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Adaptive mesh refinement method.
Part 2: Application to tsunamis propagation.

Kévin Pons, Mehmet Ersoy, Frédéric Golay and Richard Marcer

Abstract As an extension of ”Adaptive mesh refinement method. Part 1: Automatic
thresholding based on a distribution function.”, we propose to show the efficiency
of the automatic thresholding method for a large variety of real life test problems
such as the propagation of tsunamis. The numerical simulations of multi dimen-
sional large variety scale fluid-flows such as tsunami modeling, is still nowadays a
challenging and a difficult problem. To this purpose, a parallel finite volume scheme
on adaptive unstructured meshes for multi dimensional Saint-Venant system is pre-
sented. The adaptive mesh refinement method is based on a block-based decompo-
sition (called BB-AMR) which allows quick meshing and easy parallelization. The
main difficulty addressed here concerns the selection of the mesh refinement thresh-
old which is certainly the most important parameter in the AMR method. Usually,
the threshold is calibrated according to the test problem to balance the accuracy of
the solution and the computational cost. To avoid ”hand calibration”, we propose to
apply the automatic threshold method based on the decreasing rearrangement func-
tion of the mesh refinement criterion. The robustness was shown in the first part of
this paper for the one dimensional Saint-Venant system. In this paper, this method
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is applied to the two dimensional non homogeneous Saint-Venant system and suc-
cessfully validated through several test cases comparing to experimental data.

1 Introduction

Many fluid flows problems arising in geophysics can be modeled with one or two
dimensional depth-averaged equations. The Saint-Venant system is the simplest
depth-averaged model [25, 38]. A number of related applications have been consid-
ered with depth-averaged approaches, such as sediment transport [14]; river flows,
open channel, closed pipes, flooding [7, 8, 9, 10, 15, 16, 18]; atmosphere dynamics
[20, 19]; landslides, debris flows, and avalanches [37, 23, 12, 22]; tsunamis propa-
gation [33, 13] and the reference therein.

The most of fluid flows problems share the following features: the conservation
laws include source terms, real flow can take place over a complex topography with
eventually drying or flooding phenomena, non-trivial steady states and large vari-
ety of flows scales can appear. Therefore, the numerical simulation of such flows in
complex multi dimensional configurations, especially for tsunamis propagation, is
a challenging task. Adaptive mesh method allows, in principle, to solve in a reason-
able CPU time accurately those scales. However, the efficiency of the AMR method
depends on the accuracy of the mesh refinement criterion to indicate the region to
refine or to coarsen and to the mesh refinement threshold. As discussed in the first
part of this paper [41], in general, the threshold parameter is a tunable parameter
which allows to balance between the accuracy of the numerical solution and the
computational cost. The overall performance of the numerical scheme also depends
on the data management within the parallel process. In order to spare proportionally
the balanced distribution of CPU load, a Block-Based AMR method can be used
(see for instance [28]).

In this paper, we present a multi dimensional finite volume numerical scheme
to solve accurately and fast non-linear hyperbolic systems of conservation laws in
the context of parameterless AMR framework. This scheme has been first presented
by Ersoy et al. [17] for the one-dimensional gas dynamics equations for ideal gas,
further extended to the dimension two and three and confronted to experimental
data in [28, 1]. In these references, the numerical density of entropy production as
a mesh refinement criterion have been used successfully using a tunable threshold
parameter. The main objective of this paper is to improve the Block-Based AMR
scheme [28] using the automatic mesh refinement method, proposed by Pons and
Ersoy [41], for tsunamis propagation.

The paper is organized as follows. In Sect. 2, the tsunamis propagation problem
is presented and the Saint-Venant equations are recalled and motivated within this
context. Section 3 is devoted to the general presentation of the multi dimensional
finite volume scheme. A particular attention is paid on the BB-AMR scheme us-
ing the automatic mesh refinement thresholding method. The model confrontation,
and the numerical validation of the overall method, with experiments is presented
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in Sect. 4. First, the numerical solution of the one dimensional numerical scheme is
confronted to the flume experiments conducted at Oregon State University [44, 43].
These experiments involve the propagation, run-up and reflection of high amplitude
solitary waves on a reef. Second, the numerical solution of the two dimensional
scheme is confronted to the solitary wave propagation over a complex three dimen-
sional shallow shelf [36]. In this experiment, the propagation, run-up, drying and
flooding phenomena are involved. The last test concerns the Monai-Walley tsunami
running-up onto a complex three dimensional beach [34]. All these test cases are
useful to assert the efficiency of the automatic mesh refinement threshold method
due to the involved waves propagations and multiple scales waves reflections.

2 Tsunamis propagation and the Saint-Venant equations

Tsunami is generally referred to any impulsed generated gravity wave. It can be
generated by many sources. The most common tsunamis are a consequence of
earthquake, landslide and volcanic explosion. Such events can displace a very large
volume of water from its equilibrium. The displaced water mass, under the grav-
ity action, attempts to come back to its equilibrium generating gravity waves. De-
pending of the tsunami source, the order of magnitude of a tsunami wave length
is around several ten kilometers. Since this horizontal length is much larger than
the oceans depth, vertically integrated model are generally used for tsunamis prop-
agation. The most simple model is the Saint-Venant model for which the waves
are non-dispersive. However, solving accurately this model over large scales still
demand today high computational ressources [42]. Therefore it is essential to re-
fine the mesh adaptively, especially close to the coast, in order to compute accurate
solutions. Modeling the whole ocean with a fine resolution for all time is clearly un-
necessary and even more for tsunamis propagation since its origin can be localized
at some hundred of kilometers away. Therefore, the propagation of a tsunami can be
efficiently simulated within the adaptive mesh refinement framework.

