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Adaptive mesh refinement method.
Part 1: Automatic thresholding based on a
distribution function.

Kévin Pons and Mehmet Ersoy

Abstract In this work, we address the construction of an automatic selection of
a suitable mesh refinement threshold in adaptive mesh refinement methods. Usu-
ally, the mesh refinement threshold is a problem dependent parameter whose choice
might be a critical weakness of the mesh adaptation method. The automatic se-
lection of a suitable mesh refinement threshold is constructed from the decreas-
ing rearrangement function of the mesh refinement criterion. It allows to detect al-
most all relevant regions to refine without any hand-calibration as usually done for
mesh adaptation algorithms. The efficiency of the method is illustrated for a one-
dimensional test case. More complex one-dimensional and multi-dimensional test
cases can be found in the second part of this paper.

1 Introduction

A major issue of many modelling challenges is to solve accurately processes over
very large ranges in spatial scale. Solving accurately those processes with high res-
olution inexorably leads to heavy computational time [21, 22, 2].

In principle, Adaptive Mesh Refinement (AMR) [4] method allow to solve in a
reasonable CPU time equations adjusting the computational effort locally to main-
tain a quite uniform level of accuracy. It relies on macro cells which can be refined
(and then possibly coarsened).
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The zones where the mesh needs to be refined are determined thanks to a suit-
able mesh refinement criterion and a mesh refinement threshold. Depending on the
application, equations and numerical methods, a variety of criteria might be used
based on an error estimation procedure or a feature detection technique. Basically,
the zones where a given threshold is exceeded are refined. Usually, the mesh refine-
ment threshold is a test case dependent parameter. If this parameter is set too small,
the results will be accurate but the computational cost will be expensive. On the con-
trary, if this threshold is set too large, pertinent regions are not detected and the mesh
adaptation algorithm will not be efficient. Generally speaking, if this parameter is
not well-calibrated, it may yield to unnecessary refined cells, and sometimes the nu-
merical solution can develop spurious oscillations. Therefore, the way to choose the
mesh refinement threshold is very important.

In this paper, we propose a method to set automatically the threshold parameter
to detect almost all relevant regions to refine. The construction of the automatic
selection of the threshold is based on the decreasing rearrangement function of the
mesh refinement criterion. The decreasing rearrangement provides a description of
the mesh refinement criterion in terms of the local maxima which are sorted from
the smallest to the largest. Thus, in principle, this method allows to set the threshold
automatically small enough to detect the most relevant cells to refine. In practice, we
are able to reach a good balance between the accuracy and the computational time
without any hand-calibration of the mesh refinement threshold as usually performed
in mesh adaptation algorithms.

In the sequel, we focus on h-AMR method. As a non-exhaustive list of references,
one can refer to [4, 3, 30, 10, 16, 8].

The paper is organised as follows. The Section 2 is devoted to the presentation of
the finite volume method and the principle of the h-AMR approach. We also present
some mesh refinement criteria used in this paper. In Sect. 3, we discuss about advan-
tages and drawbacks of some classical thresholding methods. Then, we introduce a
new method based on the decreasing rearrangement of the mesh refinement crite-
rion to construct a suitable automatic threshold. Finally, for a given one dimensional
Riemann problem for the non-linear shallow water equations, we illustrate the effi-
ciency of the method to detect simple waves without hand-calibration. In the second
part of this paper [20], more complex multi-dimensional test cases are considered.

2 Finite volume approximation and h-AMR algorithm

For the sake of simplicity, we consider here the one-dimensional case (we refer to
the second part of this paper [20] for the multi-dimensional case and applications).
This section summarises the main features of the finite volume approximation and
the adaptive mesh refinement method for a general non-linear hyperbolic system{

∂tw+∂xf(w) = 0
w(x,0) = w0(x)

(1)
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where x ∈ R is the coordinate, t > 0 is the time, w(x, t) ∈ Rd is the unknown vector
with d ≥ 1, f(w) ∈ Rd is the flux at a space-time point (x, t) and w0 is the initial
data.

In particular, in this work, we will consider the Saint-Venant equations as a

prototype model with w =

(
h

hu

)
and f(w) =

(
hu

hu2 +g h2

2

)
. Here the unknowns

h(x, t) ≥ 0 and u(x, t) ∈ R stand respectively for the water height and the depth-
averaged velocity of the water at a space-time point (x, t) and g ≈ 9.81 m/s2 is the
gravitational constant. To illustrate the method of automatic thresholding proposed
in Sect. 3.2, we will consider the Riemann problem (c.f. Sect. 3.3):

w0(x) =
{

wl if x < 0
wr if x > 0 (2)

Interested readers can found multi-dimensional test cases in the second part of this
paper [20].

2.1 First order finite volume approximation

We suppose that the computational domain Ω ⊂ R is split into a set of cells
Ck =

]
xk−1/2,xk+1/2

[
of size δxk with xk±1/2 = xk ± δxk/2 such that Ω = ∪kCk.

We assume that k ∈ Z to simplify the presentation. We define the discrete time by
tn+1 = tn + δ tn where the time step δ tn satisfies a Courant, Friedrichs, Levy (CFL)
condition.

