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Abstract

In this work, a parallel finite volume scheme on unstructured meshes is applied to fluid flow for
multidimensional hyperbolic system of conservation laws. It is based on a block-based adaptive mesh
refinement strategy which allows quick meshing and easy parallelisation. As a continuation and as
an extension of a previous work, the useful numerical density of entropy production is used as mesh
refinement criterion combined with a local time stepping method to preserve the computational time.
Then, we numerically investigate its efficiency through several test cases with a confrontation with exact
solution or experimental data.

Keywords: multidimensional hyperbolic system, finite volume, adaptive mesh refinement, numerical density
of entropy production, local time stepping

1 Introduction
The numerical simulation of two-phases fluid flows in complex three-dimensional configurations remains
a challenging task constrained by two conflicting goals: the precise description of each involved physical
processes over the whole simulated domain down to the smallest spatio-temporal scales of the fluid motion
and the computational cost. In reality, a compromise is generally made according to the requirements by
the studied physical cases (for a more detailed presentation of the numerical/physical strategic issues of such
compromise in the particular case of wave impact on rigid structures, the reader can refer, for instance, to
Golay et al. [10]). Our research work focuses on a multi dimensional numerical scheme able to accurately
solve non-linear hyperbolic systems of conservation laws while preserving the computational time. This
scheme has been first presented by Ersoy et al. [6] in the one dimensional case and further extended to three
dimensions and confronted to experimental data by Golay et al. [10].

The present research work is dedicated to the study of the numerical performance of the model through
several test cases. The model framework and the related scientific issues having been detailed in recent
above-mentioned publications, we briefly recall here the overall principles of the Block-Based Adaptative
∗Thomas.Altazin@univ-tln.fr
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Mesh Refinement (BB-AMR) scheme while the main numerical features of the model are presented in the
next section. The equations system of interest is ∂w(t)

∂t
+∇ · f(t,w) = G, (t, x) ∈ R+ × Rd

w(0, x) = w0(x), x ∈ Rd.
(1)

where w, f , G stands respectively for conservative variables, flux and source.
As a well-known result, the uniqueness of the (weak) solution is lost even if the initial data are smooth.

It can recovered by completing System (1) with an entropy inequality of the form:

S =
∂s(w)

∂t
+∇ ·ψ(w) ≤ 0 , (2)

where (s, ψ) stands for a convex entropy-entropy flux pair. Even if we are not able to prove the uniqueness
in the multidimensional case, this inequality allows to select the physical relevant solution and provide a
“smoothness” indicator since the entropy satisfies a conservation equation only in regions where the solution
is smooth and an inequality when the solution develops discontinuities. Thus, the discrete quantity S can
always be considered as a measure of the amount of violation of the entropy equation (as pointed out in
[4, 14, 17, 16, 6]). As already done in [6], S, which is called the numerical density of entropy production,
can be used as a smoothness indicator providing information on the need to locally refine the mesh (e.g.
if the solution develops discontinuities) or to coarsen the mesh (e.g. if the solution is smooth and well-
approximated).

A major issue of many modelling challenges is to accurately simulate processes over very large ranges in
spatial scale inexorably leading to heavy computational time. Thus, in order to efficiently implement the
local time stepping method in a parallel framework, the approach taken here is to equip our adaptive mesh
refinement (AMR) technique with a block-based (BB-AMR) strategy. Sufficient spatio-temporal resolution
can be reached in a reasonable CPU time, which is especially useful for hyperbolic problems generally
requiring fine CPU-consuming uniform mesh. Roughly speaking, the BB-AMR technique provides an efficient
control of the shared memory leading to well-balanced computational time between cores by domain-like
decomposition. Nevertheless, data locality is critical to obtain good performance since the memory access
times are not uniform and may become expensive. Consequently, the re-meshing step has to be carefuly
managed. Taking advantage of such a block-based structure (as in domain decomposition), we can define
two different time-step: the first one is based on the CFL condition (i.e computed through the finest cells)
while the second one is defined at the level of the block. The stability of the scheme is thus respected for
any time and the re-meshing cost is minimized.

