. Moreover, in view of the confrontation
with the computation on uniform grid, this test shows the reliability/efficiency of the
automatic selection of the threshold for multiple scale flows.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 60  80  100  120  140  160  180  200  220

α

time  t
~

Threshold 

S
m

 

(a) Threshold

 200

 400

 600

 800

 1000

 1200

 60  80  100  120  140  160  180  200  220

N
u
m

b
er

 o
f 

ce
ll

s

time  t~

Adaptive mesh 

Uniform mesh 

(b) Number of cells

Fig. 5 Time evolution of the mesh refinement threshold and the number of cells

4.2 Solitary wave propagation over an irregular three-dimensional
shallow shelf

In this test case, the numerical simulation of a solitary wave propagation over a com-
plex three dimensional bathymetry is performed. This test case was experimentally
introduced in [19] to understand the turbulence and kinematic properties associated
with a breaking solitary wave. In this experiment, the propagation, run-up, drying
and flooding phenomena are involved.
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4.2.1 Experimental settings

A laboratory experiment was conducted in a large wave basin which was 48.8 m
long and 26.5 m wide at Oregon State University for which free surface elevations
and fluid velocities were recorded at several locations by wave gauges (WG) and
velocity captors (ADV). A single solitary wave of height of 39 cm at x = 5 m is
produced with a piston-type wave-maker over a complex bathymetry illustrated in
Fig. 6. The bathymetry begins with a flat part allowing to generate properly a solitary
wave. Then, starting at x= 10.2 m of the wave-maker and extending to x= 25.5 m, a
complex three dimensional shelf is built. The associated slope to this zone is variable
but less and less steep. Beyond that, a very small one dimensional slope finishing
on a flat onshore zone is built. The experimental basin is closed by walls. Fluid
height and velocities are recorded during 45 s. Finally, the material used for the
walls and the bathymetry is made of smooth concrete so that one can assume almost
a frictionless flow. For further informations on this experiment, interested readers
can found more details in [19].

Fig. 6 Experimental settings

4.2.2 Numerical vs experimental results

The domain is numerically extended to x = −5 m with a water depth of 78 cm
to impose a solitary wave instead of reproducing the wave maker movement. The
simulated solitary wave is a first order solution of the Boussinesq equation (see
Eqs. (8) and (9)) with x0 = 5 m and A

h0
= 0.5. For computational purpose, we have

considered 128 initial blocks composed of 7 500 cells for the initialization of the
adaptive computation and almost 33 000 cells for uniform mesh computation. For
both simulations, the CFL number is set to 0.5. Reflecting boundary conditions are
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prescribed to walls. Table 2 summarizes the numerical parameters used for this test
case.

Adaptive mesh simulation Uniform mesh simulation

Simulation time 30 s 30 s
Number of blocks 128 128
Number of cells 7 500-25 000 33 000
Re-meshing time step 0.25 s not applicable
Time order integration 2 2
Space order integration 2 2
CFL 0.5 0.5

Table 2 Numerical parameters

To illustrate the main propagation phenomena, we have displayed the numerical
solutions calculated at time t = 0.5 s (see Fig. 7(a)), t = 2.5 s (see Fig. 7(b)), t =
5.75 s (see Fig. 7(c)) and t = 23.75 s (see Fig. 7(d)). The Fig. 7(a) represents the
profile of the solitary wave which propagates towards the coast. Figures 7(b) and
7(c) show respectively the wave hitting the conic island and then the beginning of
the flooding. Figure 7(d) shows the flow after the wave run-up and its reflection on
the right side of the domain.
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(a) t=0.5s (b) t=2.5s

(c) t=5.75s (d) t=23.75s

Fig. 7 Numerical water height (coloration is issue from the kinetic energy)