On a given cell Ck of center xk, noting

wwwk(t)'
1

δxk

∫
Ck

www(x, t) dx .

the approximation of the mean value of the unknown www(x, t) on Ck at time tn, inte-
grating (1) over Ck× (tn, tn+1), and dividing by δxk, we obtain the first order finite
volume approximation of Eqs. (1) (see for instance [11, 29, 9]):

wn+1
k = wn

k−
δ tn
δxk

(
FFFk+1/2(wn

k ,w
n
k+1)−FFFk−1/2(wn

k−1,w
n
k)
)

where FFFk+1/2(wn
k ,w

n
k+1) is the approximation of the flux FFFk+1/2(wn

k ,w
n
k+1) ≈

1
δ tn

∫ tn+1
tn f(w(xk+1/2, t)) dt . FFFk+1/2(wn

k ,w
n
k+1) is defined via any three-point scheme

(see for instance [19, 28, 29]). In this paper, we consider a first order space-time dis-
cretisation using the Godunov scheme, i.e. the numerical flux FFFk+1/2 is computed
with the exact solution of the 1D Riemann problem at the interface xk+1/2 with the
left state wn

k and the right state wn
k+1 (for further details see, for instance, [29]).
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2.2 Principle of h-AMR method

For the convenience of the reader, we recall the procedure for the first order scheme
in the one dimensional case. We refer to [8] for the second order scheme and to
[2, 20] for the multi-dimensional case. Let us note that in h-AMR method the mesh
evolves in time, thus each cell Ck should be written Cn

k . To simplify the notation, we
omit here the time dependency.

In order to reduce the time necessary to manage the refinement, we use “macro
cells” which could be refined by generating hierarchical grids. Each cell can be
split in two sub-cells. We thus produce a dyadic cells graph, whose numbering (in
basis 2) allows a quick computing scan to determine the adjacent cells. We use the
following notations: let kb be the index associated to the macro cell numbered k
with b a binary number which contains the hierarchical information of a sub-cell. In
particular, the level of a sub-cell Ckb is defined as the length(b)−1. By convention,
the coarsest cells are of level l = 1, while the finest cells are of level lmax ∈ N∗. For
instance, a macro cell Ck0 of level 1 will be split into two sub-cells Ck00 and Ck01 of
level 2. A mesh refinement example is proposed in Fig. 1.

Fig. 1 Example of hierarchical dyadic tree.

The mesh refinement procedure can be simply expressed as follows. We intro-
duce a non negative mesh refinement criterion Sn

kb
computed on each cell Ckb at time

tn and compared, for instance, to the average Sm

Sm =
1
|Ω |∑kb

Sn
kb

(3)

This approach is the so-called mean method (c.f. Sect. 3.1 for more details and a
presentation of some other approaches).

We then define two coefficients 0 < βmin ≤ βmax, which determine the ratio of
the cells to be refined or coarsened. Thus, for each cell Ckb :



Part 1: Automatic thresholding based on a distribution function. 5

• if Sn
kb
> αmax = Smβmax, the cell is refined and split into two sub-cells Ckb0 and

Ckb1 ,
• if Sn

kb0
< αmin = Smβmin and Sn

kb1
< αmin, the cell is coarsened into a cell Ckb .

Therefore, the adaptive algorithm stops when the level l of a cell Ckb reaches the
maximum level lmax.

Remark 1. The threshold parameters βmin and βmax allow to set a percentage of mesh
refinement and mesh coarsening with respect to the quantity Sm. The grid is not
refined or coarsened between αmin and αmax. It is not surprising that these settings
will deteriorate or improve the accuracy of the numerical solution. For instance,
the more βmin and βmax is small, the more accurate are the results to the expense
of the computational time. In many AMR method, the choice of these thresholds
parameters is therefore a critical weakness.

On one hand, if a cell Ckb is split into two sub-cells Ckb0 and Ckb1 , averaged values
at time tn are projected on each sub-cell:

wwwn
kb0

= wwwn
kb1

= wwwn
kb

On the other hand, if two sub-cells Ckb0 and Ckb1 are coarsened, we initialise the new
cell Ckb as:

wwwn
kb
=

1
2

(
wwwn

kb0
+wwwn

kb1

)
Moreover, as done in [8, Section 4.2], we use a numerical smoothing grid technique
which prevents two adjacent cells to have a level difference greater than two for
stability purpose.

To simplify the notations, we do not use the binary subscript notation and we
will assume that βmin = βmax = β and therefore αmin = αmax = α for the sake of
simplicity. By abuse of notations, we write the adaptive algorithm as follows: for
each cell Ck:

• if Sn
k > α , the cell is refined and split into two sub-cells,

• if Sn
k < α , the cell is coarsened (in the sense that two cells Ckb0 and Ckb1 are

coarsened into a cell Ckb as described before).

