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Adaptive mesh refinement method.
Part 1: Automatic thresholding based on a
distribution function.

Kévin Pons and Mehmet Ersoy

Abstract The accurate numerical simulation of large scale flows, together with the
detailed modeling of flooding or drying of small-scale regions, is a difficult and
a challenging problem. Adaptive mesh method allows, in principle, to solve accu-
rately those scales. However in practice, on one hand, the lack of a priori or efficient
a posteriori error estimates, especially for multidimensional hyperbolic problems,
make the analysis harder. On the other hand, once a mesh refinement criterion is
chosen, the difficult problem is to determine the mesh refinement threshold param-
eter which is certainly the most important part of the adaptive process. The smaller
this parameter is, the higher the number of cells refined is at the expense of the com-
putational cost. In this work, we numerically investigate different refinement criteria
and we present a general procedure to determine automatically a mesh refinement
threshold for any given mesh refinement criterion. To this end the decreasing rear-
rangement (distribution) function of the mesh refinement criterion is introduced to
catch relevant scales. The efficiency of the automatic thresholding method is illus-
trated through the one dimensional Saint-Venant system. Multidimensional and real
life applications such as Tsunamis propagations are dealt in the second part.

1 Introduction

Depending on the complexity of the equations solved, the flow may develop many
length scales such as shocks, steep gradients, large and small oscillations and the
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relative importance of flow features becomes difficult to detect. The computation
on uniform mesh being too expensive, adaptive mesh is certainly the most relevant
approach to solve the problem. As a non-exhaustive list of references, one can refer
to [5, 4, 39, 15, 22, 12] and also [18, 25, 6, 33, 36].

The first category of methods concerns the so-called Adaptive Mesh Refinement
(AMR) technique. A mesh refinement criterion S, error indicator or a flow feature
detector, is applied to all cells of levels l 6 lmax where lmax is the maximum number
of refinement levels allowed. A cell Ck will be refined or coarsened if S(x) > β or
S(x) < β where β is a given threshold parameter. This procedure which consists
to split or to coarse a cell can be regarded as a particular adaptive moving mesh
method. In the classical AMR approach, the maximum level of mesh refinement
level lmax is fixed by the user and it mostly yields to dyadic, quadtree, or octree
meshing according to the dimension of the problem. In the standard adaptive moving
mesh strategy, the number of cells during the time evolution process is kept constant
and the involved cells size are different.

In both cases, the adaptive method is driven by a ”suitable” indicator. The indica-
tors based on the flow gradient are popular and often used due to its ”low-cost” and
simplicity of numerical implementation. It can be based on the mass, the momentum
or on a multi-criteria (a linear or a non linear combination of mass-momentum or
other equation involved in the system). Unlike flow gradient based methods, the in-
dicators based on error estimates are in general either not available or too expensive
to compute in practice. The form of the error estimate can be a priori or a posteriori.

The a priori methods provide a theoretical bound of the discretization error of
the form

εδx 6C(w)δxp

for some constant C =C(w) depending on the unknown w, where p is the order of
discretization and δx is the mesh size. This approach does not require to know the
numerical solution contrary to the a posteriori error methods. The computation of a
posteriori error estimates is mainly based on the analysis of the numerical solution
in terms of the truncation error using a Taylor expansion. The most popular method
is the Richardson extrapolation. Such estimates can also be obtained properly by
analyzing the numerical dissipation [19] or the flux consistency error as performed
in this paper.

If the mesh refinement criterion is ”accurate” enough and if the numerical scheme
under considerations is stable, then the yielding numerical errors remain homoge-
neous to the local error when the mesh is refined. To define how much the numerical
solution have to be accurate we define a threshold parameter which can be regarded
as the local accuracy ε (as much as the criterion is close to the local error). How-
ever, as said before finding such a mesh refinement criterion is in practice difficult.
In most cases, unlike the error, the mesh refinement indicator can exhibit some os-
cillations at small scales yielding to oscillating numerical solutions if the threshold
parameter is not small enough. On the contrary, if it is set too small, too many cells
are unnecessarily refined. Therefore, for almost all adaptive methods a ”tunable”
threshold parameter is unavoidable and should be calibrated to balance the accuracy
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of the solution and the computational cost. Indeed, if this tunable parameter is fixed
”correctly”, the error indicator will determine which elements require refinement
and those in which refinement may not be necessary. As a straightforward conse-
quence, the resolution is placed only in the regions in which it is needed and this
procedure will be considerably less expensive than a simulation on uniform mesh.

The definition of the tunable threshold parameter is case-dependent and therefore
cannot be apply blindly to any problems. Therefore, choosing a suitable threshold
parameter is certainly the most difficult step in the adaptive process. To select auto-
matically the threshold parameter, we propose a new method based on the decreas-
ing rearrangement of the mesh refinement criterion.

The paper is organized as follows. Section 2 is devoted to the general presen-
tation of the finite volume scheme and the AMR method. In Sect. 3, we present
and numerically investigate several mesh refinement criteria through a Riemann test
case for the one dimensional Saint-Venant system. The exact solution being known,
we study the behavior of several mesh refinement criteria with respect to the number
of mesh points that we confront to the local error. Then, we numerically compute
the solution for several mesh refinement threshold and we dress the table of conver-
gence. In particular, we highlight that even if the mesh refinement criterion is not
of error type, it can drive the adaptive process efficiently if the threshold parameter
is chosen appropriately. Finally in Sect. 4, after a review of thresholding methods,
we propose an automatic thresholding method based on an analytical distribution
function which takes into account all the features of any given mesh refinement cri-
terion. In particular, we show that a simple mesh refinement criterion based on the
flow gradient with automatic thresholding can be comparable to a more complex
efficient local error estimate (here the local error itself).

2 Finite volume approximation and AMR technique

This section summarizes the main features of the finite volume approximation and
the adaptive mesh refinement method for a general non-linear hyperbolic equation

∂tw+∂xf(w) = 0 (1)

where w(x, t) ∈ Rd , f(w(x, t)) stand respectively for the unknown vector and the
multidimensional flux at a space-time point (x, t), x ∈ Rd is the coordinate, t > 0 is
the time and d is the dimension of the problem.

2.1 First order finite volume approximation

We suppose that the computational domain Ω ⊂ Rd is split into a set of control
volumes, also referred as cells, Ω = ∪kCk of mesh size δxk = |Ck|. We define the
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discrete times by
tn+1 = tn +δ tn

where the time step δ tn satisfies a Courant, Friedrichs, Levy (CFL) condition.
On a given cell Ck of center xk, noting

wwwn
k '

1
δxk

∫
Ck

www(x, tn) dx

the approximation of the mean value of the unknown www(x, t) on Ck at time tn, and
integrating (1) over Ck× (tn, tn+1), we obtain:∫

Ck

w(x, tn+1) dx−
∫

Ck

w(x, tn) dx+
∫ tn+1

tn
∑
a

∫
∂Ck/a

f(w) ·nnnk/a ds dt = 0

where nnnk/a denotes the unit normal vector to the boundary ∂Ck/a between cells k
and a.
Noting F

(
wn

k ,w
n
a,nnnk/a

)
the approximation of the flux

f
(
wn

k ,w
n
a,nnnk/a

)
≈ 1

δ tn

∫ tn+1

tn

∫
∂Ck/a

f(w) ·nnnk/ads dt ,

and dividing by δxk, we obtain the first order finite volume approximation of Eqs.
(1) (see for instance [16, 37, 13]):

wn+1
k = wn

k−
δ tn
δxk

∑
a

f
(
wn

k ,w
n
a,nnnk/a

)
where f

(
wn

k ,w
n
a,nnnk/a

)
is defined via any three-point solver (see for instance [28, 32,

37]).
In this paper, we have considered a first order space-time discretization using the

Godunov solver, i.e. the numerical flux f
(
wn

k ,w
n
a,nnnk/a

)
is computed with the exact

solution of the 1D Riemann problem at the interface k/a with the states wn
k and wn

a
(for further details see, for instance, [37]). The numerical scheme can be extended
to high order space-time discretization combined with a local time stepping method
to save computational time as done in [12] for instance.

2.2 Adaptive mesh refinement method

According to the finite volume approximation defined in Sect. 2.1, a local non neg-
ative mesh refinement criterion Sn

k is introduced (a detailed discussion on this topic
is addressed in Sect. 3) and computed on each cell Ck at time tn and compared, for
instance, to the average

Sm =
1
|Ω |∑k

Sn
kδxk (2)
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where |Ω | is the domain size and δxk is the mesh size. A mesh refinement threshold
coefficient β > 0 is defined to determine the ratio of the mesh refinement criterion
leading to mesh refinement or mesh coarsening.