The Saint-Venant (or shallow water) equations are a non-linear hyperbolic system
of partial differential equations for which whose solutions may contain shock waves.
For this model, the characteristic propagation speed in any direction, is

c =
√

gh(x, t)

where h(x, t) stands for the water elevation above the topography Z(x) and x ∈ R2.
These equations, being derived under the assumption of a hydrostatic pressure field,
are well-known to be non-dispersive. It is also interesting to highlight that close
to the shore, the shoaling phenomenon can be observed (i.e. whenever the wave
starts to compress horizontally and grows vertically). For high shoaling effect, the
non-linearities may become preponderant and the wave can break down. Because
of the unique vertical evaluation, the solution of the Saint-Venant system cannot
take into account such a solution. Nevertheless, a breaking wave can be represented
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by a shock solution. More precisely, the speed of propagation and the amplitude
of the breaking wave are rather well-represented through the shock wave ones, see
for instance [6]. Therefore, the Saint-Venant model can be used to model several
tsunami problems from the wave generation/propagation to the wave breaking.

The two dimensional non linear Saint-Venant system is

∂th+div(huuu) = 0

∂t(huuu)+div(huuu2)+
g
2

∇(h2) =−gh∇Z
(1)

where the unknowns h(x, t) and uuu(x, t) = (u1,u2) are respectively the height of the
water and the depth-averaged velocity of the water at a space-time point (x, t),
x = (x1,x2) ∈ R2 is the space coordinate, t > 0 is the time, g is the gravitational
constant g≈ 9.81m/s2 and Z(x) is the topography term.

The three equations above express respectively, the conservation laws of mass
and momentum in x1 and x2 direction driven by the flux

fff 1(www) =

 hu1
hu2

1 +
g
2 h2

hu1u2

 and fff 2(www) =

 hu2
hu1u2

hu2
2 +

g
2 h2


and the source term

GGG(x,www) =

 0
−gh∂x1Z
−gh∂x2Z


where the conservative variable www is

www(x, t) =

 h
hu1
hu2

 .

In its vectorial form, System (1) reads

∂twww+div fff (www) = GGG(x,www) (2)

where fff (www) = ( fff 1(www), fff 2(www)). We recall that the solutions of the above system
can exhibit in finite time discontinuities, corresponding to hydraulic jumps or bores,
even if the initial data www(x,0) = www0(x) is smooth.

System (2) can be also written in a quasi-conservation form as follows

∂tw+
i=2

∑
i=1

Ai∂xiw = GGG(x,w) (3)

where Ai is the Jacobian matrix in the xi direction

Ai =
∂ fff i

∂www
. (4)
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From a numerical viewpoint, the two dimensional non conservative form (3) are less
useful than in the one dimensional case since a simultaneous diagonalisation of A1
and A2 is not possible. Therefore the most of the schemes are based on a normal
flux formulation as performed in this paper. In particular, in the case of Cartesian
meshes, the flux formulation reduces to the one dimensional flux in the (1,0) and
(0,1) directions. Therefore, without loss of generality, for any given control volume
VVV ⊂R2× [0,T ] of outward unit normal vector n = (n1,n2), the Saint-Venant system
(2) satisfies the following properties

Theorem 1.
1. System (2) is strictly hyperbolic on the set {h(x, t) > 0} where the eigenvalues

are

λ1(h,u) = u ·n−
√

gh, λ2(h,u) = u ·n, λ3(h,u) = u ·n+
√

gh,

and the right eigenvectors are

r1(h,u) =
(

1,u1−
√

ghn1,u2−
√

ghn2

)T
,

r2(h,u) =
(

0,−
√

ghn2,
√

ghn1

)T
,

r3(h,u) =
(

1,u1 +
√

ghn1,u2 +
√

ghn2

)T
.

2. For smooth solutions, the mean velocity u satisfies:

∂tu+u ·∇u+g∇(h+Z) = 0 . (5)

3. For smooth solutions, the still water steady state, i.e. for uuu = 0, reads

gh+gZ = constant . (6)

4. System (2) admits a mathematical entropy :

E(h,u,x) =
h |u|2

2
+

gh2

2
+ghZ(x)

which satisfies the entropy (energy) relation

∂tE(h,u,x)+div
((

E(h,u,x)+
gh2

2

)
u
)
≤ 0 (7)

where |u| := u2
1 +u2

2 .

Proof. Let VVV ⊂R2× [0,T ] of border ∂V and of outward unit normal vector n. Then,
let us integrate System (2) on VVV and apply the Green formula:

∂t

∫
VVV

w dx+
∫

∂VVV
f(w) ·n dv =

∫
VVV

GGG(x,WWW ) dx . (8)
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The Jacobian matrix in the primitive variable of the flux across the normal n is then
defined as

Jac =
(

∂www
∂WWW

)−1
∂ f ·n
∂w

(
∂www
∂WWW

)
where

∂ f ·n
∂w

=

 0 n1 n2
(gh−u2

1)n1−u1u2n2 2u1n1 +u2n2 u1n2
−u1u2n1 +(gh−u2

2)n1 u2n1 u1n1 +2u2n2


so that

Jac =

 0 n1 n2
(gh−u2

1)n1−u1u2n2 2u1n1 +u2n2 u1n2
−u1u2n1 +(gh−u2

2)n1 u2n1 u1n1 +2u2n2


and the result immediately follows. The item 2. and 3. are obtained through a simple
calculation.

For smooth solutions, the entropy equality (7) is obtained as the results of the
addition of h×(5)·u+

(
∂th+div(huuu)

)(
gh+gZ

)
. Indeed, the first operation yields

to
0 = h

(
∂tu+(u ·∇)u+∇(gh+gZ)

)
·u

= ∂t

(
h |u|

2

2

)
+div

(
h |u|

2

2 u
)
+hu ·∇(gh+gZ)

while the second one to

0 =
(

∂th+div(huuu)
)(

gh+gZ
)

= ∂t

(
g h2

2 +ghZ
)
+div

((
gh2 +ghZ

)
u
)
−hu ·∇(gh+gZ) .

ut

For weak solution Eq. (7) is an inequality. A numerical scheme preserving such
inequalities for shallow water flows is stable. Moreover, the yielding inequality can
be useful for adaptive mesh refinement as a mesh refinement criterion as performed
in [17, 28, 1, 41] and the reference therein.