The first part of this paper (section 2) is dedicated to the summarized presentation of the multidimensional
finite volume solver on unstructured meshes with a Block-Based Adaptive Mesh Refinement technique (BB-
AMR). The second and main part of the paper (section 3) consists in an evaluation of the method performance
through a series of test cases. First, as an addendum to [6], our one dimensional solver is tested on the well-
known Woodward and Colella interacting blast-wave problem [32, 31]). Additional tests are performed
on classical two dimensional Riemann problem for polytropic Euler equations which have been extensively
studied [35, 27, 21, 20, 22]. Solutions are composed of nineteen possible geometric configurations connected
by shocks, rarefactions and contacts (see for instance [21]). The so-called configuration 17 is used here. It
consists of a solution composed by a shock, a rarefaction wave and two contact discontinuities. The final
set of numerical tests concerns the 2D and 3D simulation of two-phases flows on a dam-break problem. For
that cases, our model is based on a three-dimensional compressible low Mach two-phase flows model with a
linearized "artificial pressure" law which physical relevancy has already been demonstrated in the context of
highly dynamical and aerated flows for breaking and impacting waves by Sambe et al. [26] or Golay et al.
[10].
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2 Finite volume approximation for hyperbolic conservation laws
This section summarizes the main features of our method, including the semi-discrete finite volume numerical
approximation of a general non-linear hyperbolic equation (eq. (1)), the time integration and mesh refinement
procedure. Note that w, f , G are the conservative variables, the flux and the source term, respectively, and
d ∈ J1, 3K .

2.1 Multidimensional finite volume approximation
The computational domain Ω ⊂ Rd is split into a set of control volumes, also referred as cells, Ω = ∪kCk of
mesh size |Ck|. For the sake of simplicity the source term is here omitted.

On a given cell Ck, noting wk(t)

wk(t) ' 1

|Ck|

∫
Ck

w (t, x) dx

the approximation of the mean value of the unknown w(t, x) on Ck at time t, and integrating (1) over each
cell, we obtain: ∫

Ck

∂w(t)

∂t
+
∑
a

∫
∂Ck/a

f(t,w) · nk/a = 0 (3)

where nk/a denotes the unit normal vector on the boundary ∂Ck/a between cells k and a.
Next, F

(
wk(t),wa(t),nk/a

)
the flux approximation being written

F
(
wk(t),wa(t),nk/a

)
≈ 1

|∂Ck/a|

∫
∂Ck/a

f(t,w) · nk/ads ,

the semi-discrete finite volume approximation of eqs. (1) (see for instance [9, 29, 7]) are obtained:

∂wk(t)

∂t
+

1

|Ck|
∑
a

|∂Ck/a|F
(
wk(t),wa(t),nk/a

)
= 0 (4)

where F
(
wk(t),wa(t),nk/a

)
is defined via the Godunov solver, i.e. it is computed with the exact solution

of the 1D Riemann problem at the interface k/a with the states wk(t) and wa(t) (for further details see, for
instance, [29] or [11]).

Equation (1) is completed with the entropy inequality of eq. (2) where

(∇wψ(s(w)))
t

= (∇ws(w))
t
Dwf(w) .

Following Ersoy et al. [6], this inequality is approximated using the semi-discrete finite volume scheme
(4). The obtained discrete quantity, called the numerical density of entropy production, is then used as a
mesh refinement criterion (see Section 2.3).

For further details on the construction of the numerical scheme we refer to [6] since the definition of the
numerical fluxes reduce to a one dimensional computational at each interface k/a. Up to now, the first and
second order Godunov schemes are implemented.

2.2 Time integration
The time integration of eqs. (4) and (2) can be achieved in a classical way either by a Runge-Kutta or
Adams-Bashforth scheme. Note that, even if the Adams-Bashforth scheme is known to be less stable and
less accurate, it can be easily handled in the framework of local time stepping to save computational time
(see e.g. [2] or [6]).
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2.2.1 Runge Kutta schemes

By integrating eq. (4) (and (2)) during the time step ]tn, tn+1[ of length δtn and by evaluating the numerical
fluxes at time tn, the well-known first order Euler’s scheme is obtained:

wk(tn+1) = wk(tn)− δtn
|Ck|

∑
a

|∂Ck/a|F
(
wk(tn),wa(tn),nk/a

)
. (5)

In order to increase the accuracy, a second order Runge-Kutta method can be used as follows

wk(tn+1) = wk(tn)− δtn
|Ck|

∑
a

|∂Ck/a|F
(
wk(tn+1/2),wa(tn+1/2),nk/a

)
where

wk(tn+1/2) = wk(tn)− δtn
2|Ck|

∑
a

|∂Ck/a|F
(
wk(tn),wa(tn),nk/a

)
.