For each cell Ck, we then process as follows

• if Sn
k

Sm
> β , the mesh is refined, and

• if Sn
k

Sm
< β the mesh is coarsened.

To avoid excessive refinement, a maximum level lmax is defined. The adaptive pro-
cess stops when the level l of the cell Ck reaches the maximum level lmax. For the
definition of the new states on coarsened or splitted cells, we refer to [12]. More-
over, for consistency reasons, the difference of level between the refined cells and
the neighbor ones does not exceed 2 (see [12] for further details).

If the mesh refinement threshold β is set too small, the results will be a pri-
ori accurate at the expense of CPU time because too many cells will be refined.
The ”ideal” threshold parameter should provide a balance between accuracy of the
results and the computational time. In the most of applications, without a priori
knowledge on the mean value Sm of the mesh refinement criterion S, it is quite diffi-
cult to define what is the ”ideal balancing” and therefore β has to be calibrated for
each numerical experiment. A more detailed study of existing thresholding strate-
gies is presented in Sect. 4.1.

3 Mesh refinement criteria

The first step in a mesh adaptivity is to construct/find a mesh refinement criterion
S which provides information on the flow features such as steep gradients, discon-
tinuities, discontinuities of high derivatives, . . . Once a mesh refinement criterion is
chosen, the adaptive process described above can be applied. In what follows, we
focus on several type of mesh refinement criteria.

Roughly speaking, a mesh refinement criterion is efficient if it coincides almost
everywhere with the local discretization error,

εδx(x, t) := |w(x, t)−wδx(x, t)|

where |·|, δx, w 6= wδx ∈ Rd stand respectively for a norm in Rd , the mesh size, the
exact solution and the numerical solution.

To describe the efficiency of a mesh refinement criterion S, we introduce the
local efficiency index. To this end, without loss of generality, dividing S and
|w(x, t)−wδx(x, t)| by 1 (to obtain non dimensional variables), we define the lo-
cal efficiency index as follows

Efficiency(x, t) =
|S(x, t)|

|w(x, t)−wδx(x, t)|
. (3)
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The analysis of the efficiency index depends, a priori, on the normalization constant
(here 1). With this definition, the more the mesh refinement criterion S is close to
the real error, the more the local efficiency index is close to the value 1.

However, in practice and especially for multidimensional equations, such mesh
refinement criterion is unavailable. Nevertheless, relaxing the definition, an ”effi-
cient” mesh refinement criterion can be still defined if at least

• it is able to detect the area where the local discretization error is non zero and,
• if it decreases (as a function of mesh points) like the local discretization error.

In that case, the limit of the local efficiency index as δx goes to 0 converge to a
constant.

The mesh refinement criterion can be constructed through several techniques and
roughly speaking, it can be classified as error type and ”geometrical” type (typically
based on the flow gradient or high derivatives of the solution).

Error estimates can be determined by a priori or a posteriori methods. The a
priori methods provides a theoretical bound of the discretization error of the form

εδx 6C(w)δxp

for some constant C(w) where p is the order of discretization. These approaches
do not require to know the numerical solution contrary to the a posteriori error
methods.

The ”geometrical” methods are mainly based on the flow gradient, high order
derivatives of the numerical solution or any combination of them (yielding to multi-
criteria methods).

3.1 The numerical test case and the mesh refinement criteria

In what follows, we propose to study several mesh refinement criteria through the
resolution of a Riemann problem for the one dimensional Saint-Venant system.

Riemann problem for the Saint-Venant system.

The one dimensional Saint-Venant system (or non linear shallow water equations)
is

∂th+∂x(hu) = 0

∂t(hu)+∂x(hu2)+
g
2

∂xh2 = 0
(4)

where the unknowns h(x, t) and u(x, t) ∈R model respectively the height of the wa-
ter and the depth-averaged velocity of the water at a space-time point (x, t), x ∈ R
is the downstream coordinate, t > 0 is the time, and g is the gravitational constant
g ≈ 9.81 m/s2. One can show that, System (4) admits a mathematical entropy (en-
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ergy):

E(h,u) =
hu2

2
+

gh2

2
which satisfies the entropy (energy) relation for smooth solutions

∂tE(h,u)+∂x

((
E(h,u)+

gh2

2

)
u
)
= 0 (5)

and used in the sequel as a mesh refinement criterion.
In the sequel, we consider the following Riemann data

∀x ∈ [0,80], w(x,0) = (h(x,0),u(x,0))
{
(5.64,8) if x < 20 ,
(0.6,8) if x > 20 .

(6)

The exact solution of System (4) with the initial condition (6) can therefore be ex-
plicitly computed, see for instance [37, 38, 14]. The exact solution is composed of a
left rarefaction and a right shock wave (see Fig. 1). The left rarefaction represents,
that we will call later on, the ”smooth” flows.

 0

 1

 2

 3

 4

 5

 6

 0  10  20  30  40  50  60  70  80

h
 (

m
)

x (m)

Exact solution        
Numerical solution        

(a) water height

 8

 9

 10

 11

 12

 13

 14

 0  10  20  30  40  50  60  70  80

u
 (

m
/s

)

x (m)

Exact solution    
Numerical solution    

(b) water speed

Fig. 1 Exact (thick black line) and numerical (thin red line) solution at time t = 2 s computed on
a uniform grid with N = 10000 mesh points

Mesh refinement criteria.

In this test case, the preponderant relative error concerns mainly the fluid velocity
u. Therefore, one can define as the ”error estimate”, the exact local discretization
error,

Sn
k := |un

k−uex(xk, tn)|

where uex stands for the exact water velocity. This mesh refinement criterion will
be referred by Criterion 0 in what follows.
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Let us now present the other mesh refinement criteria:

Criterion 1: Following [12, 3], we introduce the numerical density of entropy
production as the discretization of the Eq. (5)

S(x, t) = ∂tE(h,u)+∂x

((
E(h,u)+

gh2

2

)
u
)

.

The quantity S(x, t) is the so-called entropy production and it is well-known that
S becomes negative if the solution develops discontinuities and is zero if the
solution is smooth. At the discrete level and in practice, the numerical density
of entropy production Sn

k = S(xk, tn) is non positive even for smooth solution
except for constant profile. Therefore, it provides a posteriori information as a
local error indicator. We will see more precisely that it is not an a priori error
but only an error indicator known as a shock criterion type (see for instance
[40, 27] and [12, 17, 3]). In the sequel we consider Sn

k = −S(xk, tn) to compare
with the positive criterion 0.

Criterion 2: Instead of introducing a posteriori error estimates based on the trun-
cation error as classically done (see for instance [8]), we derive a mesh refinement
criterion based on the local flux consistency error (see Appendix, Eq. (18), for
further details). It reads

Sn
k =2δxk max

(
1,
∣∣u(xk+1/2, tn)

∣∣)×
max
i=1,2

∣∣∣∣(λi(xk+1/2, tn)
(

1−λi(xk+1/2, tn)
δ tn
2δx

)
∂xIi(xk+1/2, tn))

)∣∣∣∣
where III = (I1 = u+2

√
gh, I2 = u−2

√
gh), λ1 = u−

√
gh 6 λ2 = u+

√
gh and

xk+1/2 stands respectively for the Riemann invariants, the eigenvalues of the con-

vection matrix A(w) = ∂ f(w)
∂w and the cell interface. Let us note that thanks to the

term ∂xIi = ∂xu+(−1)i+1√g ∂xh√
h

steep gradients or discontinuities of the solu-
tion are intrinsically taken into account. This criterion is an a posteriori error
estimates.

Criterion 3 (”geometrical type”): The criteria of geometrical type are generally
based on the gradient or high derivatives of the unknown and are defined as ∂ ph

∂xp ,
∂ pu
∂xp or any combination (multi-criteria). Let us also emphasize that, following
[24, 26, 29], for shallow water problems on non flat topography Z, it is more
relevant to use the gradient of η = h+Z than h since this quantity is non-zero
only in the wave propagation region while the gradient of h can be very large
even in regions where the water is at rest due to variations of the topography.
Therefore, for its simplicity, we consider the one based on the gradient of η ,

Sn
k = |∂xη(xk, tn)| .

Criterion 4 (”geometrical-error type”): According to the first order of discretiza-
tion of Eqs. (4), one can force any geometrical criterion to decrease with the same
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rate of the local error discretization simply by multiplying it by δxk (see for in-
stance [8]). Thus, we also consider

Sn
k = δxk |∂xη(xk, tn)| .