The global numerical results are now confronted to the experimental data recorded
at the waves gauges 2, 4, 6 and 7 (WG) for the water height, see Fig. 6 and 8, and to
the velocity captors 2 and 3 (ADV) for the first u component of the velocity vector,
see Fig. 6 and 9. For the wave gauge 2 to 7 (see Figs. 8(a)–8(d)), the global shape
of the free surface is in quite good agreement with the experimental data but some
differences are observed. The numerical solution computed with the Saint-Venant
system (2) slightly underestimates the water level at the wave gauge 2 (see Fig. 8(a))
and overestimates at the wave gauge 4 (see Fig. 8(b)). Moreover, the numerical so-
lution is rather accurate up to time t = 15 s at the wave gauges 6 and 7 (see Fig. 8(c)
and 8(d)). For t > 15 s , the dispersive effects, not reproduced with the Saint-Venant
system, begin significant and induce slightly different results between experimental
and numerical data. Similar conclusion can be drawn up for the first component of
the vector velocity on the captor 2 (see Fig. 9(a)) and 3 (see Fig. 9(b)). Globally,
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the numerical results on this test case are in a good agreement and can be improved
with a dispersive model.
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Fig. 8 Free surface results at different positions : experimental data versus numerical simulation
with and without mesh adaptivity
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Fig. 9 Velocity results at different positions : experimental data versus numerical simulation with
and without mesh adaptivity

4.2.3 AMR performance

To highlight the efficiency of the mesh refinement parameter and the automatic se-
lection of the threshold, the numerical density of entropy production (without abso-
lute value) and the associated mesh are displayed at several times in Fig. 10, (time
t = 0.5 s in Fig. 10(a), for t = 2.5 s in Fig. 10(b), for t = 5.75 s in Fig. 10(c) and
for t = 23.75 s in Fig. 10(d)). The time evolution of the mesh refinement threshold
selecting the region to be refined is ploted in Fig. 11(a). It can be noticed that accord-
ing to the complex flow zones the numerical density of entropy production indicates
which areas need to be refined. Secondly, the mesh density is well distributed on
these zones which illustrate the efficiency of the automatic thresholding method.

For instance, in Fig. 7(c), the region which needs to be refined is clearly the zone
around the ”conic island”. According to Fig. 10(c), the numerical density of entropy
production in this area shows that the local maxima (lowest value without the abso-
lute value) are of almost of order 0.005 and clearly follows the wave front. We see
in Fig. 11(a), approximately at time t = 5.75 s, that the threshold is automatically
fixed to almost 0.001 and therefore allows to perform a suitable refinement in the
region of interests as observed in Fig. 7(c) or 10(c).

Compared to the computation on a uniform grid (see Figs. 8 and 9), the adaptive
mesh refinement scheme requires only an average of 13000 cells against 33000
cells (see Fig. 11(b) for the number of cells for all the simulation). For the same
accuracy, the adaptive scheme allows to save almost 60% of cells with respect to
the uniform mesh. During the adaptive simulation, the maximum refined area is
reached around the time t = 12 s which corresponds to the time where the free
surface oscillates behind the island and the wave run-up on the ”coast”. This result
makes sense because the mesh has to follow a lot of oscillation and not only a
solitary wave. Globally, all these cells saved allow to speed up the computation by
2.5 time for this test case.
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(a) t=0.5s (b) t=2.5s

(c) t=5.75s (d) t=23.75s

Fig. 10 Adaptive mesh (coloration is issue from the numerical density of entropy production with-
out absolute value)
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Fig. 11 Time evolution of the mesh refinement threshold and the number of cells

4.3 Tsunami runup onto a complex three dimensional
Monai-Walley beach

This test case concerns the Hokkaido-Nansei-Oki tsunami, in 1993, that struck the
Okushiri Island in Japan. The tsunami run-up records was about 30 m height and the
currents speed of order 10-18 m/s for which relevant high-quality data were saved.
4 The largest value run-up (32 m) was recorded near the Monai-Walley beach.

4.3.1 Experimental settings

To understand this complex run-up, a 1/400 scale laboratory model of Monai was
realized in a large-scale tank of 205 m long, 6 m deep, and 3.5 m wide at the Central
Research Institute for Electric Power Industry (CRIEPI) in Abiko (Japan). The off-
shore incident wave on a water depth d = 13.5 cm is prescribed. There are reflective
vertical side-walls at y= 0 and 3.5 m as for the x boundaries. The bathymetry as well
as the coastal topography reproduced in the laboratory experiment are represented5

in Fig. 12(b) and 12(c) .
The input wave at x= 0 m is a leading-depression height of−2.5 mm with a crest

of 1.6 cm, as displayed in Fig. 12(a). In the experiment, the waves are measured at
thirteen locations and complete time histories are given at three locations, (x,y)
= (4.521, 1.196), (4.521, 1.696), and (4.521, 2.196) in meters, see also [17]. In