3 Finite volume approximation for the Saint-Venant system

This section summarizes the main features of the method, including the semi-
discrete finite volume numerical approximation of a general non-linear hyperbolic
system of equations (see Eqs. (2)) and the time integration. The mesh refinement
procedure including the mesh refinement criterion and the automatic selection of
the mesh refinement threshold are presented.
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3.1 Multi dimensional finite volume approximation

The computational domain Ω ⊂ Rd is split into a set of control volumes, also re-
ferred as cells, Ω = ∪kCk of mesh size |Ck|. The source term is upwinded at the cell
interface through an hydrostatic reconstruction [3].

On a given cell Ck, noting wk(t)

wwwk(t)'
1
|Ck|

∫
Ck

www(t,x) dxxx

the approximation of the mean value of the unknown www(t,x) on Ck at time t, and
integrating (2) over each cell, we obtain:∫

Ck

∂www(t)
∂ t

+ ∑
a

∫
∂Ck/a

fff (t,www) ·nnnk/a ds = 0 (9)

where nnnk/a denotes the unit normal vector on the boundary ∂Ck/a between cells k
and a.

Next, F
(
wwwk(t),wwwa(t),nnnk/a

)
the flux approximation being written

FFF
(
wwwk(t),wwwa(t),nnnk/a

)
≈
∫

∂Ck/a

fff (t,www) ·nnnk/ads ,

the semi-discrete finite volume approximation of Eqs. (2) (see for instance [26, 45,
21]) is obtained:

∂wwwk(t)
∂ t

+
1
|Ck|∑a

FFF
(
wwwk(t),wwwa(t),nnnk/a

)
= 0 (10)

where FFF
(
wwwk(t),wwwa(t),nnnk/a

)
is defined via the Godunov solver, i.e. it is computed

with the exact solution of the 1D Riemann problem at the interface k/a with the
states wk(t) and wa(t) (for further details see, for instance, [45]).

Equations (2) are completed with the entropy inequality (7) where

(∇wψψψ(s(www)))t = (∇ws(www))t Dwww f (www) .

The source term is upwinded at the cell interface following the hydrostatic re-
construction. It means that for each interface, the numerical flux

FFF
(
wwwk(t),wwwa(t),nnnk/a

)
is replaced by the flux at left hand side

FFFk
(
wwwk(t),wwwa(t),nnnk/a,∆Zk/a

)
and the right hand side FFFa

(
wwwk(t),wwwa(t),nnnk/a,∆Zk/a

)
of the interface k/a. These

new fluxes are constructed as follows
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FFFk
(
wwwk(t),wwwa(t),nnnk/a,∆Zk/a

)
= FFF

(
www∗k ,www

∗
a,nnnk/a

)
+

 0
g
2 (h

2
k− (h∗k)

2)n1
g
2 (h

2
k− (h∗k)

2)n2


FFFa
(
wwwk(t),wwwa(t),nnnk/a,∆Zk/a

)
= FFF

(
www∗k ,www

∗
a,nnnk/a

)
+

 0
g
2 (h

2
a− (h∗a)

2)n1
g
2 (h

2
a− (h∗a)

2)n2


by means of reconstructed states (i.e. satisfying still water steady state equation (6))

w∗k = (h∗k ,uk) ,

w∗a = (h∗a,ua) ,

h∗k = max(0,hk−max(0,∆Zk/a)) ,

h∗a = max(0,ha−max(0,−∆Zk/a)) .

In theses formula, ∆Zk/a stands for the jump of Z across the interface k/a. The
scheme is therefore well-balanced by construction, i.e., the still water steady states
are exactly satisfied.

Following Ersoy et al. [27, 17], the entropy inequality (7) is approximated using
the semi-discrete finite volume scheme (10). The obtained discrete quantity, called
the numerical density of entropy production, is then used as a mesh refinement crite-
rion (see Sect. 3.3). For further details on the construction of the numerical scheme
we refer to [17] since the definition of the numerical fluxes reduces to a one dimen-
sional computational at each interface k/a. Up to now, the first and second order
Godunov schemes are implemented.

3.2 Time integration

The time integration of Eqs. (10) and (7) can be achieved in a classical way either by
a Runge-Kutta or Adams-Bashforth scheme. Note that, even if the Adams-Bashforth
scheme is known to be less stable and less accurate, it can be easily handled in the
framework of local time stepping to save computational time (see e.g. [2] or [17]).
The local time stepping is not treated in this paper. The interested reader can found
a detailed presentation in [17].

By integrating Eq. (10) (and (7)) during the time step ]tn, tn+1[ of length δ tn and
by evaluating the numerical fluxes at time tn, the well-known first order Euler’s
scheme is obtained:

wwwk(tn+1) = wwwk(tn)−
δ tn
|Ck|∑a

FFF
(
wwwk(tn),wwwa(tn),nnnk/a

)
. (11)

In order to increase the accuracy, a second order Runge-Kutta method can be used
as follows
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wwwk(tn+1) = wwwk(tn)−
δ tn
|Ck|∑a

FFF
(
wwwk(tn+1/2),wwwa(tn+1/2),nnnk/a

)
where

wwwk(tn+1/2) = wwwk(tn)−
δ tn

2 |Ck|∑a
FFF
(
wwwk(tn),wwwa(tn),nnnk/a

)
.

The numerical density of entropy production (7) is then calculated with a second
order Runge-Kutta scheme.

3.3 BB-AMR method

By contrast to the one dimensional case, defining a robust mesh refinement parame-
ter for multi dimensional configurations is not enough to design a suitable numerical
solver. The treatment of data is also a crucial point and in particular the way to share
the memory in a parallel process. This point is handled in a hierarchical block-based
way called BB-AMR. The global strategy to adapt the mesh and how to manage data
are presented.