If the threshold is not correctly chosen, it is well-known that such a strategy may
yields to spurious oscillations since locally, the grid incessantly changes between
coarse and fine cells. However, even in this settings (i.e. αmin = αmax = α), we will
see that the method proposed for the automatic selection of the threshold does not
develop, in general, spurious oscillations. If the threshold parameter is automati-
cally well-chosen at each time step, one can always define thereafter αmin and αmax
to allow to set a percentage of mesh refinement and mesh coarsening to reinforce
the stability of the algorithm.
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2.3 Mesh refinement criteria

The choice of a suitable mesh refinement criterion is crucial to perform accurate
mesh adaptation. Indeed, ideally, one would like to set up a mesh that minimises the
discretisation error and maximises the computational efficiency of the algorithm.
The construction of an efficient criterion remains a difficult subject, since it de-
pends on physical phenomena and on numerical methods. Multi-resolution analysis
[12, 18] provides some robust tools to estimate and control rigorously the error at
each refinement level. Based upon Richardson-type estimates of the local truncation
error [4], one can also refine or coarsen to reach a given accuracy for a minimum
amount of work. However, near discontinuous solutions, Richardson extrapolation
is invalid [24]. It will work but it is no more reliable than heuristic methods and
the extra cost cannot be justified. The entropy indicator for hyperbolic systems is
also an efficient mesh refinement criterion for smooth and non smooth solutions
[25]. Finally, the mesh criterion can be also constructed, as simple as possible, as
the combination of heuristic gradients based on physical quantities to detect perti-
nent regions to refine or to coarsen [26]. We also refer to other methods based on a
posteriori error estimates based on a measure of the local residual [30] and [15].

In this paper, we will consider the following three mesh refinement criteria.

Criterion 0: Since the exact solution of the Riemann problem (1)-(2) is known,
we consider the criterion as the ”best1 mesh refinement criterion”

Sn
k := |hn

k−hex(xk, tn)| (4)

where hex stands for the exact solution.
Criterion 1: One can show that System (1) admits a mathematical entropy E

E(w) =
q2

2h
+

gh2

2

with q = hu which satisfies the entropy inequality

E (x, t) = ∂tE(w(x, t))+∂x (G(w(x, t))) ≤ 0 . (5)

with

G(w) =

(
E(w)+

gh2

2

)
u .

The entropy satisfies a conservation equation only in regions where the solution
is smooth and an inequality when the solution develops shocks. In simple cases,
it can be proved that the term missing in (5) to make it an equality is a Dirac mass.
Following [25, 8, 2], we define the numerical density of entropy production

1 The criterion 0 is qualified as “the best” in the a posteriori sense. Indeed it gives the exact
numerical error at time tn. However it will not necessary give the best convergence rate at the end
because the best mesh refinement should be done where large errors are going to be done (at time
tn+1).
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E n
k =

E(wn+1
k )−E(wn

k)

δ tn
+

(
Gk+1/2(wn

k ,w
n
k+1)−Gk−1/2(wn

k−1,w
n
k)
)

δxk

where the numerical flux Gk+1/2 is computed with the exact solution of the 1D
Riemann problem at the interface xk+1/2 with the left state wn

k and the right state
wn

k+1 as done before in Sect. 2.1.
At the discrete level, as shown in [25], E n

k converges to zero with the same rate of
the local truncation error in smooth regions. Therefore, E n

k can be regarded as an
a posteriori error indicator. Moreover, as proved in [25], the entropy production
built on first order monotone schemes is essentially negative definite, in the sense
that positive overshoots in the cell entropy inequality are possible, but only on
non monotone data and their amplitudes decrease fast under grid refinement for
smooth solutions. Thus, in the following, we define

Sn
k = |E n

k | . (6)

Criterion 2: Finally, the last mesh refinement criterion is based on the gradient
method. It can be constructed as a combination of heuristic gradients based on
physical quantities to detect pertinent regions to refine or to coarsen [26]. To
make it as simple as possible, we consider the gradient of h which can be an
efficient mesh refinement criterion if the threshold is well-chosen,

Sn
k =

∣∣∣∣hn
k+1−hn

k

xk+1− xk

∣∣∣∣ . (7)

In what follows, we define the piecewise mesh refinement criterion as follows :

S(x, t) = ∑
k

Sn
k1Ck×[tn,tn+1[(x) (8)

where 1A(x) =
{

1 if x ∈ A ,
0 otherwise.

3 Mesh refinement thresholding methods

Generally speaking, as already described before, the mesh adaptation process is con-
structed as follows: if S(x, t)> α , the cell is refined and split into two sub-cells and
otherwise the cell is coarsened. The quantity α is the so-called mesh refinement
threshold. As presented before, if we set α = βSm for some β > 0, we obtain the
mean method. We propose here to review some of the classical thresholding meth-
ods. Then, we present a new automatic thresholding approach constructed with the
decreasing rearrangement function of the mesh refinement criterion S.
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3.1 A brief review of the classical thresholding methods

In general, the mesh refinement criterion of error indicator type can be written as a
function of the local discretisation error ε

S(x, t) = f (ε(x, t))

where f : R→ R+. If the mesh refinement criterion is an a priori or a posteriori
error estimates, then the function f is in general linear as for the criterion (4), say
S(x, t) = κε(x, t), with κ > 0. In this settings, it is easy to define the mesh refinement
threshold α = ε(x, t)/κ which almost corresponds to the desired local accuracy.
Let us note that in general it is very difficult to construct such a mesh refinement
criterion. The criterion (6) is an a posteriori error indicator. In the case of the mesh
refinement criterion (6), the function is not necessarily linear and therefore it is not
easy to define a suitable threshold.