4 Several sources and data can be found, see for instance http://nctr.pmel.noaa.gov/
benchmark/Laboratory/Laboratory\_MonaiValley/ or http://isec.nacse.
org/workshop/2004_cornell/bmark2.html
5 sources and pictures are available at http://isec.nacse.org/workshop/2004\
_cornell/bmark2.html
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contrast with the previous experimental test cases, the dispersive phenomena can
be neglected here.
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Fig. 12 Experimental settings

4.3.2 Numerical vs experimental results.

The initial condition for this test case is the lake at rest and an imposed water height
on the left side wall, see Fig. 12(a). Wave gauges data 6 experimental results are
given up to time t = 100 s. However, the information concerning the input wave
profile (see Fig. 12(a)) at x= 0 m is only available up to time t = 22 s. For numerical
purpose, we prescribe for t > 22 s, a constant free surface level η = 0 m on the left
wall. In practice, due to this assumption, some artificial reflecting waves can occur
on the wave-maker beyond t > 22 s and can reach the free surface gauges around
t = 30 s. Finally, to avoid any wrong comparisons due to these artificial reflections
the comparisons between the experimental gauges and the numerical results will be
only done over the first 30 s of the experiment.

6 Wave gauges data are available at the address http://nctr.pmel.noaa.gov/
benchmark/Laboratory/Laboratory_MonaiValley/



26 Kévin Pons, Mehmet Ersoy, Frédéric Golay and Richard Marcer

For computational purpose, we have considered 240 initial blocks composed of
8 000 cells for the initialisation of the adaptive simulation and 62 000 cells for uni-
form mesh simulation. For both simulations, the CFL number is set to 0.5. Reflect-
ing boundary conditions are prescribed to walls. Table 3 summarizes the numerical
parameters used for this test case.

Adaptive mesh simulation Uniform mesh simulation

Simulation time 30 s 30 s
Number of blocks 240 240
Number of cells 8 000-40 000 62 000
Re-meshing time step 0.25 s not applicable
Time order integration 2 2
Space order integration 1 1
CFL 0.5 0.5

Table 3 Numerical parameters

To illustrate this test case we show in Fig. 13, the propagation of the wave (col-
ored with the kinetic energy) at time t = 11.25 s (Fig. 13(a)), t = 13.25 s (Fig.
13(b)), t = 16 s (Fig. 13(c)) and t = 17.5 s (Fig. 13(d)). The Fig. 13(a) represents
the tsunami wave entering inside the computational domain. The Fig. 13(b) shows
the submersion of the conical island. Figures 13(c) and 13(d) show respectively the
large flooding and run-up of the wave and its reflection on the cliff.
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(a) t = 11.25 s (b) t = 13.25 s

(c) t = 16 s (d) t = 17.5 s

Fig. 13 Numerical water height (coloration is issue from the kinetic energy)

The numerical solutions are now quantitatively confronted to the experimental
measures. The obtained comparisons are shown in Fig. 14 at the three waves gauges
WG 1 (see Fig. 14(a)), 2 (see Fig. 14(b)) and 3 (see Fig. 14(c)). These figures show
that the wave amplitude and the wave shape are accurately predicted at three dif-
ferent location in the computed domain. As emphasized before, dispersive effects
being negligible, the obtained results are in a very good agreement. However, it can
be noticed in Fig. 14 a small amplitude errors occurring at the beginning of the sim-
ulations. This error can be attributed to the lack of accuracy of the prescribed initial
condition and boundary condition at x = 0. This problem was already encountered
by Popinet [23].