3.3.1 Mesh refinement method

The model framework and the related scientific issues have been detailed in recent
above-mentioned publications. The overall principles of the Block-Based Adaptive
Mesh Refinement (BB-AMR) scheme are briefly recalled in the case of a general
non linear hyperbolic system{

∂www(t)
∂ t +∇ · fff (t,www) = GGG, (t,x) ∈ R+×Rd

www(0,x) = www0(x), x ∈ Rd .
(12)

where www, fff , GGG stand respectively for conservative variables, flux and source.

Mesh refinement criterion.

As a well-known result, the uniqueness of the (weak) solution is lost even if the
initial data are smooth. It can be recovered by completing System (12) with an
entropy inequality of the form:

S =
∂ s(www)

∂ t
+∇ ·ψψψ(www)≤ 0 , (13)

where (s,ψ) stands for a convex entropy-entropy flux pair. Even if we are not able
to prove the uniqueness in the multi dimensional case, this inequality allows to
select the physical relevant solution and provide a “smoothness” indicator since
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the entropy satisfies a conservation equation only in regions where the solution is
smooth and an inequality when the solution develops discontinuities. Thus, the dis-
crete quantity S can always be considered as a measure of the amount of violation
of the entropy equation (as pointed out in [5, 30, 32, 31, 17]). As already done in
[17, 41], S, which is called the numerical density of entropy production, can be used
as a smoothness indicator providing information on the need to locally refine the
mesh (e.g. if the solution develops discontinuities) or to coarsen the mesh (e.g. if
the solution is smooth and well-approximated). More precisely, Ersoy et al. [17]
(see also [41]), have demonstrated that, for the one dimensional gas dynamics equa-
tion, the support of the relative error coincides with the support of the numerical
density of entropy production. The extension toward the multi dimensional case is
detailed in [28].

Automatic mesh refinement threshold.

However, as shown in Pons and Ersoy [41] (see also [40]), the numerical density of
entropy production is a also a shock criterion indicator. Therefore, it may fails in the
detection of smooth flows in the presence of shocks if the mesh refinement thresh-
old is only based on the mean value of the criterion Sm. To overpass this drawback,
following Pons and Ersoy [41], we use an automatic thresholding method based
on the decreasing rearrangement (also known as distribution) function of the crite-
rion. More precisely, this distribution function, for each threshold α ∈ (0,Sm], is the
Lebesgue measure of the set d(α) = {S(x)> α}. It provides a complete description
of the criterion and in particular local maxima are automatically sorted from the
smallest to the largest. To define a ”good candidate” for the threshold, we focus on
the smaller local maxima corresponding to smooth flows. However, these maxima
are hardly captured with the distribution function because it is numerically difficult
to compute its derivatives. To overcome, Pons and Ersoy [41] propose to use the
function αd(α) for which the local maxima are easily computed numerically. The
threshold is defined as follows

αPE such that αPEd(αPE) = max
0<α6Sm

(αd(α)) .

In practice, the selected threshold is in general αPE < Sm for discontinuous flows
and αPE ≈ Sm for smooth flows. This nice feature allows in principle to balance
the accuracy of the numerical solution and the computational cost. Moreover, the
adaptive process, in comparions with existing methods, is now parameterless.

Numerically, we define the distribution function as follows. Let us consider a
given discrete mesh refinement criterion S(x, tn) = ∑

N
k=1 Sn

k1Ck(x) where N is the to-
tal number of cells at time tn. Let (α j)06 j6M be an increasing sequence of M + 1

threshold parameter such that (α j)06 j6M =

(
Sm

(
j

M

)2
)

06 j6M
. Then, the distribu-

tion function d j = d(α j) is
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d j = #{k ; Sn
k > α j}

where # is the number of elements in the set {Sn
k > α j}.

Therefore, according to the finite volume approximation defined in Sect. 3, a
local numerical entropy production Sn

k is computed on each cell at time tn and com-
pared to the mesh refinement threshold αPE. Finally, for each cell Ck:

• if Sn
k > αPE, the mesh is refined and,

• if Sn
k < αPE the mesh is coarsened.

3.3.2 BB-AMR process

For the one dimensional case, the local mesh refinement procedure is constructed
following dyadic tree applied at each time step. “Macro cells” are used to be easily
refined by generating hierarchical grids. Each cell can be split in two. Dyadic cells
graph are thus produced, in basis 2 numbering, to allow a quick computing scan to
determine the adjacent cells. For stability reasons, the mesh refinement level cannot
exceed 2 between two adjacent cells. More details can be found in [17].

The multi dimensional extension of the mesh refinement procedure is a diffi-
cult task. Interesting works have been presented for 2D Cartesian grid or quad-tree
[4, 47, 39, 48], octree for 3D simulations [35, 24], and anisotropic AMR [11, 29].
For the Saint-Venant system (1) the extension from 1D to 2D leads naturally to
quad-tree meshing. But, the presence of a complex moving interface (composed of
rarefaction and shocks) implies to re-mesh at each time step, which is obviously a
costly process. Guided by the need to reach a relevant compromise between the con-
tradictory aims of solution accuracy and computing speed, a Cartesian block-based
mesh approach is introduced, somehow like in [46, 49]. If the mesh is not refine at
each time step, the patch where the grid should be refine must be enlarged. The grid
generation in the framework of BB-AMR can be developed as follow.

• Firstly, the initial computational domain is divided in several hexahedral ele-
ments, called blocks. For the sake of simplicity, Fig. 1(a) represents a regular
quadrilateral mesh.

• Secondly, we define for each block a discretization nx in x-direction, ny in y-
direction and a level of refinement lr such that the total number of cell in x-
direction of the block will be 2lr nx. As the mesh refinement level cannot exceed
2 between two adjacent blocks, the level of mesh refinement is automatically
adapted if necessary (as for example for the blocks B5 and B2 in Fig. 1(b))

• Thirdly, in order to balance the CPUs load, the cells of each block are re-
distributed in a fixed number of domains according to the Cuthill-McKee num-
bering, see Fig. 1(c).