There exists several thresholding methods. We recall the classical ones: mean
method, mean method with standard deviation, two-steps filtering, wavelets, local
maxima, Dannenhoffer and Powell cumulative distribution methods and we finally
present our method. The last one is the only method, up to our knowledge, yielding
to an efficient automatic threshold almost parameterless contrary to the previous
ones.

Mean method.

It is the simplest and the cheapest method. It can be an efficient method to detect
homogeneous smooth solutions, i.e. solutions for which the local maxima of S have
almost the same amplitudes. In what follows, we refer to smooth solutions for ho-
mogeneous smooth solutions. As done before, for a given time t > 0, the mesh
refinement criterion S is compared to

α = β
1
|Ω |

∫
Ω

S(x, t) dx

where β is a user-calibrated dimensionless parameter.
For a discontinuous solution, the mean method is not able to detect the relevant

smooth regions to refine if the threshold β is not set small enough. However, the
mean method is, in general, suitable for smooth solutions for which setting β = 1
yields to an efficient refinement. In Fig. 2, we have illustrated formally a discon-
tinuous solution, see Fig. 2(a), and a smooth one, see Fig. 2(b). In Fig. 2(a), the
peak localised around at x = xB = 3.75 shows the presence of a discontinuity of the
solution while the remainder region corresponds to the smooth part of the solution.

On one hand, for a discontinuous solution, one can see in Fig. 2(a) that if the
parameter β ≥ 1 (i.e. α ≥ Sm) then the smooth part of the solution will not be
marked for refining. On the other hand, for a smooth solution, one can observe in
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Fig. 2(b) that setting β = 1 allows to detect relevant part of the mesh to refine. In
general, to be efficient β should be calibrated such that β ∈ (0,1] or equivalently
α ∈ (0,Sm].

x

0 1xA 2 3 xB 4 5

S
(x
)

0

2

4

6

8

10
S(x)
Sm = 2.4004

(a) S(x) with a = 200, b = 1000 (b) S(x) with a = 2, b = 10

Fig. 2 Comparison of the mean value Sm for two given criteria S(x) = aexp(−b(x− xB)
2) +

exp(−5(x− xA)
2) where xA = 1.25 and xB = 3.75. S represents either a discontinuous solution

(left) or a smooth solution (right).

Mean method with standard deviation.

The mean method can be improved by taking into account the fluctuations of the
mesh refinement criterion. For a given time t > 0, the mesh refinement criterion S is
now compared to

α = β
1
|Ω |

∫
Ω

S(x, t) dx+δσ(x, t)

where σ is the standard deviation of S(x, t) and δ ∈ R. These methods are largely
used due to their simplicities, see for instance [14, 31, 13, 27] however β and δ are
problem dependent and therefore user-calibrated parameters.

Filtering: two steps method.

The method of ”filtering” is constructed to detect the smooth part of a discontinuous
solution, see for instance [31, 1]. This method improves the classical mean method
by applying two successive filtering.

For a given time t > 0 and for a given fixed β , as a first step, the mean method is
applied to S to identify discontinuities and steep gradients in the solution, like in the
example in Fig. 2(a). Then, we redefine the mesh refinement criterion as S1(x, t) =
S(x, t) if S(x, t)< α = β

1
|Ω |
∫

Ω
S(x, t) dx, otherwise S1(x, t) = β

1
|Ω |
∫

Ω
S(x, t) dx. We

now apply the mean method to the mesh refinement criterion S1. As a consequence,
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this method allows to filter the large peaks into the function S and try to detect
also the smooth part of the solution. However, the two steps may be not enough to
efficiently capture the smooth part of the solution. Moreover, the second drawback
concerns still the parameter β which is again test-case dependent.

Filtering: wavelet method.

In contrast with the previous method, the detection of smooth and discontinuous so-
lutions can be efficiently captured with a space-time localisation based on a wavelet
transform, see for instance [17]. A nice feature of wavelets are the detection of dis-
continuities and high transitions along with the resulting absolute values of wavelet
coefficients are large. The localisation of such a region is generally well-captured
for smooth regions 2 as displayed in Fig. 3(b) for a given signal

x ∈ [0,1], S(x) = exp(−1000(x−0.7)2)+3exp(−5000(x−0.2)2)

+

{
100 if x ∈ [0.4,0.401]
0.3r0,1(x) if x ∈ [0.401,0.43]

where x 7→ r0,1(x) ∈ [0,1] returns a random number, see Fig. 3(a). High variations
of the signal yield to large absolute values of wavelet coefficients centered around
the discontinuity at all regions. Depending on the wavelet’s support, the larger the
region is, the larger the set of coefficients affected in the wavelet transform is. It
defines the so-called ”cone of influence”. As a consequence, the discontinuity has
the smallest region. On the contrary, smooth signal produces relatively large wavelet
coefficients at large regions and again the definition of the cone of influence holds.
The interpretation of the absolute value of wavelet coefficients as a mesh refine-
ment criterion is based on the cone of influence and its support. For instance, in the
example illustrated in Fig. 3, for a given region (which corresponds to a threshold
parameter α), say y = 100, the intersection with the cone of influence provides three
intervals located around the point x = 0.2, x = 0.4 and x = 0.7 which are the regions
to refine. However, as for the method described before, we are still confronted with
the choice of a threshold parameter (y). Moreover, even if this method is based on
fast wavelet transform, it increases the global cost of the numerical method.