The numerical density of entropy production (2) is then obtained with a second order Runge-Kutta scheme.

2.2.2 Adams-Bashforth schemes

The Adams-Bashforth method of order m consists in replacing the numerical flux of Equation (4) by a
polynomial interpolation of the same order [13]. For example, the second order Adams-Bashforth method
reads:

wk(tn+1) = wk(tn)− δtn
|Ck|

∑
a

|∂Ck/a|F
(
wk(tn),wa(tn),nk/a

)
− δt2n

2δtn−1 |Ck|

(∑
a

|∂Ck/a|F
(
wk(tn),wa(tn),nk/a

)
−
∑
a

|∂Ck/a|F
(
wk(tn−1),wa(tn−1),nk/a

))
.

The Adams-Bashforth methods of order 2 and 3 are stable for Courant-Friedrich-Levy condition (CFL) less
than one [1]. Practically, for stability purpose, we limit our applications to the second order scheme.

We also perform the same discretization above for entropy production (2).

2.3 Mesh refinement criterion and BB-AMR technique
By contrast to the one dimensional case, defining a robust mesh refinement parameter for 2 and 3D config-
urations is not enough to design a suitable numerical solver. The treatment of data is also a crucial point
and in particular the way to spare the memory in a parallel process. This point is handled in a hierarchical
block-based way that we have called BB-AMR. First, we present the main strategy to adapt the mesh with
respect to the numerical density of entropy production and then how to manage data in an efficient way.

2.3.1 Numerical entropy production as mesh refinement criterion

The efficiency of the numerical density of entropy production as a relevant mesh refinement parameter have
been already demonstrated in a previous work [6, 10]. It has been numerically observed (and from theoretical
considerations) that the production of the numerical density of entropy is almost zero for smooth solution
and non-positive when the solution develops discontinuities. As a consequence, the mesh is automatically
and proportionally (with respect to the production) refined inside area where the production is non zero.
More precisely, Ersoy et al. [6] have demonstrated that, for the one dimensional gas dynamics equation, the
support of the relative error coincides with the support of the numerical density of entropy production. The
extension toward the multi dimensional case is detailed in the case of two-fluid flows in [10].

According to the finite volume approximation defined in Section 2, a local numerical entropy production

Snk is computed on each cell at time tn and compared to the average entropy production S̄ =
1

|Ω|
∑
k

Snk .
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Two coefficients 0 6 αmin 6 αmax 6 1 are thus defined to determine the ratio of numerical production of
entropy leading to mesh refinement or mesh coarsening.

For each cell Ck:

• if Snk > S̄αmax, the mesh is refined and split and,

• if Snk < S̄αmin the mesh is coarsened whenever it is possible following the rule defined hereinafter.

The threshold parameters αmax and αmin are empirically determined, according to the simulated case
requirements, to reach a relevant compromise between computational cost and accuracy. Thus αmin and
αmax allow to set a percentage of mesh refinement and mesh coarsening with respect to the quantity S̄. For
instance, the smaller αmin and αmax are, the more accurate the results are at the expense of CPU time.

2.3.2 Mesh refinement process

For the one dimensional case, the local mesh refinement procedure is constructed following dyadic tree applied
at each time step. “Macro cells” are used to be easily refined by generating hierarchical grids. Each cell can
be split in two. Dyadic cells graph are thus produced, in basis 2 numbering, to allow a quick computing scan
to determine the adjacent cells. For stability reasons, the mesh refinement level cannot exceed 2 between
two adjacent cells. More details can be found in [6].

The three-dimensional extension of the mesh refinment procedure is a challenging task. Interesting works
have been presented for 2D Cartesian grid or quad-tree [3, 33, 25, 34], octree for 3D simulations [23, 8],
and anisotropic AMR [5, 12]. The extension from 1D to 3D leads to naturally octree meshing. But, the
presence of a complex moving interface (composed of rarefaction, shocks and/or contacts) implies to re-mesh
at each time step, which is obviously a costly process. Guided by the need to reach a relevant compromise
between the contradictory aims of solution accuracy and computing speed, a Cartesian block-based mesh
approach is introduced, somehow like in [30, 36]. The computational domain is divided in several blocks,
each corresponding to the initial unstructured mesh composed of hexahedral cells. These blocks are, in their
turn, splitted in a Cartesian way (2L−1nx, 2