• Finally, the unstructured mesh is built for each domain (see Fig. 1(d)).

For each refined cells (or blocks), averaged values are projected on each sub-cell
and fluxes are computed as simply as possible to avoid heavy computation. At the
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interface between two domains, ghost cells are created in order to transfer the nec-
essary data to the explicit time integration scheme at each time step.The number of
domain being fixed, each domain are loaded in a given MPI process. These MPI
processes are then load on a fixed number of cores (not necessary the same).

The re-numbering and re-meshing being expensive, the mesh is finally kept con-
stant on a time interval, called AMR time-step, given by the smallest block (rather
by the smallest cell) and the maximum velocity. Details on the BB-AMR are given
in [28, 1].

(a) Initial grid domain 0 (b) Block Bi (nx,ny, lr) (c) Refined mesh and do-
mains

(d) Mesh generation

Fig. 1 BB-AMR process
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4 Real-life Applications

As a natural extension of the work [41] and [28, 1], we show the overall performance
of the BB-AMR scheme with automatic thresholding confronted to experimental
and state-of-the-art numerical results1.

For each test case, the numerical simulations are carried out on adaptive grids
(using the BB-AMR method previously presented) and on uniform grids. The com-
parisons of both simulations allow to show the reliability and the efficiency of the
parameterless adaptive method.

4.1 Solitary wave propagation over a two dimensional reef

This benchmark aims at reproducing a set of laboratory experiments carried out
at the O.H. Hinsdale Wave Research Laboratory, Oregon State University (OSU,
see Roeber et al. [44] and Roeber and Cheung [43]). These experiments involve
the propagation, run-up, splash-up and reflection of high amplitude solitary waves
on two-dimensional reefs. Their purpose is on one hand to investigate processes
related to breaking, bore formation, dispersion, and passage from sub- to super-
critical flows, and on the other hand, to provide data for the validation of near-shore
wave models in fringing reef. Even if the Saint-Venant model (2) is not relevant for
dispersive flows, through this test case we show that globally experimental data are
well-captured and the threshold parameter is automatically well-chosen.

4.1.1 Experimental settings.

The geometry of the test considered here is shown in Fig. 2. The length of the basin
is of 104 m, however the computational domain is delimited by a reflecting wall
placed at x = 83.7 m. The reef starts at x = 25.9 m with a nominal slope of 1/12.
The actual slope is such that the height of 2.36 m is reached after x = 28.25 m. At
this station a 0.2 m height crest is mounted. The offshore slope of the crest is the
same of the reef, and the length of its plateau is of 1.25 m. The on-shore side has a
slope of 1/15 giving a nominal length for the crest basis of 6.65 m (using the actual
offshore slope, a crest basis of 6.644 m is obtained). For the computations, the use
of the nominal slope values is prescribed. This gives an offshore length of the crest
slope (starting at 28.25 m) of 2.4 m. Therefore, with the notations used in this paper,
the bathymetry is

1 The numerical soft used for the following test cases is the EOLENS code developed by IMATH
(Institut de Mathématiques de Toulon) and Principia.
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Z(x) =


−2.5 if x < 25.9 ,
(x−25.9)

30.8 2.565−2.5 if 25.9 < x < 56.7 ,
0.065 if 56.7 < x < 57.65 ,
(57.95−x)

3 0.2+0.0650 if < 56.7 < x < 60.95 ,
−0.1360 if x > 60.95 .

Fig. 2 Experimental settings and wave gauges locations

The initial depth at still water is h0 = 2.5 m, yielding to a partially submerged
crest, and a depth behind it (on-shore side) of 0.14 m. The initial solution consists of
a solitary wave of amplitude A = 0.75 m providing a non linearity ratio of A

h0
= 0.3.

For numerical purpose, the initial data consist of a solitary wave centered at x0 =
17.6 m of amplitude

η(x,0) =
A

cosh
(√

3A
(4h3

0)
(x− x0)

)2 (14)

and velocity
u(x,0) =

√
g(h0 +A)η(0,x)/h0 (15)



Part 2: Application to tsunamis propagation. 15

which corresponds to the experimental data at the dimensionless time t̃ = t
√

g
h0

=

55.03 as displayed in Fig. 3(a). In these expressions η is η = h+Z.

4.1.2 Experimental results.

Figures 3(a) and 3(b) shows the propagation of the solitary wave over the slope
starting at x = 25.9. Figure 3(c) represents the surface elevation at the dimension-
less time t̃ ≈ 69 s where the wave develops into a plunging breaker onto the reef
crest2. From an experimental viewpoint, t̃ ≈ 69 s corresponds to the subsequent
time of overturning of the free surface. In Fig. 3(d), the wave hitting the free sur-
face creates a downstream and upstream propagating bore as shown in Fig. 3(e).
The downstream propagating bore is reflected at the end wall at x = 83.7 m and
propagates in opposite direction as displayed in Fig. 3(f).

4.1.3 Numerical results

In Figs. 3(a)–3(f), the experimental surface elevation (represented with blue circles)
over the bathymetry Z for several dimensionless time t̃ are compared to the obtained
numerical results (green and red lines-circles) 3. The numerical solution is computed
on a uniform grid composed of 1000 cells and on an adaptive grid initially composed
of 200 cells with lmax = 4 where lmax is the maximum level of the mesh refinement.
For both numerical experiments, the CFL number is set to 0.99. Free boundary
condition at x = 0 and reflecting boundary condition at x = 83.7 are imposed. Table
1 summarizes the numerical parameters used for this test case.