In what follows, we use the following notations when no ambiguities are possible:
δx will represents δxk and the (discrete) mesh refinement criterion will be noted

S(x, t) = ∑k Sn
k1Ck(x) where 1A(x) =

{
1 if x ∈ A ,
0 otherwise.

3.2 Sensitivity of the mesh refinement criterion with respect to N.

The first numerical study concerns the comparison of the behavior of the mesh re-
finement criteria (and its average (2)), as a function of the number of mesh points,
to the local discretization error.

For each parameter N fixed, the mesh refinement criterion is compared to the
exact error through the local efficiency index (3), and its average to the global effi-
ciency index

‖Efficiency(·, t)‖1 =
‖S(·, t)‖1

‖uδx(·, t)−uex(·, t)‖1
.

For this purpose, we have computed the numerical solution at time t = 2 s of the
Riemann problem (4)-(6) with N = 200× k, k = 1, . . . ,15, 3000, 4000, 5000, 6000,
8000 and 10000 mesh points.

The Fig. 2 represents the normalized (by Sm) mesh refinement criteria 0, 1, 2 and
3 computed with 10000 mesh points. Let us note that the mesh refinement criterion
4 is not displayed since the quantity S/Sm coincides with the criterion 3. We nu-
merically show that all the proposed mesh refinement criteria are able to locate the
rarefaction wave and the shock wave (see Figs. 2(a) and 2(b)). As displayed in Fig.
2(b), theirs supports almost coincide with the reference one. However, the hierar-
chical order of local maxima is not representative of the local error and especially
for the criterion 1 which detects almost the shock.

Therefore, from a practical viewpoint, one has to pay attention to the choice of
the mesh refinement threshold. For instance, if we set β = 6 then only the shock
region is refined (see Fig. 2(b)) for all of these criteria. In Table 1, we have also
computed the rate of convergence of the mean value Sm for all criteria as a function
of the mesh points N. The criterion 3 is not considered here since it is clear that Sm
does not decrease to 0 when the number of mesh points increases. The mean value
of all the criteria, except 1, decreases almost with the same rate of mean value of
the criterion 0. As a consequence, up to a constant, the mean values of the criteria
2 and 4 are representative of the mean value of the error. Therefore, in view of
the “relaxed” definition of “efficient” mesh refinement criterion (see Sect. 3), the
criterion 2 and 4 seems to be the more robust indicators to pilot the adaptive mesh.
To go further in the analysis, we now focus on the study of the global efficiency



10 Kévin Pons and Mehmet Ersoy

 0

 500

 1000

 1500

 2000

 2500

 20  25  30  35  40  45  50  55

S
k
n
/S

m

x (m)

Criterion 0     
Criterion 1

Criterion 2
Criterion 3

(a) Global behavior

 0

 1

 2

 3

 4

 5

 6

 7

 8

 20  25  30  35  40  45  50  55

S
k
n
/S

m

x (m)

Criterion 0     
Criterion 1

Criterion 2
Criterion 3

(b) Zoom

Fig. 2 Numerical comparison of mesh refinement criteria

Criterion rate

0 0.8585
1 0.0161
2 0.9988
4 1.001

Table 1 Convergence rate of the averaged mesh refinement criteria Sm

index. In Fig. 3, we display the global efficiency with respect to the mesh points N.
On one hand, in Fig. 3(a), we numerically show that the criterion 1 is definitively not
an a posteriori error. On the other hand, in Fig. 3(b), we deduce that, for the criteria
2 and 4, the global efficiency index ‖Efficiency(·, t)‖1 converges to a constant 0 <
C =C(w,δx, t = 2)<+∞, i.e., for δx small enough, one has

‖Efficiency(·, t)‖1 =
‖S(·, t)‖1

‖uδx(·, t)−uex(·, t)‖1
≈C .

In Fig. 3(b), the computed constant C is always less than 1 for the mesh refine-
ment criteria 4 while it is greater than 1 for the criterion 2, so that the following
(numerical) error estimates holds:

‖uδx(·, t = 2)−uex(·, t = 2)‖1 <C‖S(·, t)‖1 .

It confirms that the criterion 2 is the only a posteriori error estimate as expected.
Even if the criterion 4 is not an a priori error estimate, let us highlight that the
global efficiency is almost constant as displayed in Fig. 3(b). As a consequence, up
to a factor β , the global efficiency index can be set close to 1, replacing ‖S(·, t)‖1
by β ‖S(·, t)‖1 in the definition.

As a conclusion, on one hand, we can see that the mean value of the criteria 1 and
3 do not have the good behavior in front of the mean value of the real error. Further-
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Fig. 3 Efficiency of the mesh refinement criteria

more, the more the number of mesh points is large, the more the global efficiency
index is large indicating that the more these criteria are inefficients. Nevertheless,
despite this weakness, these criteria are able to detect almost all the local errors.
On the other hand, the mean value of the criteria 2 and 4 almost decay with the
same rate of the mean value of the local error and therefore they are a priori more
efficients than 1 and 3. However in both case, as observed in Fig. 2(b), for adaptive
method, the threshold has to be carefully chosen.

Remark 1. The global efficiency index can be also regarded as a tool to improve any
mesh refinement criterion. Indeed, since ‖S(·, t)‖1 = L×Sm and noting X the mean
value of X , ‖S(·, t)‖1 = L×Sm, one can write

‖Efficiency(·, t)‖1 =
Sm

|uδx(·, t)−uex(·, t)|
.

For instance, we have seen that the global efficiency index of the the criterion 1 or
3 increase when the number of mesh points increase (see Fig. 3(a)). Therefore, to
make efficient these criteria, the quantity Sm must be modified using a decreasing
function β (as a function of the number of mesh points N) such that

‖Efficiency(·, t)‖1 =
β (N)Sm

|uδx(·, t)−uex(·, t)|
≈ 1 .

This remark also holds to improve the efficiency of the criterion 2 and 4. In adaptive
method, since the number of cells evolves in time N = N(t), β (N) will be therefore
a time-dependent function. This remark motivates the construction of an automatic
(time-dependent) thresholding method.
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3.3 Sensitivity of the mesh refinement criterion with respect to β .

The aim of this part is now to study the influence of the mesh refinement threshold β

on the numerical solution. We now solve the Riemann problem for the Saint-Venant
system (4)-(6) on adaptive grids. Starting with an initial coarse grid composed of
500 cells, we compute the numerical solution for each mesh refinement criterion
β = 50, β = 20, β = 10, β = 5, β = 2, β = 1, β = 10−1, β = 10−1, β = 10−6,
β = 10−9 following the adaptive process described in Sect. 2.2. For each numerical
experiment, the maximum level of mesh refinement is fixed to lmax = 4. During
the adaptive computation, for each numerical test, we calculate the average of the
number of cells Nm(β , t) = Nm(β , t = 2) = 1

M ∑
M
n=0 N(β ) where M is the number of

time step. Nm will be used to compute the numerical order of convergence.
The numerical results (green large dashed line) obtained for the water height and

the water speed with β = 5 are shown in Figs. 4(a)–7(a) and 4(b)–7(b) and compared
to the exact one (solid black line). We also display the mesh refinement level l (pink
small dashed line) and the mesh refinement criterion (green medium dashed line).

As noticed before, the criterion 1 is a shock type criterion. In this example, β =
5 is not small enough to refine in the smooth region and only the shock one is
refined as displayed in Figs. 5(a) and 5(b). Concerning the criteria 0, 2, 3 and 4
(see Figs. 4, 6, 7 and 8), we clearly observe that β = 5 is not small enough and the
rarefaction wave (smooth region) is partially refined. As a consequence, it yields
to an oscillating mesh refinement criterion which impacts the overall quality of the
numerical solution (see for instance Figs. 4(a), 6(a), 7(a) and 8(a)). Therefore, as
observed in Figs. 4–8, each mesh refinement criterion exhibits a strong dependance
on β . Next, we propose to study the sensitivity of the L1 discretization error with
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Fig. 4 Numerical results for β = 5 with the criterion 0

respect to the mesh refinement threshold. In Fig. 9, we display the L1 discretization
error with respect to log(β ) for each criteria. In Figs 9(a) and 9(b), we observe
that if the mesh refinement threshold is less than some an ”optimal” threshold βopt,
the L1 discretization error stops to decrease since almost all cells are refined to