L−1ny, 2
L−1nz), where (nx, ny, nz) stands for the initial block

discretisation, and L the level of mesh refinement. For each refined cells (or blocks), averaged values are
projected on each sub-cell and fluxes are computed as simply as possible to avoid heavy computation. Then,
in order to balance the CPUs load, the cells of each block are re-distributed in a fixed number of domains
according to the Cuthill-McKee numbering, see figure 1. The number of domain being fixed, each domain
are loaded in a given MPI process. The re-numbering and re-meshing being expensive, the mesh is finally
kept constant on a time interval, called AMR time-step, given by the smallest block (rather by the smallest
cell) and the maximum velocity. More details on the 3D BB-AMR are given in [10].

(a) Block-based mesh (b) Domain decomposition

Figure 1: Example of three dimensional block-based mesh with 3 domains and 27 blocks [10].
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3 Numerical results
This section is dedicated to the numerical validation of the BB-AMR scheme through several multidimen-
sional test cases.

3.1 Euler equations of gas dynamics
Let us consider a compressible perfect gas confined in a domain Ω. The governing equations for the motion
of the compressible gas in [0, T ]× Ω are the so called Euler equations

∂ρ

∂t
+∇ · (ρu) = 0,

∂ρu

∂t
+∇ · (ρu⊗ u+ pId) = 0,

∂ρE

∂t
+∇ · ((ρE + p)u) = 0

(6)

where ρ is the density, p = (γ − 1)ρε is the pressure, u the velocity and E the total energy defined by:

E = ε+
‖u‖2

2
.

Here, ε stands for the internal specific energy and γ (set to 1.4) is the ratio between specific heats.
System (6) is written as a system of conservation laws as in eqs. (1) completed with the entropy inequality

(2) where the convex entropy s(w) = s (ρ, ρu, ρE) and the entropy flux ψ(w) are classically given by the
following relations:

s(w) = −ρ ln

(
p

ργ

)
, ψ(w) = u s(w) . (7)

Let us note that even if System (6) is strictly hyperbolic on the set {ρ > 0}, the previous quantities defined
in eq. (7) make a sense for ρ > 0.

3.1.1 One dimensional Riemann problem

The first test case is based on the Woodward-Colella blast wave benchmark case. This one-dimensional test
problem, which was initially introduced in [32], is one of the most challenging test case to solve on a uniform
grid even with a very large number of cells. In particular, it illustrates the strong relationship between
the accuracy of the overall flow solution and the thinness of discontinuities on the grid involving multiple
interactions of discontinuities (shocks and contact discontinuities) and rarefactions.

The initial condition consists of three constant states

x ∈ [−1, 1], ρ(0, x) = 1, u(0, x) = 0, p(0, x) =

 1000, x 6 0.1,
0.01, 0.1 < x 6 0.9,
100, x > 0.9

on a computational domain [0, 1] with prescribed reflecting boundary conditions.
A full set of comparisons with different approximations is proposed here, using the following settings and

notations.

• Both first and second order schemes are compared. Thus, we will refer to AB1, AB2 and RK2 as first
and second order Adams-Basforth schemes and second order Runge-Kutta scheme, respectively. Both
AB2 and RK2 use a MUSCL reconstruction [11]. Computations are performed on a dynamic grid with
a uniform time step except:

– if the case acronym ends with “U“, which refers to a uniform fixed grid or,
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– if the acronym ends with “M”, which refers to the local time stepping algorithm (see [6] for further
details on the local time stepping adaptation).

The CPU time is noted

– cpug for the uniform (or global) time stepping,

– cpul for the local time stepping.

• A reference solution (black line in fig. 2) is computed on a uniform grid with 20 000 cells using the
RK2U scheme and

• For all numerical tests in this section, the following parameters are used:

CFL : 0.25,
Simulation time (s) : 0.038,
Initial number of cells : 200,
Maximum level of mesh refinement : Lmax.
Mesh refinement parameter αmax : 0.01 ,
Mesh coarsening parameter αmin : 0.001 ,

Mesh refinement parameter S̄ :
1

|Ω|
∑
kb

Snkb .

• Adaptive numerical solutions are compared to those computed on uniform fixed grid. For a relevant
comparison, the solution on the fixed grid will be computed with NLmax

cells. NLmax
stands for the

average number of cells used during a simulation of an adaptive scheme with a maximum level Lmax

which is the maximum level of refinement.