Adaptive mesh simulation Uniform mesh simulation

Simulation time 240 240
Number of cells 200-560 1000
Remeshing time step 0.05 s not applicable
Time order integration 1 1
Space order integration 1 1
CFL 0.99 0.99
Boundary conditions reflectives reflectives

Table 1 Numerical parameters

2 The authors would thanks V. Roeber to furnish the experimental data of this test case
3 Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz
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x[m]

0 20 40 60 80

ti
m
e
t̃

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Exp. h (uniform) h (adaptive) l Z

(b) t̃ = 66.53

x[m]
0 20 40 60 80

ti
m
e
t̃

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Exp. h (uniform) h (adaptive) l Z

(c) t̃ = 69.13
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(d) t̃ = 70.68
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(e) t̃ = 76.33
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(f) t̃ = 125.03

Fig. 3 Surface profiles of solitary wave propagation over an exposed reef crest. Confrontation of
experimental data (blue circles) to numerical data computed on a uniform grid (solid green line)
and on an adaptive grid (solid red lines). The solid cyan line represents the mesh level and the black
one the bathymetry
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4.1.4 Numerical vs experimental results.

The obtained numerical results as shown in Figs. 3(a)–3(f) are rather well-computed
when compared to experimental data. However, the wave height is slightly underes-
timated (see Fig. 3(c)) while the hydraulic bore propagation front height is overes-
timated (see Fig. 3(d)).

We now compare in Figs. 4(a)–4(f), the computed and the experimental water
elevation at the wave gauges displayed in Fig. 2. The oscillating shape of the exper-
imental measures almost corresponds to dispersive effects which cannot be detected
with the Saint-Venant model (2). However, the shape of the numerical results almost
coincides with the experimental data for wave gauges located before x = 54.4 m as
shown in Figs. 4(a)–4(c). The point x = 54.4 m is located just before the crest and
in particular it corresponds to the region where the overturning of the free surface is
experimentally observed. It yields numerically to a small shift as observed in Figs.
4(d)–4(f).

4.1.5 Numerical results: adaptive vs uniform grid computation.

The adaptive scheme uses an average of 356 cells against 1000 cells (see Fig. 5(b))
for the uniform one and the CPU-time is 95 s against 210 s.

We observe that the computation on adaptive grid is comparable to the numerical
solution on uniform grid and computed about 2 times faster with less cells. We see
also in Figs. 3(a)-3(f) that for each time step, the threshold parameter is automati-
cally well-set to capture efficiently the region to refine (see also Fig. 5(a)). During
the first 50 non-dimensional time, we have already pointed out that the solitary wave
propagates and splash-up. This phenomenon is characterized by a discontinuous or
sharp gradient flow for the Saint-Venant system, see Fig 3. In view of the remarks
in Sect. 3.3.1, we observe that for almost all t̃ ∈ (55,100), the threshold is set to
αPE < Sm. For t̃ > 100, the flow is almost smooth and therefore αPE ≈ Sm. There-
fore, we recover the behavior predicted in Pons and Ersoy [41] and in view of the
confrontation with the computation on uniform grid, this test shows the reliabil-
ity/efficiency of the automatic selection of the threshold for multiple scale flows.

4.2 Solitary wave propagation over an irregular three-dimensional
shallow shelf

In this test case, the numerical simulation of a solitary wave propagation over a com-
plex three dimensional bathymetry is performed. This test case was experimentally
introduced in [36] to understand the turbulence and kinematic properties associated
with a breaking solitary wave.
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(f) x = 79.9m

Fig. 4 Surface profiles of solitary wave propagation in time at wave gauges 1 to 6. Confrontation
of experimental data (solid blue line) to numerical data computed on a uniform grid (solid green
line) and on an adaptive grid (solid red line)
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Fig. 5 Time evolution of the mesh refinement threshold and the number of cells

4.2.1 Experimental settings.

A laboratory experiment was conducted in a large wave basin which was 48.8 m
long and 26.5 m wide at Oregon State University for which free surface elevations
and fluid velocities were recorded at several locations by wave gauges (WG) and ve-
locity captors (ADV). A single solitary wave of height of 39 cm at x = 5 is produced
with a piston-type wave-maker over a complex bathymetry illustrated in Fig. 6. The
bathymetry begins with a flat part allowing to generate properly a solitary wave.
Then, starting at 10.2 m of the wave-maker and extending to x = 25.5m, a complex
three dimensional shelf was built. The associated slope to this zone is variable but
less and less steep. After that, a very small one dimensional slope finishing on a flat
onshore zone was built. The experimental basin is closed by walls. For further infor-
mations on this experiment, interested readers can found more details in [36]. The
domain is numerically extended to x =−5 m with a water depth of 78 cm to impose
a solitary wave instead of reproducing the wave maker movement. The simulated
solitary wave is a first order solution of the Boussinesq equation (see Eqs. (14) and
(15)) with x0 = 5m and A

h0
= 0.5. Fluid height and velocities are recorded during 45

s. Finally, the material used for the walls and the bathymetry were made of smooth
concrete so that one can assume almost a frictionless flow.

4.2.2 Numerical results.

For numerical purpose, we have considered 128 initial blocks composed of 7 500
cells for the initialization of the adaptive computation and almost 33 000 cells for
uniform mesh computation. For both simulations, the CFL number is set to 0.5.
Reflecting boundary conditions are prescribed to walls. Table 2 summarizes the nu-
merical parameters used for this test case.

In Fig. 7, the adaptive numerical solutions calculated at time t = 0.5 s (see Fig.
7(a)), t = 2.5 s (see Fig. 7(b)), t = 5.75 s (see Fig. 7(c)) and t = 23.75 s (see Fig.
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Fig. 6 Experimental settings

Adaptive mesh simulation Uniform mesh simulation

Simulation time 30 s 30 s
Number of blocks 128 128
Number of cells 7 500-25 000 33 000
Remeshing time step 0.25 s not applicable
Time order integration 2 2
Space order integration 2 2
CFL 0.5 0.5
Boundary conditions reflectives reflectives

Table 2 Numerical parameters

7(d)) are represented. The Fig. 7(a) represents the profile of the solitary wave which
propagates towards the coast. Figures 7(b) and 7(c) show respectively the wave hit-
ting the conic island and then the beginning of the flooding. Figure 7(d) shows the
flow after the wave run-up and its reflection on the right side of the wall.