Part 1: Automatic thresholding based on a distribution function. 13

 0

 1

 2

 3

 4

 5

 6

 0  10  20  30  40  50  60  70  80
 0

 500

 1000

 1500

 2000

 2500

W
at

er
 h

ei
g
h

t

M
es

h
 r

ef
in

em
en

t 
cr

it
er

io
n

x (m)

hex(t,x)
h(t,x) on adaptive mesh with lmax =  4

Sk
n
/Sm with β = 5  and Nm = 574 

Refined zones

(a) Water height

 0

 2

 4

 6

 8

 10

 12

 14

 0  10  20  30  40  50  60  70  80
 0

 500

 1000

 1500

 2000

 2500

S
p

ee
d
 (

m
/s

)

M
es

h
 r

ef
in

em
en

t 
cr

it
er

io
n

x (m)

uex(t,x)
u(t,x) on adaptive mesh with lmax =  4

Sk
n
/Sm with β = 5  and Nm = 574

Refined zones

(b) Water speed

Fig. 5 Numerical results for β = 5 with the Criterion 1
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Fig. 6 Numerical results for β = 5 with the Criterion 2
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Fig. 7 Numerical results for β = 5 with the Criterion 3
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Fig. 8 Numerical results for β = 5 with the criterion 4

the maximum level of refinement. This ”optimal” threshold depends on the mesh
refinement criterion. For instance, in Fig. 9(b) we see that for almost all criteria, the
”optimal” threshold is of order βopt ≈ 1 while it is of order 0.01 for the criterion
1. Let us also highlight that, at least for this test case, βopt ∈ (0,1] for any mesh
refinement criteria. In Fig. 10, we represent the numerical solution for β ∈ (0,1]
with β = 1 and β = 0.01 using the criterion 2. In particular, we numerically show
that β = βopt = 1 (see Fig. 10(a)) is clearly the good choice while β = 0.01 is too
small and yields to unnecessary refinement.
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Fig. 9 Sensitivity of the mesh refinement criterion: L1 discrete error vs log10(β )

Finally, let us compute the numerical order of convergence of the L1 discretiza-
tion error at time t = 2 s as follows

Nm(β )→
∥∥wδx,β (·, t)−wex(·, t)

∥∥
1 .
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Fig. 10 An ”optimal” threshold (using the criterion 2)

The obtained results are summarized in Table 2. Despite the above remarks, it is
interesting to note that all the criteria have almost the same decay of the criterion 0.
In particular, these results will be confronted to the one obtained in Sect. 4.2, Table
3 using the automatic threshold method.

Criterion ‖h−hex‖1 vs Nm ‖u−uex‖1 vs Nm

0 1.4018 1.4035
1 1.6159 1.5971
2 1.5302 1.5698
3 1.4902 1.4689
4 1.5277 1.5596

Table 2 Convergence rate of the L1 discretization error

As a conclusion, if the threshold is set

• too ”large”, the smooth region are not refined (see for instance Fig. 5(a)),
• not ”small enough” yields to an oscillating mesh refinement criterion impacting

the overall quality of the numerical solution (see for instance Fig. 8(b)),
• too small yields to unnecessary refinement without improving the overall quality

of the numerical solution (see for instance Fig. 10(b)),
• to βopt yields to satisfactory results (see for instance Fig. 10(a)).

Moreover, all these assessments indicate that the mean value Sm of a mesh refine-
ment criterion S may be relevant if the ”optimal” threshold is well-defined. More
precisely, for all criteria, comparing the local mesh refinement Sn

k to βoptSm seems
to be relevant if βopt is automatically (see Remark 1) well-chosen in the interval
(0,1]. In what follows, we focus on how to define a relevant coefficient βopt.
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4 Mesh refinement threshold

In view of the previous discussion, it is clear that the mesh refinement threshold
parameter cannot be set as a fixed constant. To this end, we first review existing
thresholding strategies and secondly, we propose a new one based on the analytical
distribution function which provides a detailed description of the mesh refinement
criterion in terms of local maxima. It allows to define a priori a relevant βopt thresh-
old.

In the sequel, following the context, we make use of the notation α for a dimen-
sional threshold and β for a dimensionless threshold as done before. In the most of
the case, one can write α = βSm and the adaptive procedure is then, for each cell
Ck,

• if Sn
k > α = βSm, the mesh is refined, and

• if Sn
k < α = βSm the mesh is coarsened.

4.1 Review of some thresholding methods

As seen before, the mesh refinement threshold is certainly the most important pa-
rameter in the adaptive process. In order to construct a new method, we first propose
to revisit some classical methods.

4.1.1 Ideal case.

The perfect situation is when the local discretization error is known. In that case, if
the scheme is stable then there is no a priori reason to propagate heterogeneous error
and all local maxima detected have approximately the same order of error in terms
of magnitude, see for instance [2]. As a consequence, the involved mean error Sm (2)
is representative of the discretization error and it can be used as a mesh refinement
threshold parameter α = 1×Sm. Unfortunately, as pointed out before, in most real
life models, such a priori error estimates are unavailable (or hard to compute) and
the adaptive process requires a tunable coefficient.

4.1.2 In practice.

Let us consider a mesh refinement criterion S and let us assume that there exists a
function f : x ∈ R 7→ R+ such that

S(x, t) = f (ε(x, t))

where ε(x, t) stands for the local error at point x and time t. As in the ideal situation,
one can calculate the mean of the mesh refinement criterion Sm. However, in a gen-
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eral case nothing ensures that this average will be representative of the mean error
as numerically illustrated in Sects. 3.2 and 3.3. As described above, if the mesh re-
finement criterion S is a function of the error, see for example [20], then the mesh is
refined if S(x, t)> Sm(t) or coarsened otherwise. Therefore, if f is a linear function
then the efficiency index is equal to a constant.

In practice, the function f is more complex than a linear function as observed
in Sect. 3.2 and Fig. 3(b) for instance. These functions deforms the local error and
the local magnitude of the error is no longer representative. As a consequence, the
mean of the mesh refinement criterion is no longer representative of the global sig-
nal. Moreover, these functions are sensitive to any non linear transformation. For
instance, the numerical density of entropy production is a well-known ”shock crite-
rion type” (see [40]) which exploses where the physical discontinuity appears. This
type of mesh refinement criterion involving a large variety of scales is therefore
complex to analyse by the only knowledge of its average.

To overcome this difficulty, several strategies can be found in the literature. We
propose to review a list of the most popular methods.

Mean method.

It is the simplest and cheapest method. The cells are refined if, for all t > 0,

S(x, t)> β
1
|Ω |

∫
Ω

S(x, t) dx

where β is a tunable dimensionless threshold parameter. This strategy have been
used in Sect. 3.3. A second method to take into account the fluctuations of the mesh
refinement criterion is: the cells are refined if, for all t > 0,

S(x, t)> β
1
|Ω |

∫
Ω

S(x, t) dx+δσ(x, t)

where σ is the standard deviation and δ ∈ R.
These methods are largely used due to their simplicities, see for instance [21,

40, 20, 31, 12, 17, 3] and the reference therein. A well chosen parameter couple
(β ,δ ) yield to an efficient adaptive mesh refinement. However, (β ,δ ) are case-
dependent, especially if the mesh refinement criterion is sensitive to multiple scales
solutions (including smooth and discontinuous solutions). The main drawback of
this approach is to calibrate the parameter for each test under consideration. How-
ever, one can fix the choice of the parameter if the typical behavior of the mesh
refinement is well-known for any solutions. For instance, one can transform the
mesh refinement criterion by applying a non-linear transformation, see for instance
[40], as follows

Snew(x, t) =
(

ll(x)
lg(x)

)γ

Sold(x, t)
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where γ is a constant depending on the numerical scheme, (ll , lg) ∈ R2
+ are respec-

tively a local and a global physical length of the test problem.

Controlled mesh size growth method.

Unlike the mean method, the main objective of this method is to control the mesh
size growth. This approach have been used for example in [7, 35, 34]. After solving
the equations on a given grid, the mesh refinement criterion is calculated for all
cells. Then all values are sorted in a decreasing order in terms of local maxima
and a fraction β of the total number of cells is chosen to be refined. Thereafter, as
a safety margin, the neighborhood cells are also selected to be refined and closest
neighborhoods as well. At the end, the new grid is composed of more than cells
announced due to the safety margin (which increases the support of the local refined
region). However, this method has two drawbacks. The first one concerns the sorting
algorithm which increases the global computational cost and the second one is the
threshold parameter β which again depends on the underlying test case.

Filtering: two steps method.