• Each presented result displays a positive density. Thus, for the sake of visual commodity, the numerical
density of entropy production will be depicted in absolute value on the density plots.

• To study the numerical convergence of AB1, AB1U, AB1M, RK2U, AB2U, AB2M and RK2 cases,
the discrete l1x-norm is used for density, momentum, pressure and internal energy error (which is
representative of the scheme efficiency, in particular for low density flows).

• Tables of schemes performance are displayed in tabs. (1) and (2). These tables are useful to compare
the computational times and, in particular, to assess the expression “saving the computational time
keeping the same order of accuracy”. Since the errors of the AB1 and AB1M (respectively AB2 and
AB2M) schemes are similar, only the former is presented in (tab. (1)) (respectively (tab. (2))).

Figure 2 depicts the solution profiles for density (fig. 2(a), together with numerical density of entropy
production Snk ), pressure (fig. 2(b)), momentum (fig. 2(c)) and internal energy (fig. 2(d)) for the AB1U,
AB1 and reference cases computed with Lmax = 5 and 709 cells (in average for the AB1 case). Figure 2(a)
first demonstrates the relevancy of the entropy production as refinement criterion: the stronger the density
gradient, the larger the density of entropy production is. Each of the plotted profiles then shows the solution
improvement provided by the use of adaptive mesh.
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(a) Density and numerical density of entropy production.
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Figure 2: Comparison between AB1 (green lines), AB1U (red lines), and reference (black lines) cases for
the density (a), the pressure (b), the momentum (c) and the internal energy (d) at time t = 0.038 s with
Lmax = 5. Numerical density of entropy production (in absolute value) is also plotted in subfigure (a).

Figure 3 plots, for both first (left) and second (right) order scheme, a mesh convergence study based on the
evolution of ‖ε−εex‖l1x discretization error. As already noticed in [6], the rate of convergence is considerably
increased by the adaptive scheme and, in our experiences, it can be improved by changing the threshold
parameters αmin and αmax at the expense of the cpu-time. Finally, one notes the clear improvement of
mesh convergence for both first and second-order schemes. In addition, we provide the numerical error for
the density, pressure, velocity and energy for both first and second order scheme in (tab. (1))and (tab. (2)).
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Figure 3: ‖ε− εex‖l1x with respect to the average number of cells at time t = 0.038.

Lmax ‖ρ− ρex‖l1x ‖p− pex‖l1x ‖u− uex‖l1x ‖ε− εex‖l1x NTf
cpug cpul

1 0.645E+00 0.259E+02 0.104E+01 0.279E+03 200 1.30 1.30
2 0.528E+00 0.192E+02 0.923E+00 0.208E+03 289 3.38 2.48
3 0.409E+00 0.141E+02 0.801E+00 0.149E+03 435 9.16 6.21
4 0.294E+00 0.104E+02 0.679E+00 0.102E+03 697 25.78 17.61
5 0.197E+00 0.796E+01 0.588E+00 0.678E+02 1169 73.22 50.98

Table 1: Convergence tests for first order AB1 scheme, l1x-norm at final time with respect to the averaged
number of cells NLmax

of ρ, u, p and ε, cpug for global time stepping and cpul local time stepping, NTf
being

the number of cells at the final time.

Lmax ‖ρ− ρex‖l1x ‖p− pex‖l1x ‖u− uex‖l1x ‖ε− εex‖l1x NTf
cpug cpul

1 0.548E+00 0.193E+02 0.872E+00 0.217E+03 200 1.31 1.36
2 0.421E+00 0.132E+02 0.706E+00 0.156E+03 282 3.32 2.46
3 0.301E+00 0.929E+01 0.566E+00 0.106E+03 418 8.82 5.64
4 0.202E+00 0.672E+01 0.448E+00 0.700E+02 670 23.64 15.26
5 0.127E+00 0.528E+01 0.396E+00 0.440E+02 1064 65.01 41.86

Table 2: Convergence tests for second order AB2 scheme, l1x-norm at final time with respect to the averaged
number of cells NLmax

of ρ, u, p and ε, cpug for global time stepping and cpul local time stepping, NTf
being

the number of cells at the final time.
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Rate ‖ρ− ρex‖l1x ‖p− pex‖l1x ‖u− uex‖l1x ‖ε− εex‖l1x
AB1U 0.35 0.60 0.41 0.47
AB1 0.67 0.67 0.33 0.80
AB1M 0.66 0.68 0.35 0.81
RK2U 0.44 0.70 0.55 0.53
AB2U 0.43 0.65 0.42 0.51
RK2 0.90 0.75 0.48 0.98
AB2 0.87 0.77 0.48 0.95
AB2M 0.77 0.72 0.39 0.91

Table 3: Convergence tests for first and second order.