To highlight the efficiency of the mesh refinement parameter and the automatic
selection of the threshold, the numerical density of entropy production (without
absolute value) is displayed at several times in Fig. 8, (time t = 0.5 s in Fig. 8(a),
for t = 2.5 s in Fig. 8(b), for t = 5.75 s in Fig. 8(c) and for t = 23.75 s in Fig.
8(d)). It can be noticed that according to the flow, first the numerical density of
entropy production indicates which areas need to be refined and second, the mesh
refinement threshold is well chosen with the method described in Sect. 3.3.1, see
also [41] for further details. For instance, in Fig. 7(c), the region which needs to
be refined is clearly the zone around the ”conic island”. According to Fig. 8(c), the
numerical density of entropy production in this area shows that the local maxima
(lowest value without the absolute value) are of almost of order 0.005 and clearly
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follows the wave front. We see in Fig. 11(a), approximately at time t = 5.75 s, that
the threshold is automatically fixed to almost 0.001 and therefore allows to perform
a suitable refinement in the region of interests as observed in Fig. 7(c) or 8(c).

4.2.3 Numerical vs experimental results.

Next, the numerical results are confronted to the experimental data recorded at the
waves gauges 2, 4, 6 and 7 (WG) for the water height, see Fig. 9, and to the velocity
captors 2 and 3 (ADV) for the first u component of the velocity vector, see Fig. 10.

For the wave gauge 2 to 7 (see Figs. 9(a)–9(d)), the global shape of the free sur-
face is in quite good agreement with the experimental data but some differences
are observed. The numerical solution computed with the Saint-Venant system (2)
slightly underestimates the water level at the wave gauge 2 (see Fig. 9(a)) and over-
estimates at the wave gauge 4 (see Fig. 9(b)). Moreover, the numerical solution is
rather accurate up to time t = 15 s at the wave gauges 6 and 7 (see Fig. 9(c) and
9(d)). For t > 15 s, the dispersive effects, not reproduced with the Saint-Venant sys-
tem, begin significant and show slightly different results between experimental and
numerical data. Similar conclusion can be drawn up for the first component of the
vector velocity on the captor 2 (see Fig. 10(a)) and 3 (see Fig. 10(b)).

4.2.4 Numerical results: adaptive vs uniform grid computation.

Compared to the computation on a uniform grid (see Figs. 9 and 10), the adaptive
mesh refinement scheme requires only an average of 13000 cells against 33000 cells.
For the same accuracy, the adaptive scheme allows to save almost 60% of cells with
respect to the uniform mesh. During the adaptive simulation, the maximum refined
area is reached around the time t = 12 s which corresponds to the time where the free
surface oscillates behind the island and the wave run-up on the ”coast”. All these
cells saved allow to speed up the computation by 2.5 time for this test case. Let us
also emphasize that, as done in [17], an implementation of a local time stepping
method can also decrease the global CPU-time. Moreover, one can see in Fig. 11(a)
and 11(b), the time evolution of the mesh refinement threshold and the number of
cells during the numerical experiment.

4.3 Tsunami runup onto a complex three dimensional
Monai-Walley beach

This test case concerns the Hokkaido-Nansei-Oki tsunami, in 1993, that struck the
Okushiri Island in Japan. The tsunami run-up records was about 30 m height and the
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(a) t=0.5s (b) t=2.5s

(c) t=5.75s (d) t=23.75s

Fig. 7 Numerical water height (coloration is issue from the kinetic energy)

currents speed of order 10-18 m/s for which relevant high-quality data were saved
4. The largest value run-up (32 m) was recorded near the Monai-Walley beach.

4.3.1 Experimental settings.

To understand the complex run-up, a 1/400 scale laboratory model of Monai was
realized in a large-scale tank of 205 m long, 6 m deep, and 3.5 m wide at the Central
Research Institute for Electric Power Industry (CRIEPI) in Abiko (Japan). The off-

4 Several sources and data can be found, see for instance http://nctr.pmel.noaa.gov/
benchmark/Laboratory/Laboratory\_MonaiValley/ or http://isec.nacse.
org/workshop/2004_cornell/bmark2.html
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(a) t=0.5s (b) t=2.5s

(c) t=5.75s (d) t=23.75s

Fig. 8 Adaptive mesh (coloration is issue from the numerical density of entropy production with-
out absolute value)

shore incident wave on a water depth d = 13.5 cm is prescribed. There are reflective
vertical side-walls at y= 0 and 3.5 m as for the x boundaries. The bathymetry as well
as the coastal topography reproduced in the laboratory experiment are represented5

in Fig. 12(b) and 12(c) .
The input wave at x= 0 m is a leading-depression height of−2.5 mm with a crest

of 1.6 cm behind it, as displayed in Fig. 12(a). In the experiment, the waves are mea-
sured at thirteen locations and complete time histories are given at three locations,
(x,y) = (4.521, 1.196), (4.521, 1.696), and (4.521, 2.196) in meters, see also [34].

5 sources and pictures are available at http://isec.nacse.org/workshop/2004\
_cornell/bmark2.html
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Fig. 9 Free surface results at different positions : experimental data versus numerical simulation
with and without mesh adaptivity
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Fig. 10 Velocity results at different positions : experimental data versus numerical simulation with
and without mesh adaptivity
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Fig. 11 Time evolution of the mesh refinement threshold and the number of cells

In contrast with the previous experimental test cases, the dispersive phenomena can
be neglected here.
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4.3.2 Numerical results.

The initial condition for this experimental test case is the lake at rest and an imposed
water height on the left side wall, see Fig. 12(a). Wave gauges data 6indicate the
experimental results up to time t = 100 s. However, the information concerning the
input wave profile (see Fig. 12(a)) at x = 0 is available only up to time t = 22 s.
For numerical purpose, we suppose for t > 22 s, a constant free surface level η = 0
m. In practice, the first artificial reflecting waves on the wave-maker are produced
around t = 24 s and reached the free surface gauges around t = 30 s. Finally, the
comparisons between the experimental gauges and the numerical results will be
done over a physical time of 30 secondes avoiding any wrong comparisons.