2 the wavelet coefficients in this example are computed with the Daubechies wavelet with four
vanishing moments [6, 7]
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(b) Wavelet coefficients (x = space, y = region)

Fig. 3 Illustration of the wavelet transformation for a given mesh refinement criterion computed
with the Daubechies wavelets with four vanishing moments (warm colors correspond to large co-
efficients and cold colors to small coefficients).

Local maxima approach.

It consists in looking for the local maxima of the mesh refinement criterion. As a
first drawback, the local maxima of the mesh refinement criterion are not necessarily
those of the local error. Once a local maximum is detected, say x∗, the surrounding
area to refine should be large enough. It can be defined without parameter by con-
structing the interval [x∗− ζ (x∗),x∗+ ζ (x∗)] where ζ (x∗) is the distance between
the local maxima position x∗ and the closest inflexion point of the criterion. As a
second drawback, such a method can be quite costly in a multi-dimensional set-
tings. Moreover, for a noisy criterion function (like for instance in Fig. 5(a)), it can
lead to an over refined domain.

In Fig. 4, we illustrate the method for a given mesh refinement criterion. The
intervals to refine around each local maxima are defined by the use of the closest
inflexion point (see Fig. 4(b) and Fig. 4(a)).
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Fig. 4 Illustration of the local maxima method for a mesh refinement criterion involving multiple
regions.

Dannenhoffer cumulative distribution method and Powell method.

The method proposed by Dannenhoffer [5] is simple and a priori efficient to auto-
matically set the threshold parameter.

Let us consider a given discrete mesh refinement criterion (8) for a given time
t > 0. Let (α j)0≤ j≤M be an increasing sequence of M+1 threshold parameters such
that α0 = 0 and αM = maxx S(x, tn) where α j, is given by

α j = SM

(
j

M

)γ

, 0≤ j ≤M (9)

with γ ≥ 1. Following Dannenhoffer [5], we construct the piecewise constant distri-
bution function d j = d(α j) as:

d(α) =
M−1

∑
j=0

d j1(α j ,α j+1)(α) with d j = #{k ; Sn
k > α j} (10)

where # is the number of elements in the set {Sn
k > α j}. This function is useful to

detect the local maxima.
We display the shape of the cumulative distribution function in Fig. 5(b) (black

area) for a given perturbed mesh refinement criterion (see Fig. 5(a)) as in [5]. In
this illustration, the first and the second peaks around x = 0.5 and x = 0.7 can be
associated to a steep gradient or a discontinuity in the solution. The peak around
x = 0.25 can be associated to a region where the solution is smooth. Ideally, we
would like to detect those cells to mark for refinement.
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Fig. 5 Dannenhoffer cumulative distribution function for a given mesh refinement criterion.

One can define several threshold parameters denoted α = A, α = B, α = C and
α = D in Fig. 5. The threshold α = A corresponds to the area for which the mesh
refinement criterion oscillates. Thus, setting α = A yields to detect almost all the
cells to refine and it is not a good strategy. The threshold D is too large and almost
all regions are not detected. Thus, Dannenhoffer proposes to set a threshold between
α =C and α = B which is localised at the ”knee” of the cumulative distribution (see
Fig. 5(b)). In particular, following [5], the ”knee” of the cumulative distribution is
defined as the smallest α = αDan such that

d′(α) =−1 .

Ideally, if the location of the ”knee” can be computed then one can construct an au-
tomatic threshold which allows to refine the pertinent areas. However, as mentioned
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in [5], to compute correctly the threshold αDan, a construction of an accurate inter-
polation of the derivative is required which increases the computational cost of the
AMR algorithm. Otherwise, the threshold αDan computed is often too small and
the method detects too many cells to refine as mentioned in [5].

Based on this cumulative distribution function, Powell [23] proposes to automat-
ically set the threshold at the lowest value of the refinement parameter that produces

a local maximum in the curvature κ =
|d′′|

(1+d′2)3/2 . The threshold α = αP is localised
before the first inflexion point of the cumulative distribution function but still an
accurate interpolation of the second and third derivatives are required.

As a conclusion, in general, the construction of a suitable mesh refinement
threshold is either user-calibrated or automatically but with an extra numerical cost.
In the following section, we propose a new automatic mesh refinement threshold
αPE, only based on the cumulative distribution function and not on its derivatives.
The threshold αPE is defined such that max(αDan,αP)< αPE. The computational
cost of the construction of the threshold αPE is less expensive than the Dannenhof-
fer [5] or the Powell [23] method.

3.2 A distribution function for automatic thresholding

In this section, we present the new method to select the threshold automatically to
detect relevant cells to refine.

For the sake of simplicity and readability, we present our new threshold method
in the one-dimensional case and we refer to the second part of this paper [20] for
the generalisation to the multi-dimensional case.