It is here demonstrated that the adaptive grid strategy using the numerical density of entropy production
can considerably increase the accuracy without imposing a large number of cells and related extra CPU time
required in solving the problem on a uniform grid.

3.1.2 Two dimensional Riemann Problem

Our tests are now extended to the two dimensional Riemann problem on the unit square with the following
initial data

(ρ, u, v, p)(0, x, y) =


(1, 0,−0.4, 1) if x > 0.5 and y > 0.5,
(2, 0,−0.3, 1) if x < 0.5 and y > 0.5,
(1.0625, 0, 0.2145, 0.4) if x < 0.5 and y < 0.5,
(0.5197, 0,−1.1259, 0.4) if x > 0.5 and y < 0.5,

In this configuration, the solution consists of two contacts (North and South), a shock (West) and a rar-
efaction (east) as displayed in Fig. 4. A reference solution is computed on a uniform grid with 1 000 000
cells using the RK2U scheme. Figure 5 presents the reference solution at time t = 0.3 with pressure (from
0.53 to 1.98 by 0.05 steps) and velocity field in subfigure 4, density in subfigure 5(a) and numerical density
of entropy production in subfigure 5(b). One notes that the shock and the contacts are associated with
strong production of numerical density of entropy, which again demonstrates the relevancy of such numerical
quantity to describe the most tricky regions of the computational domain.

Figure 4: Reference solution for the 2D Riemann problem at time t = 0.3: pressure (colour), density
(contours; 0.53 to 1.98 step 0.05), velocity field (arrows).
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(a) Density (colour). (b) Numerical density of entropy production.

Figure 5: Reference solution for the 2D Riemann problem at time t = 0.3 and numerical density of entropy
production.

For the following numerical experiments, we have used the following parameters:

CFL : 0.5,
Simulation time (s) : 0.3,
Initial number of blocks : 30× 30,
nx = ny : 1,
Number of domain : 1,
Maximum level of mesh refinement : Lmax.
Mesh refinement parameter αmax : 0.08 ,
Mesh coarsening parameter αmin : 0.05 ,

Mesh refinement parameter S̄ :
1

|Ω|
∑
kb

Snkb .

Convergence study are performed here with first order scheme only for AB1, AB1U and AB1M with
the discrete l1x-norm for density and pressure.. Computational time are provided keeping in mind that
model performance can be easily enhanced by the use of multi-domains as proposed in the next numerical
experiments. The error between considered and reference solutions are performed by projecting the former
on the fine grid of reference solution.

For the AB1 and AB1M schemes, four tests have been carried out by varying the level of mesh refinement
from 1 to 4. As quoted before, the errors between the two schemes being similar, we only plot the point-wise
pressure error between reference and AB1 case (see Fig. 6). Figure 7 shows pressure contours and mesh
refinement. As expected, increasing the level of mesh refinement based on the numerical density of entropy
production leads to a better description of the most difficult part of the problem: shock, rarefaction and
contact regions, for instance. In comparison with other results, see for instance [22], the contact is precisely
characterized, without any spurious vorticity and one observes the ripple formed in the NW quadrant.
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(a) Lmax = 1. (b) Lmax = 2.

(c) Lmax = 3. (d) Lmax = 4.

Figure 6: Pointwise pressure error between the approximate solution and the reference one at time t = 0.3.
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(a) Lmax = 1. (b) Lmax = 2.

(c) Lmax = 3. (d) Lmax = 4.

Figure 7: Pressure and the mesh at time t = 0.3.

Figures 8(a) and 8(b) compare the errors with the discrete l1x-norm for density and pressure for the AB1,
AB1M and AB1U schemes. As expected in the presence of contact discontinuity, the order of convergence
is of order 1/2 for all schemes.
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Figure 8: Error analysis for the density and the pressure: number of cells vs l1x-error in log scale.