In contrast with the ”shock capturing method”, the method of ”filtering” is based on
a smooth flow detection, see for instance [40, 1]. As a first step, the mean method
is applied to identify strong nonlinearities. If the mesh refinement criterion is het-
erogeneous, then almost all of the cells with large local maxima are detected. Con-
sidering a threshold parameter β , cells for smooth flows are almost contained in
[0,β maxx S]. As a second step, the mean method is again applied to the remain-
ing field (ie. without the previous high values) to detect smoother cells. However,
in view of the discussion on the mean method, one can notice that in the case of
very heterogeneous mesh refinement criterion, a two step mean method may be not
enough to efficiently capture smooth solutions. The second drawback concerns the
parameter β which is again dependent of the test problem.

Filtering: wavelet method.

In contrast with the previous method, the detection of smooth and discontinuous
flows can be efficiently captured with a space-time localisation based on a wavelet
transform, see for instance [23]. A nice feature of wavelets are the detection of dis-
continuities and high transitions along with the resulting absolute values of wavelet
coefficients are large. The localisation of such a region is generally well-captured
for small scales 1 as displayed in Fig. 11(b) for a given signal

1 the wavelet coefficients in this example are computed with the Daubechies wavelet with four
vanishing moments [10, 11]
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x ∈ [0,1], S(x) = exp(−1000(x−0.7)2)+3exp(−5000(x−0.2)2)

+

{
100 if x ∈ [0.4,0.401]
0.3r0,1(x) if x ∈ [0.401,0.43]

where x 7→ r0,1(x) ∈ [0,1] returns a random number, see Fig. 11(a). High variations
of the signal yield to large absolute value of wavelet coefficients centered around the
discontinuity at all scales. Depending on the wavelet’s support, the larger the scale
is, the larger the set of coefficients affected in the wavelet transform is. It defines the
so-called ”cone of influence”. As a consequence, the discontinuity have the smallest
scale. On the contrary, smooth signal produces relatively large wavelet coefficients
at large scales and again the definition of the cone of influence holds. The interpre-
tation of the absolute value of wavelet coefficients as a mesh refinement criterion
is based on the cone of influence and its support. For instance, in the example il-
lustrated in Fig. 11, for a given scale (which corresponds to a threshold parameter
β ), say y = 100, the intersection with the cone of influence provides three intervals
located around the point x = 0.2, x = 0.4 and x = 0.7 which are the regions to be
refined. However, as for the method described before, we are still confronted with
the choice of a threshold parameter. Moreover, even if this method is based on fast
wavelet transform, it increases the global cost of the numerical method.
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Fig. 11 Illustration of the wavelet transformation for a given mesh refinement criterion computed
with the Daubechies wavelet with four vanishing moments (warm colors correspond to large coef-
ficients and cold colors to small coefficients)

Local maxima approach.

As in the detection methods, one can also focus on the search of local maxima but
without sorting cells. It can be achieved if the mesh refinement criterion is well
chosen such that it only deforms the error scale but it conserves the sign of the local
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error. In this case, one can write, for all t > 0

∂S(x, t)
∂x

=
d
dx

f (x)
∂ε(x, t)

∂x
.

However, as a first drawback, the local maxima of the error are not necessarily those
of the mesh refinement criterion. Once a local maximum is detected, the surrounding
area to be refined should be large enough. It can be defined by seeking the closest in-
flexions points to the local maximum or by the interval [x−β0 maxx S,x+β0 maxx S]
where β0 is some parameter depending on the local maximum. As a second draw-
back, such a method can be quite costly in a multidimensional settings. Moreover,
the parameter β0 must be calibrated for each practical applications.

In Fig. 12, we illustrate the method for a given mesh refinement criterion. The
intervals to refine around each local maxima are defined by the use of the closest
inflexion points (see Fig. 12(b)). In particular, one can see the ability of the local
maxima method to catch smooth flow region, poorly detected by the mean method
(see Fig. 12(a)).
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Fig. 12 Illustration of the local maxima method for a mesh refinement criterion involving multiple
scales

Dannenhoffer cumulative distribution method.

The methodology proposed by Dannenhoffer [9] is simple and efficient to ”automat-
ically” set the threshold parameter. Let us consider a given discrete mesh refinement
criterion S(x, tn) = ∑

N
k=1 Sn

k1Ck(x) where N is the total number of cells at time tn. Let
(α j)06 j6M be an increasing sequence of M+1 threshold parameter such that α0 = 0
and αM = maxx S(x, tn). Then, the cumulative distribution function d j = d(α j) is de-
fined as follows:

d j = #{k ; Sn
k > α j} (7)
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where # is the number of elements in the set {Sn
k > α j}. For a given oscillating mesh

refinement criterion illustrated in Fig. 13(a), we display the cumulative Dannenhof-
fer distribution function in Fig. 13(b).

Then, one can define several possible threshold denoted from A to D (see Figs.
13(a) and 13(b)). The level D corresponds to the zone for which the mesh refinement
criterion oscillates (called background noise in [9]) as already observed in Fig. 5(a).
The level A is too high and almost all information are ignored for smooth flows
(mainly located close to the oscillating area).

Remark 2. The oscillating area is in general the consequence of a bad initial thresh-
old as already pointed out in Sect. 3.3 (see also Fig. 8(a) for instance).

Dannenhoffer suggests to set a threshold between B and C at the ”knee” of the
cumulative distribution which separates disparate behaviors. As a consequence, if
the location of the ”knee” can be determined, then an automatic threshold can be
defined. However, it is mentioned in [9] that the ”knee” cannot be well-localized and
for general purpose Dannenhoffer defines the ”knee” localisation as the smallest α

such that
∂d(α)

∂α
≈−1 .

Moreover, to compute accurately the above approximation, a fine interpolation (or
a large number of cells Ck) is required to define the ”cumulative” distribution func-
tion as we will see later on. Otherwise, and as noticed in [9], the above method
sometimes yields to an unacceptable threshold which detects too many unnecessary
cells to be refined. Therefore, in practice, the slope ”−1” is arbitrary and must be
calibrated following the problem under consideration.

Let us also mention, based on this cumulative distribution function, Powell [30]
proposes to automatically set the threshold as the lowest value of the threshold pa-
rameter that produces a local maximum in the curvature of the distribution. Let us
note that both approach have been introduced in the context of steady problems.
This approach based on the distribution function is an interesting method that we
will improve in the next section.

4.2 A distribution function for automatic thresholding

In the previous section, we have revisited some of the main procedure to define the
mesh refinement threshold. All the presented method can be efficient if it is com-
bined with a mesh refinement criterion based on accurate error estimates. However,
as emphasized before, such error estimates are difficult to construct, and whenever
it is available it is not easy to compute and can be quite costly for multidimensional
problems. Therefore, widely used mesh refinement criteria are based on the flow
gradient which are easy-to-compute but require a tunable threshold parameter to be
calibrated following the physical problem under consideration.
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Fig. 13 Dannenhoffer cumulative distribution function for a given mesh refinement criterion

We propose here to construct a simple method, based on the Dannenhoffer distri-
bution function [9], to choose easily a suitable ”optimal” mesh refinement threshold
parameter for any given mesh refinement criterion.

For the sake of simplicity and readability, we present our new distribution func-
tion in the one-dimensional case. Let us assume that the solution of System (1)
is smooth and let us consider a smooth (at least twice differentiable) mesh re-
finement criterion S(w) = S(x, t) ∈ R+, x ∈ [0,L] and t > 0 where L is the length
of the domain. The time t being fixed, we write in the sequel S = S(x). With-
out loss of generality, we suppose that S(0) = S(L) = S′(0) = S′(L) = 0 and
0 < S∞ = maxx∈(0,L) S(x)< ∞ (if S∞ ≡ 0 the numerical solution is identically equal
to zero).

In view of the above assumptions, the set

Zα = {x ∈ (0,L); ϕα(x) = S(x)−α = 0 and S′(x) 6= 0}

is not empty. For each 0 < α < S∞, since S has at least one maximum, then there
exists pα ∈ N∗ such that the number of elements in the set Zα is

#Zα = 2pα .

Thus, for all α ∈ (0,S∞), one can describe the set Zα as follows

Zα = {x0(α)< x1(α)< · · ·< x2pα−2(α)< x2pα−1(α)} .

Let us assume that S has p local maxima. Then there exists an increasing sequence(
α∗k
)

16k6p and a sequence
(
x∗k
)

16k6p such that

∀k = 1, . . . , p S′(x∗k) = 0, S′′(x∗k)< 0 and S(x∗k) = α
∗
k .
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By definition the sequence
(
α∗k
)

16k6p sorts the local maxima from the smallest to
the largest so that α∗p = S∞. Let us also emphasize that the abscissa of the local
maxima x∗k /∈ Zα , ∀k = 1, . . . , p, ∀α ∈ (0,S∞).