Let us consider a smooth (at least twice differentiable) mesh refinement criterion
S(x, t) ∈ R+, x ∈ [0,L] and t > 0 where L is the length of the domain. The time t
being fixed, we write in the sequel S = S(x). Without loss of generality, we suppose
that S(0) = S(L) = S′(0) = S′(L) = 0 and 0 < S∞ = maxx∈(0,L) S(x)< ∞ (if S∞ = 0
the numerical solution is identically equal to zero).

Remark 2. The meaning of the assumption S(0) = S(L) = S′(0) = S′(L) = 0 depends
on the mesh refinement criterion and simplifies the following computations. For the
mesh refinement criterion (7), it means that the free surface is flat at the boundaries.
Generally speaking, if for instance at x = 0, S(0) 6= 0 and S′(0) 6= 0, one can always
arbitrarily extend the function S on the interval (−ε,0) such that S(−ε) = S′(−ε) =
0 for a given ε > 0. So without loss of generality, one can consider that S(0) =
S(L) = S′(0) = S′(L) = 0.

In view of the above assumptions, the set

Zα = {x ∈ (0,L); ϕα(x) = S(x)−α = 0 and S′(x) 6= 0}

is not empty. Indeed, for each 0<α < S∞, since S∞ > 0, S has at least one maximum.
Then, there exists pα ∈ N∗ such that the number of elements in the set Zα is
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#Zα = 2pα .

Thus, for all α ∈ (0,S∞), one can describe the set Zα as follows

Zα = {x0(α)< x1(α)< · · ·< x2pα−2(α)< x2pα−1(α)} .

Let us assume that S has p local maxima. Then there exists an increasing sequence(
α∗k
)

1≤k≤p and a sequence
(
x∗k
)

1≤k≤p such that

∀k = 1, . . . , p S′(x∗k) = 0, S′′(x∗k)< 0 and S(x∗k) = α
∗
k .

By definition, the sequence
(
α∗k
)

1≤k≤p represents the local maxima from the small-
est to the largest with α∗p = S∞. Let us also remark that x∗k /∈ Zα , ∀k = 1, . . . , p,
∀α ∈ (0,S∞).

With these settings, we define the cumulative distribution function

α ∈ [0,S∞] 7→ d(α) :=

L if α = 0 ,

∑
pα

k=1 x2k+1(α)− x2k(α) if 0 < α < S∞ ,
0 if α = S∞ .

(11)

Remark 3. The function (11) corresponds to the well-known decreasing rearrange-
ment function of S which is widely used in optimal transport problems. For α ∈
[0,S∞], d(α) is the Lebesgue measure of the set {S(x)> α}.

Remark 4. From a theoretical viewpoint, in general, the presence of a Dirac mass
in the mesh refinement criterion indicates a discontinuous solution. The automatic
thresholding being based on the Lebesgue measure, the measure of a singleton being
zero, the method will be not able to detect the presence of discontinuities. However,
from a numerical viewpoint, due to the numerical diffusion, the Dirac mass is often
associated to a steep peak and globally the mesh refinement criterion can be assumed
smooth enough. As a consequence, the method works to detect large peaks which
are associated to numerical approximation of discontinuous solutions. Therefore,
we can assume that the mesh refinement criterion is at least twice differentiable.
Even if the smoothness assumption on S is rough, the method developed works to
detect the discontinuity, the steep gradient and the smooth part of the solution.

Then, one has:

Theorem 1. Let l ∈ N∗, S ∈ Cl([0,L],R+) be a smooth function such that S(0) =
S(L) = S′(0) = S′(L) = 0, 0 < S∞ < ∞ with p local maxima.

Then

1.
∫ S∞

0 d(α)dα =
∫ L

0 S(x) dx.
2. d ∈C0([0,S∞],R+) and

a. ∀α ∈ [0,S∞], d′(α)< 0
b. ∀k ∈ J0, pK, limα→α∗k

d′(α) =−∞ with the convention α∗0 := 0

3. d ∈Cl (D∗,R+) on the set D∗ :=
⋃p−1

k=0 (α
∗
k ,α

∗
k+1) .
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Proof. By construction of the function (11), the first and the second properties hold.
For α ∈ [0,S∞], the derivative of d is given by

d′(α) =
pα

∑
k=1

d
dα

x2k+1(α)− d
dα

x2k(α) .

Since ∀k ∈ J0, pαK, x2k(α) ∈ Zα , i.e., ϕα(x2k(α)) = S(x2k(α))−α = 0, we get

d
dα

x2k(α) =
1

S′(x2k(α))
.

Since S′(x2k(α)) > 0 and S′(x2k+1(α)) < 0 by construction, we therefore deduce
that

d′(α) =
pα

∑
k=1

S′(x2k(α))−S′(x2k+1(α))

S′(x2k+1(α))S′(x2k(α))
< 0 .