3.2 Compressible low Mach two-phase flows equations and interface sharpening
Let us consider now a compressible two-fluid flows problem where viscosity, surface tension and heat conduc-
tion are neglected. The incompressibility condition is relaxed using a low Mach approach in order to lead to
an hyperbolic system of conservation laws. Thus, based on [11], the following three-dimensional isothermal
hyperbolic and compressible Euler equations system is applied to a mixture fluid of air and water:

∂ρ

∂t
+∇ · (ρu) = 0

∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇p = ρg

(8)

where the unknowns are the density ρ, the three components of the velocity u = (u, v, w), the pressure p.
Here, g stands for gravitational acceleration.

Air and water fractions within the mixture are defined by the volume fraction function ϕ ∈ [0, 1] (ϕ = 0
in the water, and ϕ = 1 in the air). With this definition of ϕ, the pressure of the two-phase flow problem is a
function of the density ρ and the volume fraction ϕ, where ϕ solves the following non-conservative transport
equation:

∂ϕ

∂t
+ u · ∇ϕ = 0 . (9)

It is usually admitted that a flow is incompressible if the Mach number M = ‖u‖ /c is lower than 0.1 (c
is the sound speed), keeping in mind that the real (physical) Mach number is generally much smaller (of the
order of 1/400 ∼ 1/1600). In particular, this is constraining for explicit finite volume solver in which the time
step ∆t needs to satisfy a CFL (Courant-Friedrichs-Lewy) condition. Note also that the numerical scheme
efficiency is expected to decrease with the Mach number. Therefore, an artificial pressure law (isothermal
equation of state) is used to close the system :

p = c20(ρ− (ϕρA + (1− ϕ)ρW )) + p0. (10)

In this expression, ρA and ρW stand for air and water densities, respectively, c0 is the artificial sound speed
(defined below) and p0 a reference pressure. For further details about the EOS choice, the reader is referred
to [11]. The value of c0 is chosen as a compromise between the limits of compressible effects, the rate of
numerical diffusion and a reasonable CFL constraint. In the present context, i.e. for flow velocity of the order

14



of 1 m/s, an “optimized” value c0 = 20m/s is used. It is emphasized that in the boundary mixture region
0 < ϕ < 1 related to numerical diffusion processes, the proposed pressure law has no physical meanings.

In the present case, for the two-fluid model, the expression of entropy and entropy flux in (2) are

s =
1

2
ρu2 + c20ρ ln ρ− c20(ρW − ρA)ϕ, ψ =

(
1

2
ρu2 + c20ρ(ln ρ+ 1)

)
u .

In the region 0 < ϕ < 1 where both phases coexist, the numerical diffusion is expected to deteriorate the
description of the air-water interface. Following [18, 28], an interface sharpening method is applied using
a source term Sc = φ2 (1− φ)

2
(φ− c) in the transport equation (9). The constant c is defined as a mass

conservation parameter [15] leading to
∫

Ω

Sc ≡ 0. For each time step, a fractional step method is used to

solve eqs. (8). The non-homogeneous system is then solved with the interface sharpening source terms (with
a 1-iteration explicit scheme):

∂ϕ

∂τ
= Sc

∂ρ

∂τ
=

Sc
ρA − ρW

,

∂ρu

∂τ
=

Scu

ρA − ρW
,

(11)

where τ is a fictive time.

3.2.1 A 2D dam-break problem

The numerical model is confronted with the classical experiment of Martin and Moyce [24]. As shown in
fig. 9, a column of water (a× 2a) collapses in a box (4a× 3a). The initial mesh is composed of 594 blocks
(27 × 22 × 1) which are initially split into nx × ny × nz cells with nx = ny = 2 and nz = 1. The mesh is
refined around the air-water interface with a level 3 (i.e. 512 cells per block) with a total initial number of
cells around 10 500 cells (since the level between blocks cannot exceed 2). Blocks are then distributed on
10 domains which evolve during each re-meshing time step (see figure 11). Symmetry boundary conditions
are imposed. The simulation time is T = 0.4s and the AMR time step is fixed to 0.01s, i.e. the re-meshing
occurs 40 times during the simulation with the mesh refinement and coarsening parameters respectively set
to αmax = 0.2 and αmin = 0.02. During the global simulation, the number of cells evolves from 7500 to 17500
cells as shown in figure 14. Note that, even if the computation have been initially started with a very large
number of cells, the mesh would have been quickly coarsened and automatically adapted to the production
of the numerical density of entropy as displayed in figures 10 and 12.