With these settings, the considered distribution function reads

α ∈ [0,S∞] 7→ d(α) :=

L if α = 0 ,

∑
pα

k=1 x2k+1(α)− x2k(α) if 0 < α < S∞ ,
0 if α = S∞ .

(8)

Remark 3. This distribution function is also called the decreasing rearrangement
function of S which is widely used in optimal transport problems. For α ∈ [0,S∞],
d(α) is the Lebesgue measure of the set {S(x)> α}.

Then, one has:

Theorem 1. Let l ∈ N∗, S ∈ Cl([0,L],R+) be a smooth mesh refinement criterion
such that S(0) = S(L) = S′(0) = S′(L) = 0, 0 < S∞ = maxx∈(0,L) S(x) < ∞ with p
local maxima.

Then

1.
∫ S∞

0 d(α)dα =
∫ L

0 S(x) dx.
2. d ∈C0([0,S∞],R+) and its first derivative satisfies

a. ∀α ∈ [0,S∞], d′(α)< 0
b. ∀k ∈ J0, pK, limα→α∗k

d′(α) =−∞ with the convention α∗0 := 0

3. d ∈Cl (D∗,R+) on the set

D∗ :=
p−1⋃
k=0

(α∗k ,α
∗
k+1) .

Proof. By construction of the distribution function (8), the first and the second prop-
erty holds. Let us now calculate its derivative. To this end, for α ∈ [0,S∞], its first
derivative is

d′(α) =
pα

∑
k=1

d
dα

x2k+1(α)− d
dα

x2k(α) .

Since ∀k ∈ J0, pαK, x2k(α) ∈ Zα , i.e., ϕα(x2k(α)) = S(x2k(α))−α = 0, we get

d
dα

x2k(α) =
1

S′(x2k(α))
.

Since S′(x2k(α)) > 0 and S′(x2k+1(α)) < 0 by construction, we therefore deduce
that

d′(α) =
pα

∑
k=1

S′(x2k(α))−S′(x2k+1(α))

S′(x2k+1(α))S′(x2k(α))
< 0 .

The remaining properties are obtained as a straightforward consequence of the
above inequality. ut
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In the sequel, for practical purpose, the distribution function (8) is normalized so
that d(α) corresponds to a percentage of the domain [0,L], i.e., d([0,S∞])⊂ [0,1].

To illustrate the notations introduced above, we have displayed in Fig. 14, for a
given mesh refinement criterion S (see Fig. 14(a)), the corresponding distribution
function (8) (see Fig. 14(b)), its first (see Fig. 14(c)) and its second derivative (see
Fig. 14(d)). In this example, we have considered a function S which has three local
maxima, i.e. p=3. In Fig. 14(b), the points for which the distribution function has
vertical asymptote are

α
∗
1 = S(x∗1 = 5) = 5, α

∗
2 = S(x∗2 = 2.5) = 10 and α

∗
3 = S(x∗1 = 7.5) = 20 = S∞ .

and corresponds to the local maxima of S sorted from the smallest to the largest.
In Fig. 14(a), for α = 2, the set Zα is composed of 6 = 2pα elements which are
approximately

x0(α)≈ 2.0957, x1(α)≈ 2.9043, x2(α)≈ 4.566,

x3(α)≈ 5.434, x4(α)≈ 7.3921 and x5(α)≈ 7.6079 .

The normalized distribution function at α = 2 is then computed as follows

d(α) =
(x1(α)− x0(α))+(x3(α)− x2(α))+(x5(α)− x3(α))

L
.

Remark 4 (General properties of the distribution function (8)).

1. The distribution function (8) is the continuous version of the Dannenhoffer cu-
mulative distribution function (7). Indeed, in view of the definition of the distri-
bution function (8), for a given interval lα = x2k+1(α)− x2k(α)> 0, there exists
mα cells Ck of meshsize δx such that lα ≈mα δx, therefore at the discrete level it
is then equivalent to consider the sum of the length lα or the number of cells Ck
for which dk := d(αk)> α with αk = k L

M for some M > 0.
2. Introducing the function β 7→ d̃(β ) = d(1−β ) = d(α) extended by 0 for x < 0

and 1 for x > 1. Its derivative verifies d̃′(β ) = −d(α) > 0 but
∫
R d̃′(β )dβ 6= 1.

Therefore, the distribution function d (8), as well as (7), is not a cumulative
distribution function in the sense of the probability theory.

3. From a theoretical viewpoint, the method proposed by Dannenhoffer [9] selects
more cells than the Powell method [30]. Let us recall that Dannenhoffer [9] se-
lects the smallest α , αD, such that d′(α) = −1 while Powell [30] chooses the
smallest α , αP, such that d”(α) = 0. Therefore, in view of the variations of d”
(see Fig. 14(d)), one has

min{α; d′(α) =−1 and d′′(α) = 0}= min{α; d′(α) =−1}

and therefore
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Fig. 14 The normalized distribution function, its first and second derivative for a smooth mesh
refinement criterion S(x) = Lexp(−10(x− L/4)2)+ L/2exp(−5(x− L/2)2)+ 2Lexp(−200(x−
3L/4)2) with L = 10

α D < α P .

Remark 5 (Link with other threshold methods). The distribution function (8) can
be regarded as a general method including almost all the methods presented in the
previous section.

• As already noticed in Remark 4, the distribution function (8) corresponds to the
continuous version of the Dannenhoffer distribution function [9].

• The main idea of filtering and local maxima are based on the localization of
the smallest and the largest maximal value. By construction of the distribution
function (8), these values are well known and are respectively α∗1 and α∗p if S has
p local maxima.

In view of Theorem 1, Remarks 4 and 5, the distribution function (8) provides a
complete description of the mesh refinement criterion S. Therefore, if the mesh re-
finement criterion is constructed through an accurate error estimates, the distribution
function (8) will provide an accurate description of the local error, otherwise it will
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helps to localize the smallest and the largest local maxima. The main and crucial
question is how to automatically set the threshold parameter using the distribution
function (8) when the mesh refinement criterion is not a priori well-linked to the
local error? Setting α as Dannenhoffer [9] or Powell [30] proposes? Is there an op-
timal choice? The answer is of course no, there is no reason to have an optimal
threshold parameter except if the mesh refinement criterion is itself the local error.
However, one can define, at least, without any effort the localization of the smooth
region, i.e., the region in general for which the refinement is necessary and often
ignored if the threshold parameter is not small enough.

4.2.1 Strategy of the automatic thresholding: some remarks and
improvements of the Dannenhoffer approach

According to Remark 4, the distribution function (8) is computed as the Dannen-
hoffer distribution function (7). Furthermore, in view of the conclusion in Sect. 3.3
(see also Figs. 9(a) and 9(b)), we will restrict the search of the ”optimal” threshold
parameter in the interval (0,Sm] where Sm is the mean value of S (see Eq. (2)).

Thus, in practice, for a given discrete mesh refinement criterion S(x, tn) =

∑
N
k=1 Sn

k1Ck(x) where N is the total number of cells at time tn, we define an increasing
sequence (α j)06 j6M of M +1 threshold parameter such that α0 = 0 and αM = Sm.
In the presence of discontinuities (large maxima) in the solution, the smooth region
is in general localized for small value of α . Therefore, we suggest in practice the
following non uniform mesh

(α j)06 j6M =

(
Sm

(
j

M

)β
)

06 j6M

with β > 1.
Then, following Dannenhoffer [9], the piecewise constant distribution function

d j = d(α j) can be defined as follows:

d(α) =
M−1

∑
k=0

d j1(α j ,α j+1)(α) with d j = #{k ; Sn
k > α j} (9)

where # is the number of elements in the set {Sn
k > α j}.

Let us notice that, by construction, Distribution (9) is a piecewise constant func-
tion. Thus, the yielding first order derivative can degenerate since d j and dk are not
necessarily distinct producing unwanted zero value in the derivative and therefore a
bad approximation. Therefore, in Algo. 1, we propose to filter the discrete derivative
d′j =

d j−d j−1
α j−α j−1

.