28 Kévin Pons, Mehmet Ersoy, Frédéric Golay and Richard Marcer

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  5  10  15  20  25  30

F
re

e 
su

rf
ac

e 
[c

m
]

time [s]

Experiment

Numerical (uniform)

Numerical (adaptive)

(a) Gauge 1

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  5  10  15  20  25  30

F
re

e 
su

rf
ac

e 
[c

m
]

time [s]

Experiment

Numerical (uniform)

Numerical (adaptive)

(b) Gauge 2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  5  10  15  20  25  30

F
re

e 
su

rf
ac

e 
[c

m
]

time [s]

Experiment

Numerical (uniform)

Numerical (adaptive)

(c) Gauge 3

Fig. 14 Free surface results at different positions : experimental data versus numerical simulation
with and without mesh adaptivity

4.3.3 AMR performance

To highlight the efficiency of the mesh refinement parameter and the automatic se-
lection of the threshold, the numerical density of entropy production (without abso-
lute value) and the associated mesh are displayed at several times in Fig. 15, (time
t = 11.25 s in Fig. 15(a), for t = 13.25 s in Fig. 15(b), for t = 16 s in Fig. 15(c)
and for t = 17.5 s in Fig. 15(d)). We also display in Fig. 16(a) the evolution of the
threshold parameter which selects the region to be refined.

We observe mainly that the wave front and subsequent waves are very well-
captured by the criterion and the mesh refinement threshold is well chosen to refine
in those areas (see for instance Fig. 13(d) and 15(d)). Between 3 and 7 seconds,
the tsunami propagates in the domain involving a grow-up of the number of cells.
Then the wave passes through the island and reaches the reef around 15 seconds.
After this, the wave is reflected and goes back to the wave maker with a second
interaction with the island. The maximum number of cells is reached when the wave
is passing on the island and begins to run-up the coast (see Figs. 15(b) and 16(a)),
and when the wave goes back to the wave maker. These results are coherent with the
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physical process involved since it correspond to the two time where large flow region
mixing non negligible multiple flows (smooth and discontinuous) are observed. The
overall scales of the tsunami propagation with its reflections are very well captured
as displayed in Fig. 15(a), Fig. 15(c) and Fig. 15(d).

(a) t = 11.25 s (b) t = 13.25 s

(c) t = 16 s (d) t = 17.5 s

Fig. 15 Adaptive mesh (coloration is issue from the numerical density of entropy production with-
out absolute value)

Finally, the time evolution of the number of cells is represented in Fig. 16(b).
Compared to the computation on the uniform grid (see Fig. 14), the adaptive mesh
refinement method requires an average of almost 25000 cells against 62000 cells.
For the same accuracy, the AMR method allows to save almost 60% of cells with
respect to the uniform simulation. Thus, the AMR method allows to speed up the
computation almost 3 times.
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Fig. 16 Time evolution of the mesh refinement threshold and the number of cells

5 Conclusion

In this paper, we have considered the one and two dimensional non linear Saint-
Venant system for tsunamis propagation problems, which are well-known to be
non-dispersive. Solving accurately this model over very large ranges in spatial scale
leads to heavy computational time. Therefore, we have considered an adaptive well-
balanced finite volume scheme (based on the hydrostatic reconstruction). To im-
prove the efficiency of the data management a Block-Based strategy is used. The
AMR method is also improved using an Automatic Mesh Refinement Threshold
based on the decreasing rearrangement of the mesh refinement criterion function
[22] yielding to a parameterless and robust AMR method.

To test the efficiency of the overall method, and in particular of the automatic
threshold technique, we have considered three classical large scale tsunami propa-
gation test cases involving run-up, reflection and/or flooding and drying phenomena.
As expected for the non dispersive test cases, we have obtained results in a very good
agreement. In the case of weakly dispersive flows, we have obtained some small er-
rors as pointed out before by several authors. However, the presented results can be
improved using depth-averaged dispersive model such as the Boussinesq (weakly
non linear) or the Green-Naghdi (fully non linear) one for instance.

As emphasized in [22], the use of the automatic threshold allows to localise al-
most all regions to be refined balancing the computational cost and the accuracy. The
Automatic Mesh Refinement Threshold technique makes the AMR method com-
pletely parameterless and robust while the existing AMR methods are based on a
fixed threshold and therefore are test case-dependent. We recall that the automatic
threshold is chosen between the smallest local maxima and the global maximum of
the mesh refinement criterion.

The overall efficiency and performance of the method has been shown through
these three different test cases. Finally, let us highlight that the automatic threshold-
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ing method is independent of the numerical method used and the equations solved.
Therefore it can be applied for a wide range of numerical applications.
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