The last property is obtained as a straightforward consequence of the above inequal-
ity. ut

In order to illustrate the previous notations and results, we display in Fig. 6, for
a given mesh refinement criterion S (see Fig. 6(a)), the corresponding distribution
function (11) (see Fig. 6(b)), the first (see Fig. 6(c)) and the second derivative (see
Fig. 6(d)). For better readability the distribution has been normed by L. In this ex-
ample, we consider a function S with p = 3. In Fig. 6(b), the points for which the
distribution function has vertical asymptotes are

α
∗
1 = S(x∗1 = 5) = 5, α

∗
2 = S(x∗2 = 2.5) = 10 and α

∗
3 = S(x∗1 = 7.5) = 20 = S∞ .

and correspond to the local maxima of S which are sorted, by construction, from the
smallest to the largest. In Fig. 6(a), for α = 2, the set Zα is composed of 6 = 2pα

elements which are approximately

x0(α)≈ 2.0957, x1(α)≈ 2.9043, x2(α)≈ 4.566,

x3(α)≈ 5.434, x4(α)≈ 7.3921 and x5(α)≈ 7.6079 .

The distribution function at α = 2 is then computed as follows

d(α) =
(x1(α)− x0(α))+(x3(α)− x2(α))+(x5(α)− x4(α))

L
.
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Fig. 6 The distribution function d, the first d′ and the second derivative d′′ for the mesh refinement
criterion S(x) = Lexp(−10(x−L/4)2)+L/2exp(−5(x−L/2)2)+2Lexp(−200(x−3L/4)2) with
L = 10.

Remark 5. The cumulative distribution function (11) is the continuous version of the
Dannenhoffer cumulative distribution function [5] (see also Eq. (10)).

In view of Theorem 1, the distribution function (11) is useful because it provides
a complete description of the mesh refinement criterion S, in particular, it allows to
localise the smallest and the largest local maximum. Therefore, the construction of
an automatic threshold based on the function d can be relevant.

However, on one hand, the method proposed by Dannenhoffer (resp. by Powell)
is based on the first derivative (resp. the second and the third derivatives) of the
distribution function (10) which requires an accurate interpolation. On the other
hand, using only the distribution function (11) or equivalently (10) to construct a
relevant mesh refinement threshold is numerically difficult since a local maximum
corresponds to detect an area for which the derivative of d is infinite. Therefore, one
way to overpass these drawbacks is to use the distribution function (11), without
using any derivatives of d, and simply weighting the function d as follows

f (α) = αd(α) . (12)
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This function f transforms a local point of d between the first inflexion point of d
and the first local maximum of S (i.e. the first local vertical asymptote of d) into a
local maximum. More precisely, we have the following useful properties:

Corollary 1. Assume that S is twice differentiable and has p local maxima. Then,
by virtue of Theorem 1, there exists

∀k = 0 . . . p−1, α
∗∗
k+1 ∈ (α∗k ,α

∗
k+1) such that d′′(α∗∗k+1) = 0

and the function f (12) has p local maxima α1, . . . ,α p such that

∀k = 1 . . . p, αk ∈ (α∗∗k ,α∗k ) .

Proof. The function f inherits the same regularity property of d as given in The-
orem 1. Therefore if S is twice differentiable, then it is sufficient to show that on
each interval (α∗k ,α

∗
k+1), the function f is concave. The proof is similar for all

k. Let us show the result for k = 1. For all α ∈ (α∗∗1 ,α∗1 ) since d′′(α) < 0 and
f ′′(α) = αd′′(α)+2d′(α)< 0, we deduce that f is a strictly concave function. As
a consequence, there exists α1 ∈ (α∗∗1 ,α∗1 ) which maximises f . ut

For each k, since αk ∈ (α∗∗k ,α∗k ), the local maximum αk of the function f does not
coincide with the local maximum α∗k of S. By construction, setting the threshold
parameter α = αk for a given k yields to

max(αDan,αP)< αk .

On one hand, as mentioned in Sect. 3.1, for smooth solutions, the mesh refinement
threshold α = Sm is in general relevant (Sm = 1

|Ω |
∫

Ω
S(x) dx). On the other hand,

we have also pointed out that α should be less than Sm for discontinuous solutions.
Thus, the threshold α = αk if αk < Sm, otherwise α = Sm is a good candidate. More
precisely, we define our automatic threshold as follows:

αPE such that f (αPE) = max
0<α≤Sm

f (α) . (13)

One important consequence of this choice is that the threshold is a global maximum
of a regular function, and therefore easy and numerically reliable to determine. By
construction, if αPE = Sm, we are able to predict that the solution is almost every-
where smooth and if αPE < Sm that the solution possesses at least one discontinuity
or a steep gradient.

Let us now illustrate the threshold αPE through an example. We represent in
Fig. 7 a discontinuous solution and in Fig. 8 a smooth solution for a given mesh
refinement criterion S.

• For the discontinuous solutions, as mentioned before, the threshold α = Sm is
not small enough to detect the region where the solution is smooth. However, if
we set α = αPE < Sm as a mesh refinement threshold, one can detect this region
(see Fig. 7(b)).
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• For smooth solutions, as emphasised in Sect. 3.1, the threshold α = Sm allows to
detect almost all smooth regions to refine as displayed in Fig. 8(b).
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Fig. 7 The function f for the mesh refinement criterion S(x) = 200exp(−1000(x− 3.75)2) +
1.25exp(−5(x−1.25)2) representing a shock type solution.
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Fig. 8 The function f for the mesh refinement criterion S(x) = 2exp(−10(x − 3.75)2) +
1.25exp(−5(x−1.25)2) representing a smooth solution.