As displayed in Fig. 15, at least for small value of α , the analytical derivative is
”correctly” approximated on a non uniform grid with the filtrated derivative (see Fig.
15(b) and Fig. 14(c)) and badly approximated otherwise. This region is precisely the
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Algorithm 1 filtered derivative
l = 0
for j = 1,M do

if d′j 6= 0 then
α ′l = α j
d′l = d j
l = l +1

end if
end for

part of the domain in which the Dannenhoffer threshold parameter will be chosen as
the smallest α j such that d′(α)≈−1. To use the Dannenhoffer threshold parameter,
the derivative must be computed accurately otherwise one can observe in practice
too many level of unnecessary refinement. Indeed, in this example, the Dannenhof-
fer threshold parameter is computed and we have obtained αD = 0.06 if β = 1, 0.20
if β = 2 and 0.37 if β = 4 with M = 1000. This computation also shows that the
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Fig. 15 Distribution function and its first derivative of the mesh refinement criterion S(x) =
Lexp(−10(x−L/4)2)+L/2exp(−5(x−L/2)2)+2Lexp(−200(x−3L/4)2) with L = 10 obtained
with a uniform grid of 500 cells for x and 1000 cells uniform and non uniform with β = 4

approximation of the derivative has a strong dependence on β . Here and in the most
of applications considered, we have observed that at least M = 10000 points are
required to suppress the strong dependency (which increase the global cost of the
numerical scheme). Due to these several remarks, the approach by Powell (based on
the computation of the second derivative) will be not any more considered.
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4.2.2 Strategy of the automatic thresholding based on the distribution
function

On the contrary, let us emphasize that by construction, the distribution function (9) is
quite insensitive to β (see Fig. 15(a)). However, using only the distribution function
(9), it is numerically difficult to catch the smallest local maxima of S. Therefore, we
propose the following function

f (α) = αd(α) (10)

for which one has the following properties:

Corollary 1. Assume that S is twice differentiable and has p local maxima. Then,
by virtue of Theorem 1, there exists

∀k = 0 . . . p−1, α
∗∗
k+1 ∈ (α∗k ,α

∗
k+1) such that d′′(α∗∗k+1) = 0

and the function f (10) has p local maxima α1, . . . ,α p such that

∀k = 1 . . . p, αk ∈ (α∗∗k ,α∗k ) .

Proof. The function f inherits the same regularity property of d as given in Theorem
1. Therefore if S is twice differentiable, then it is sufficient to show that on each
interval (α∗k ,α

∗
k+1), the function f is concave. The proof is similar for all k. Let

us show the result for k = 1. For all α ∈ (α∗∗1 ,α∗1 ) since d′′(α) < 0 and f ′′(α) =
αd′′(α)+2d′(α) < 0, we deduce that f is a strictly concave f . As a consequence,
there exists α1 ∈ (α∗∗1 ,α∗1 ) which maximizes f . ut

For each k, since αk ∈ (α∗∗k ,α∗k ), the local maximum αk of the function f does not
coincide with the local maximum α∗k of S. By construction, setting the threshold
parameter α = α1 yields to

αD < αP < α1 .

At the numerical level, since d is a piecewise constant function, f is a linear piece-
wise one (with a ”sawtooth” profile as displayed in Fig. 18(b)) which makes difficult
to catch the first local maximum. Nevertheless, keeping in mind that the mean value
of S can be, in some situation, a relevant threshold (see Sect. 3.3), it is easy to com-
pute the global maximum value of f in the interval (0,Sm]. Therefore, we propose
the following thresholding method

αPE such that f (αPE) = max
0<α6Sm

f (α) . (11)

With the above selection method, the threshold αPE is not necessarily the closest
point to the smallest local maximum of S. This method is motivated by the following
remarks.

• First, in the presence of discontinuous solutions (as displayed in Fig. 16(b)), the
distribution d sharply decreases so that the smallest local maxima are in general
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lower than the mean value Sm. As a consequence, the use of the mean value
Sm is not relevant and by construction the threshold selected is αPE such that
f (αPE) = max0<α<Sm f (α) as illustrated in Fig. 16(a).

• Second, in the case of smooth flow, the mean value is in general a relevant mesh
refinement threshold as displayed in Fig. 17(a) and 17(b).

• Third, in some cases, especially in a multi-dimensional problems, a small wave
can be reflected in every directions and therefore the domain can be unnecessarily
everywhere refined if we focus on the smallest local maximum.

Moreover in view of the above remarks, this method is less sensitive with respect to
β (see Figs. 18(b), 18(c) and 18(d)), less expensive and yields to less refined cells
than the Dannenhoffer or the Powell approach.
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Fig. 16 The function f for the mesh refinement criterion S(x) = 200exp(−1000(x− 1.25)2) +
1.25exp(−5(x−3.75)2) representing a shock type solution

In practice, according to the finite volume approximation defined in Sect. 2, a
mesh refinement criterion Sn

k is computed on each cell at time tn and compared to
the computed mesh refinement threshold

αPE such that f (αPE) = max
0< j6M+1

f (α j) .

As a consequence, for each cell Ck:

• if Sn
k > αPE, the mesh is refined and split,

• if Sn
k < αPE the mesh is coarsened.

4.2.3 Numerical application using αPE as an automatic mesh refinement
threshold.

To illustrate the robustness of our method, we consider again the test problem de-
scribed in Sect. 3.1, .i.e., the Riemann problem for Eqs. (4) with the Riemann data
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Fig. 17 The function f for the mesh refinement criterion S(x) = 2exp(−10(x − 1.25)2) +
1.25exp(−5(x−3.75)2) representing a smooth flow

α

0 5 10 15 20

f
(α

)

0

0.1

0.2

0.3

0.4

0.5

(a) f (α)

α

0 5 10 15 20

f
(α

)

0

0.1

0.2

0.3

0.4

(b) Numerical approximation of f with β = 1

α

0 5 10 15 20

f
(α

)

0

0.1

0.2

0.3

0.4

(c) Numerical approximation of f with β = 2
α

0 5 10 15 20

f
(α

)

0

0.1

0.2

0.3

0.4

(d) Numerical approximation of f with β = 10

Fig. 18 The modified distribution function and its numerical approximation for the mesh refine-
ment criterion S(x) = Lexp(−10(x−L/4)2)+L/2exp(−5(x−L/2)2)+2Lexp(−200(x−3L/4)2)
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(6). As done before, each numerical experiment start initially with 500 mesh points.
The objective is to show that, for any given mesh refinement criterion, the threshold
is adapted automatically to refine in the area of interests. For this purpose, we con-
sider the criterion 0–3 and we omit the criterion 4 since it provide almost the same
results of the criterion 3. For each numerical experiment, we have considered β = 2
and M = 1000 to calculate the threshold parameter (11).

In Fig. 19, we display the water height at time t = 2 s for the selected mesh
refinement criterion. In comparison with the numerical results obtained in Sect. 3.3,
the threshold parameter (11), see Fig. 22, is now automatically calibrated at each
time step depending on the distribution function (8), see Fig. 20. More precisely,
independently of the mesh refinement criterion, all the area of interests (i.e., the
rarefaction and the shock wave) are well-refined yielding to almost the same order
of accuracy as displayed in Figs. 19(a), 19(b), 19(c) and 19(d). This test shows
that even if the mesh refinement criterion is not a relevant a priori error estimate,
adjusting the threshold parameter in a ”good manner” lead to almost the same results
obtained with the exact local error as a mesh refinement criterion (see Figs. 19(a)
and Remark 1).
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Fig. 19 Numerical results for the water height at time t = 2 s
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The mesh refinement criteria being of several type, theirs behaviors are different.
As a consequence, the shape of the distribution functions are also not similar as dis-
played in Fig. 20. Therefore, the functions f are also almost different as observed
in Fig. 21. In particular, it explains the differences observed in the evolution in time
of the threshold, see Fig. 22. It is automatically adapted according to the mesh re-
finement criterion used. As pointed out in the conclusion of Sect. 3.3, the computed
threshold for each criteria is now sufficient to yield satisfactory (non oscillating)
results. Even for the criterion 1 which is of shock type, the smooth region are very
well-refined. This is a nice feature and a good example to assert that the present
thresholding method is efficient. Indeed, for the criterion 1, the more the mesh is
refined, the more the numerical density is well-computed, the larger is the global
maximum (corresponding to the shock) and the less the mean value is relevant. This
is why after the time t > 0.5, the selected threshold is not the mean value Sm but
αPE, see Fig. 21(b). For the criterion 2 and 3, the threshold parameter is almost
of the same order of the mean value. It means that for this criterion, except few
times (see Figs. 22(c) and 22(d)), the mean value as a mesh refinement threshold is
relevant.
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Fig. 20 Distribution function at time t = 2 s

To conclude, let us now present the new rate of convergence (to compare with
those summarized in Table 2). As done in Sect. 3.3, the numerical order of conver-
gence is computed with respect to the mean number of mesh points. The obtained
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results are summarized in Table 3. The obtained rates are now better than the pre-
vious one, passing almost from an order 1.5 to 2. This confirms that a well-chosen
automatic mesh refinement threshold can yield to accurate results even if the chosen
criterion is not well-linked to the local discretization error.