For numerical purpose, we have considered 240 initial blocks composed of 8
000 cells for the initialisation of the adaptive computation and almost 62 000 cells
for uniform mesh computation. For both simulations, the CFL number is set to 0.5.
Reflecting boundary conditions are prescribed to walls. Table 3 summarizes the nu-
merical parameters used for this test case.

Adaptive mesh simulation Uniform mesh simulation

Simulation time 30 s 30 s
Number of blocks 240 240
Number of cells 8 000-40 000 62 000
Remeshing time step 0.25 s not applicable
Time order integration 2 2
Space order integration 1 1
CFL 0.5 0.5
Boundary conditions reflectives reflectives

Table 3 Numerical parameters

In Fig. 13, to illustrate this test case we show the propagation of the wave at time
t = 11.25 s (Fig. 13(a)), t = 13.25 s (Fig. 13(b)), t = 16 s (Fig. 13(c)) and t = 17.5 s
(Fig. 13(d)). The free surface is colored with the kinetic energy. We also display in
Fig. 14 the evolution of the mesh refinement criterion. We observe mainly that the
wave front and subsequent waves are very well-captured and the mesh refinement
threshold is well chosen to refine in those areas (see for instance Fig. 13(d) and
14(d)).

4.3.3 Numerical vs experimental results.

We now analyse quantitatively the numerical solution computed on adaptive and
uniform mesh that we confront to the experimental measures. The obtained com-

6 Wave gauges data are available at the address http://nctr.pmel.noaa.gov/
benchmark/Laboratory/Laboratory_MonaiValley/
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(a) t = 11.25 s (b) t = 13.25 s

(c) t = 16 s (d) t = 17.5 s

Fig. 13 Numerical water height (coloration is issue from the kinetic energy)

parisons are shown in Figs. 15 at the three waves gauges WG 1 (see Fig. 15(a)), 2
(see Fig. 15(b)) and 3 (see Fig. 15(c)). As already said before and in contrast with the
two previous test cases, since the dispersive effects can be negligible, the obtained
results are in a very good agreement with the experimental data.

4.3.4 Numerical results: adaptive vs uniform grid computation.

Compared to the computation on a uniform grid (Fig. 15), the adaptive mesh refine-
ment scheme requires an average of almost 25000 cells against 62000 cells. For the
same accuracy, the adaptive meshing method allows to save almost 60% of cells of
the uniform simulation.
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(a) t = 11.25 s (b) t = 13.25 s

(c) t = 16 s (d) t = 17.5 s

Fig. 14 Adaptive mesh (coloration is issue from the numerical density of entropy production with-
out absolute value)

Between 3 and 7 seconds, the tsunami propagates in the domain involving a
grow-up of the number of cells. Then the wave passes through the island and reaches
the reef around 15 seconds. After this, the wave is reflected and goes back to the
wave maker with a second interaction with the island. The maximum number of
cells is reached when the wave is passing on the island and begins to run-up the
coast (Figs. 13(b) and 14(b)), and when the wave goes back to the wave maker. This
result is coherent with the physical process since it correspond to the two maximal
flow region mixing non negligible multiple flows (smooth and discontinuous). As a
consequence, reliable mesh refinement, as performed here, allows to speed up the
computation by 3 times. The time evolution of the the threshold parameter and the
number of cells are represented in Fig. 16(a) and Fig. 16(b).



Part 2: Application to tsunamis propagation. 29

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  5  10  15  20  25  30

F
re

e 
su

rf
ac

e 
[c

m
]

time [s]

Experiment

Numerical (uniform)

Numerical (adaptive)

(a) Gauge 1

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  5  10  15  20  25  30

F
re

e 
su

rf
ac

e 
[c

m
]

time [s]

Experiment

Numerical (uniform)

Numerical (adaptive)

(b) Gauge 2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  5  10  15  20  25  30

F
re

e 
su

rf
ac

e 
[c

m
]

time [s]

Experiment

Numerical (uniform)

Numerical (adaptive)

(c) Gauge 3

Fig. 15 Free surface results at different positions : experimental data versus numerical simulation
with and without mesh adaptivity
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5 Conclusion

In the first part of this paper [41], we have introduced an analytical distribution func-
tion which allows to select automatically the mesh refinement threshold according
to the local and the global maxima of the mesh refinement criterion. We have nu-
merically investigated the efficiency of the proposed method in the case of the one
dimensional Saint-Venant system. As a natural extension, we have proposed here,
the numerical validation of our approach for the one and two-dimensional non ho-
mogeneous Saint-Venant system confronted to several experimental test cases. For
each test case, we have shown that the adaptive scheme allows to save computa-
tional time keeping the same order of accuracy when compared to the numerical
solution computed on a uniform. In particular, it shows that the method to select au-
tomatically the threshold parameter, based on the distribution function, is efficient.
Moreover, for each test case, we have pointed out that following the type of flows,
the threshold is well-chosen to define the region of the domain to be refined. Finally,
in contrast with existing methods in the literature, this method does not require any
tunable coefficient and can be applied for any test cases.
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Rendus Mécanique 337(4), 233–237 (2009)

28. Golay, F., Ersoy, M., Yushchenko, L., Sous, D.: Block-based adaptive mesh refinement scheme
using numerical density of entropy production for three-dimensional two-fluid flows. Interna-
tional Journal of Computational Fluid Dynamics 29(1), 67–81 (2015)

29. Hachem, E., Feghali, S., Codina, R., Coupez, T.: Immersed stress method for fluid structure
interaction using anisotropic mesh adaptation. International Journal for Numerical Methods
in Engineering 94(9), 805–825 (2013). DOI 10.1002/nme.4481. URL http://dx.doi.
org/10.1002/nme.4481
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