Figure 13 shows the rapid collapse of the water column and the impact on the right wall after t = 0.3s.
The interface sharpening method together with the dynamic mesh refinement shown in fig. 10 thanks to
the entropy production (fig. 12) allows an accurate description of the interface. A very good quantitative
agreement in obtained with the experimental data of Martin and Moyce [24], as shown in fig. 15 in non-
dimensional data.

Figure 9: Collapse of water column [19, 24]
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Figure 10: Mesh at time 0.1s, 0.2s, 0.3s, 0.4s.

Figure 11: Block distribution in 10 domains at time 0.1s, 0.2s, 0.3s, 0.4s.

Figure 12: Numerical production of entropy at time 0.1s, 0.2s, 0.3s, 0.4s (blue zero, red negative values).

Figure 13: Density at time 0.1s, 0.2s, 0.3s, 0.4s (blue-air, red-water).

Figure 14: Number of cells during the computation.
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Figure 15: Length of Water during the collapsing. Confrontation between the computation and the experi-
ment of Martin and Moyce [24].

3.2.2 A 3D dam-break problem

A 3D dam-break problem is here used as a benchmark test to evaluate the method speed-up potential in
three dimensions.

We consider a water column
(

1

2
× 1

2
× 1

2

)
collapsing in a unit cube. The initial mesh is composed of

3375 blocks (15×15×15) which are initially split into nx×ny×nz cells with nx = ny = nz = 1. As done in
previous test case, the blocks around the air-water interface are of level 3. The simulation time is T = 2.5
and the AMR time step is fixed to 0.025, i.e. the re-meshing occurs 100 times during the simulation with
the mesh refinement and coarsening parameters respectively set to αmax = 0.2 and αmin = 0.02. During
the global simulation, the number of cells evolves from 172215 to 587763. Snapshots of the simulation are
shown in figure 16. The 3D dam-break collapse is well simulated, as well as the multiple reflection against
the walls.

Figure 16: Collapse of 3D water column at time t = 0.25, 0.50, 0.75s

For the sake of comparison, each simulation has been computed on the same small cluster (2 nodes, 40
cores). In order to show the efficiency of the parallel implementation, the RK2 and AB2 CPU times are
compared during the first AMR time step. The normalized cpu time, shown in fig. 17, stands for the inverse
of the so-called speedup. The computational domain is split in 1, 2, 4, 8, 16 and 32 domains.

As expected, the Adams-Bashforth scheme with local time stepping allows a great improvement of the

CPU time. The efficiency, i.e.
speed up

number of processors
, of the computation is roughly 85% for 8 domains and

60% for 32 domains. From a numerical point of view, the presented method is robust although the efficiency
of the parallel process reaches a steady state after 20 processors, indicating that the parallel procedure has
to be optimized.

17



Figure 17: Normalized cpu time versus number of domains with Runge-Kutta or Adams-Bashforth scheme

4 Conclusion
This paper reports on the extension of the one dimensional scheme presented by Ersoy et al. [6] to a general
multidimensional framework. A finite volume solver is used to solve the non-linear hyperbolic equation
system on unstructured meshes. An Adaptative Mesh Refinement is introduced to improve both solution
accuracy and cpu performance. It is based on a useful numerical criterion: the numerical density of entropy
production. From a computational viewpoint, to make the local time step method more efficient in a parallel
context, a new Block-Based AMR technique (BB-AMR) is applied.

A series of 1D, 2D and 3D test cases have been performed to test and validate our approach, using
several model configurations (uniform or adaptative grids, Adams-Bashforth or Runge-Kutta schemes, etc).
1D and 2D Riemann problems demonstrated that the adaptative grid strategy using the numerical density
of entropy production helps to greatly improve the accuracy and reduce the computational effort. Dambreak
benchmarks have also been carried out, both in 2 and 3D, to test our method when applied to compressible
low Mach two-phase flows problems. Interface sharpening techniques are used here to improve the description
of the complex wavy motion of the free surface during the collapse of water columns and impacts on rigid
walls. Very good agreement is obtained with existing experimental results. Comparison between Adams-
Bashforth and Runge-Kutta shows the significant computation speed-up provided by the former scheme.

Further on-going developments concern in particular the optimization of the proposed numerical scheme
in order to increase the efficiency (i.e. the ratio of the speedup over the number of process) as pointed out
in the last three-dimensional test case.
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