Criterion ‖h−hex‖1 vs Nm ‖u−uex‖1 vs Nm

0 2.0477 2.1261
1 2.0363 2.0912
2 2.1175 2.1864
3 2.1067 2.1746
4 2.1070 2.1751

Table 3 Convergence rate of the L1 discretization error.

5 Conclusion

In this paper, we have carried out a complete numerical study of some mesh refine-
ment criteria for hyperbolic equations solved on adaptive grid. We have emphasized
that despite of the lack of accurate error estimate for non trivial hyperbolic sys-
tem, any ”reasonable” mesh refinement criterion may lead to accurate results if the
threshold parameter is well-chosen. This mainly holds because the support of the
local error are almost the same. Unfortunately, in the most of the applications, this
parameter has to be calibrated. Thus, we have performed a numerical study of the
behavior of some criteria with respect to the number of mesh points and its sen-
sitivity with respect to the mesh refinement threshold parameter. In particular, we
have pointed out that a such parameter should be time-dependent and ideally cho-
sen to balance the accuracy and the computational cost by avoiding unnecessary
refinement and oscillating solutions.

In order to propose an efficient method to select automatically the threshold pa-
rameter, independently of the mesh refinement criterion, we have first proposed a re-
view of some popular thresholding methods including the mean method. It is widely
used but it can fails to detect smooth region while the filtering approach is less sub-
ject to this phenomenon but still requires a parameter to calibrate. The control of
the mesh size growth approach may be efficient but the mesh growing parameter
must be calibrated. The local maxima method can be an alternative if high order
schemes are used but it has also the drawback to tune a threshold parameter. Finally,
the last method reviewed is based on the cumulative distribution function. It is the
most relevant method in the detection of smooth as well as discontinuous flows.
However, all the methods found in the literature are based on the numerical approx-
imation of first or second order derivative of this function which can be quite costly
and overall it depends on a tunable parameter. This distribution function was intro-
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duced by Dannenhoffer [9]. Based on the decreasing rearrangement function of the
mesh refinement criterion, we have proposed a new parameterless easy to compute
method. It corresponds to the continuous version of the Dannenhoffer [9] distribu-
tion function for which we have obtained several theoretical results. The proposed
method is only based on the distribution function and allows to set automatically,
independently of the mesh refinement criterion type and without any parameter, the
threshold yielding to a well-refined solution. We have shown its robustness through
a one dimensional test case. We propose as the second part of this paper [29] to show
its efficiency for a large variety of real life test problems such as the propagation of
tsunamis.

Finally, the obtained results are independent of the solved equations and the nu-
merical scheme. Therefore, it can be easily used in the context of other numerical
methods.
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Appendix: Flux consistency error

For the sake of simplicity, let us consider the one dimensional homogeneous Saint-
Venant system (1) for x ∈ R, t > 0

∂tw+∂xf(w) = 0 (12)

where the unknown state w and the flux are

w(x, t) =
(

h
hu

)
, f(w) =

(
hu

hu2 + g
2 h2

)
.

Its first order finite volume discretization reads

wn+1
k = wn

k−
δ tn
δx

(
fn
i+1/2− fn

i−1/2

)
(13)

where wn
k and fn

i+1/2 are defined by

wn
k ≈

1
δx

∫
Ck

w(x, tn) dx, fn
i+1/2 ≈

1
δ tn

∫ tn+1

tn
f(w(xk+1/2, t)) dt .

One can construct a mesh refinement criterion as an a posteriori error estimates
by computing the consistency (truncation) error in the sense of finite difference
scheme. Unlike this approach which yields to second order derivatives (i.e. heavy to
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compute numerically), we propose to write the flux consistency error by considering
the consistency error at the interface.

Indeed, let us assume that w is a smooth solution of Eqs. (12) and suppose that
for all k,

wn
k =

1
δx

∫
Ck

w(x, tn) dx .

Then integrating the system of conservation laws (12) satisfied by w(x, t) with re-
spect to x and t over Ck× (tn, tn+1) and dividing the results by δx, we obtain:

1
δx

∫
Ck

w(x, tn+1) dx =
1

δx

∫
Ck

w(x, tn) dx− δ tn
δx

(
F n

i+1/2−F n
i−1/2

)
(14)

where F i+1/2 stands for the exact flux. Therefore, subtracting (13) to (14), we get

wn+1
k =

1
δx

∫
Ck

w(x, tn+1) dx− δ tn
δx

(
ε

n
k+1/2− ε

n
k−1/2

)
(15)

where
εi+1/2 = F i+1/2−FFF i+1/2 .

Equation (15) is nothing else than the definition of the consistency of system of con-
servation in the finite volume sense. Indeed, we say that Scheme (13) is consistent
with System (12), if for all k

εk+1/2→ 0 as δ tn and δx go to 0 .

The Taylor expansion of w in the neighborhood of (xk+1/2, tn), through the above
term, measures the local flux errors. Therefore, if we consider the Godunov solver,
i.e., fn

i+1/2 = f(w∗k+1/2(tn)) (where w∗k+1/2(tn) = w∗(0;wn
k ,w

n+1
k ) is the exact solu-

tion of the local Riemann problem with the Riemann data (wn
k ,w

n
k+1)) one can write

the flux error as follows:

εk+1/2 =
1

δ tn

∫ tn+1

tn
f(w(xk+1/2, t))− f(w(xk+1/2, tn)) dt︸ ︷︷ ︸

T1

+
1

δ tn

∫ tn+1

tn
f(w(xk+1/2, tn))− f(w∗k+1/2(tn)) dt︸ ︷︷ ︸

T2

.

Computation of T1:

Let us define
G(s) =

∫ s

tn
f(w(xk+1/2,s)) ds .



Part 1: Automatic thresholding based on a distribution function. 37

Then,

G(tn+1) = G(tn)+G′(tn)δ tn +G′′(tn)
δ t2

n
2 +O(δ t3

n )

= F(w(xk+1/2, tn))δ tn +∂tF(w(xk+1/2, tn))
δ t2

n
2 +O(δ t3

n )

and therefore we get

T1 = ∂tF(w(xk+1/2, tn))
δ tn
2 +O(δ t2

n )

= −A(w(xk+1/2, tn))2∂xw(xk+1/2, tn)
δ tn
2 +O(δ t2

n )
(16)

where A(w) = ∂ f(w)
∂w =

(
0 1

−u2 +g h2

2 2u

)
is the convection matrix of System (12).

Computation of T2:

Since the terms in T2 do not depend on t, one can write

T2 = f(w(xk+1/2, tn))− f(w∗k+1/2(tn)) .

and therefore, we get

T2 = A(w(xk+1/2, tn))∂xw(xk+1/2, tn)δx+O(δx2) . (17)

Consistency (flux consistency) error:

Gathering (16) and (17), we obtain

εk+1/2 = δxA(w(xk+1/2, tn))
(

Id−A(w(xk+1/2, tn))
δ tn
2δx

)
∂xw(xk+1/2, tn)δx+O(δx2)

where Id is the 2×2 identity matrix. Then, introducing the Riemann Invariant III(h,u)

of component (I1(h,u) = u+ 2
√

gh , I2(h,u) = u− 2
√

gh) and P =

(
1 1
λ1 λ2

)
the

matrix composed by the eigenvectors, λ1(h,u) = u−
√

gh < λ2(h,u) = u+
√

gh,
such that (

λ1 0
0 λ2

)
= P−1AP ,

one can write w(xk+1/2, tn) as
w = w(III) .

Therefore, we deduce, for h > 0,
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εk+1/2 = δx P

(
λ1(1−λ1

δ tn
2δx )∂xI1(xk+1/2, tn))

λ2(1−λ2
δ tn
2δx )∂xI2(xk+1/2, tn))

)
+O(δx2,δ t2

n )

= δx PVVV +O(δx2,δ t2
n ) .

Finally, noting the induced norm |‖A‖| := max‖x‖=1 ‖Ax‖, we deduce the following
consistency error estimate ∥∥εk+1/2

∥∥6 δx |‖P‖|‖V‖ (18)

where we have used ‖·‖= ‖·‖
∞

, i.e.

|‖P‖|
∞
= 2max(1, |u|) and ‖V‖

∞
= max

i=1,2

∣∣∣∣(λi

(
1−λi

δ tn
2δx

)
∂xIi(xk+1/2, tn))

)∣∣∣∣ .
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