3.3 Numerical illustration using αPE as an automatic mesh
refinement threshold.

In this section we show the efficiency of the proposed method in the selection of an
automatic threshold. To this end, we consider the Riemann problem (1)-(2) with
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∀x ∈ [0,80], w(x,0) = (h(x,0),u(x,0))=
{
(5.64,8) if x < 20 ,
(0.6,8) if x > 20 .

(14)

for which the exact solution is composed of a left-going rarefaction and a right-going
shock wave (see, for instance, Fig. 9(a), black line).

Each numerical experiment starts initially with 100 cells, the maximum level of
refinement is set to lmax = 3, γ = 2, M = 1000 (see Eq. (9)) and we prescribe free
boundary conditions.

The objective is to show that, for any given mesh refinement criterion, the thresh-
old αPE is selected automatically to adapt the mesh without hand-calibration. In
particular, we will confront our method to the mean method (i.e. α = βSm) for sev-
eral values of β . We recall that in this method, the threshold has to be calibrated. In
this numerical experiment, we have used the following strategy: for each cell Ck:

• if Sn
k > α , the mesh is refined and split,

• if Sn
k < α the mesh is coarsened.

which is known to be a source of spurious oscillations. We will see that our method
leads to non-oscillating numerical solution without hand-calibration. For the mean
method, as said before, if the threshold parameter β is not well-calibrated, then the
numerical solution can yield to spurious oscillations whatever the mesh refinement
criterion is. To be non redundant, we show the results only for the criterion (6).

In Fig. 9, we have displayed the numerical water height at time t = 2 s using the
method of automatic selection of the threshold with the mesh refinement criteria (4),
(6) and (7). With our method, the threshold parameter αPE, being adapted at each
time step, allows to detect the pertinent region of the domain to refine as one can
observe in Figs. 9 and 11. It is important to note that, in spite of the mesh adaptation
strategy (refined or coarsen), the numerical solution at time t = 2 s does not contain
spurious oscillations. This also true at different times, as shown in Figs. 10(a)–10(d),
for instance for the mesh refinement criterion (4). Furthermore, it is also interesting
to highlight that, whatever the mesh refinement criterion, we obtain almost the same
numerical solution with almost the same order of accuracy (as observed in Fig. 9
and Table 1).

Criterion Nm(l)→‖h−hex‖1 Nm(l)→‖u−uex‖1

0 2.0136 2.1342
1 2.0491 2.0901
2 2.1109 2.1789

Table 1 Convergence rate of the L1 discretisation error obtained with the refinement level l = 1,
2, 3 and 4.
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Fig. 9 Numerical results for the water height at time t = 2 s. Nm is the mean number of cells used
during the simulation.
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(a) t = 0.25 s
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Fig. 10 Numerical results for the water height obtained with the criterion (6) at time t = 0.25 s,
t = 0.5 s, t = 1 s and t = 1.5 s. Nm is the mean number of cells used during the simulation.
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Fig. 11 Time evolution of the threshold parameter αPE.

In Fig. 12, we have displayed the numerical water height at time t = 2 s using
the mean method with the mesh refinement criterion (6). Obviously, if the threshold
parameter β is not well-chosen, we get:

• in Fig. 12(a), only the shock region is refined since β is set too large,
• in Fig. 12(b), the numerical solution oscillates,
• in Fig. 12(c), β is well-chosen, the pertinent regions to refine are well-detected

and the numerical solution is well-computed (as in Fig. 9(b) with αPE),
• in Fig. 12(d), the domain is refined almost everywhere since β is set too small.
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Fig. 12 Numerical results for the water height at time t = 2 s using the criterion (6) with the mean
method. Nm is the mean number of cells used during the simulation.

4 Conclusion

In this paper, we have introduced a new method to set the threshold parameter auto-
matically to get an h-AMR algorithm almost parameterless. This method allows, in
principle, to refine without hand-calibration the pertinent regions.

The automatic selection is constructed from a weighted function α 7→ f (α) =
αd(α) where d is decreasing rearrangement function of the mesh refinement cri-
terion. The function f allows to compute an automatic threshold without an extra
computational cost compared to the method by Dannehoffer or by Powell. Obvi-
ously other weighted functions are possible but it is important to keep in mind that
a perfect automatic thresholding is a priori unreachable without any knowledge of
the link between the real error and the used mesh refinement criterion. Therefore we
can only focus to construct a method which has a good behaviour depending of the
criterion function (with heterogeneous or homogeneous amplitudes, with smooth or
discontinuous solutions, etc.).

Moreover, the method works well for any mesh refinement criterion and yields to
a numerical solution without spurious oscillations. Whatever the mesh refinement
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criterion is, we obtain almost the same numerical solution with almost the same or-
der of accuracy. In particular, combined with a simple gradient method as a mesh
refinement criterion which is less expensive than other criteria, the h-AMR algo-
rithm can be very efficient.

In this part, we have illustrated the efficiency on a one dimensional Riemann
problem to show that our method is able to detect simple waves. In the second part
of this paper [20], we show through several multi-dimensional test cases, including
multiple waves interactions, the efficiency of the method.
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