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Abstract

We construct solutions to the Kadomtsev-Petviashvili equation (KPI)
in terms of Fredholm determinants. We deduce solutions written as a
quotient of wronskians of order 2N . These solutions called solutions of
order N depend on 2N − 1 parameters. When one of these parameters
tends to zero, we obtain N order rational solutions expressed as a quotient
of two polynomials of degree 2N(N+1) in x, y and t depending on 2N−2
parameters.
So we get with this method an infinite hierarchy of solutions to the KPI
equation.

PACS numbers :
33Q55, 37K10, 47.10A-, 47.35.Fg, 47.54.Bd

1 Introduction

The Kadomtsev-Petviashvili equation is a well-known nonlinear partial differ-
ential equation in two spatial and one temporal coordinates. There are two
distinct versions of the KP equation, which can be written in the form :

(4ut − 6uux + uxxx)x + 3σ2uyy = 0. (1)

As usual, subscripts x, y and t denote partial derivatives, and σ2 = ±1. The
case σ = 1 is known as the KPII equation, and the case σ = i as the KPI
equation.
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The KP equation is a universal integrable system in two spatial dimensions and
has been extensively studied in the mathematical community.
The two versions of the KP equation significantly differ with respect to their
underlying mathematical structure and the behavior of their solutions, despite
their apparent similarity.
The KP equation first appeared in 1970, in a paper written by Kadomtsev and
Petviashvili [41]. For example, this equation is considered as a model for surface
and internal water waves by Ablowitz and Segur [1], and in nonlinear optics by
Pelinovsky, Stepanyants and Kivshar [57]. The discovery of the KP equation
happened almost simultaneously with the development of the inverse scatter-
ing transform (IST) as it is explained in Manakov et al. [51]. This method
to construct solution of the initial-value problem for nonlinear partial differen-
tial equations was originally developed for equations in one spatial dimension.
However, in 1974 Dryuma showed how the KP equation could be written in
Lax form [8]. Then, Zakharov extended the IST to equations in two spatial
dimensions, including the KP equation, and obtained several exact solutions to
the KP equation.
It was Dubrovin who constructed for the first time in 1981 [9] the solutions to
KPI given in terms of Riemann theta functions in the frame of algebraic geom-
etry .
From the 1980’s, a lot of methods have been carried out to solve that equation,
like for example the nonlocal Riemann-Hilbert problem, the d-bar problem or
inverse scattering problem using integration in the complex plane as it is re-
viewed in the book by Ablowitz and Clarkson published in 1991 [2]. There is a
wealth of papers which deal with solutions to the KPI equation. We can cite in
particular the works of Krichever [48], Satsuma [58], Matveev [?], Veselov [59],
Freeman [10], Weiss [60], Latham [49], Pelinovski [55, 56], Boiti [7], Ablowitz
[3], Biondini [4], Kodama ,[47], Matveev [?], Ma [50].

The paper is organized as follows. First of all, we express the solutions in
terms of Fredholm determinants of order 2N depending on 2N − 1 parame-
ters. We deduce another representation in term of wronskians of order 2N with
2N − 1 parameters. This representation allows to obtain an infinite hierarchy
of solutions to the KPI equation, depending on 2N − 1 real parameters .
Then we use these results to construct rational solutions to the KPI equation.
These results represent a new method to build multi rogue waves. New rational
solutions depending a priori on 2N − 2 parameters at order N are constructed,
when one parameter tends towards 0.
Families depending on 2N − 2 parameters for the N -th order as a ratio of two
polynomials of x, y and t of degree 2N(N + 1) are obtained.
That provides an effective method to construct an infinite hierarchy of rational
solutions of order N dependent on 2N − 2 real parameters. We present here
only the rational solutions of order 3, dependent on 4 real parameters, and the
representations of their modulus in the plane of the coordinates (x, y) according
to the real parameters a1, b1, a2, b2 and time t.
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2 Expression of solutions to KPI equation in

terms of Fredholm determinants

In the following, we need to define some notations. First of all, we define real
numbers λj such that −1 < λν < 1, ν = 1, . . . , 2N which depend on a parameter
ǫ which will be intended to tend towards 0; they can be written as

λj = 1− 2ǫ2j2, λN+j = −λj , 1 ≤ j ≤ N, (2)

The terms κν , δν , γν and xr,ν are functions of λν , 1 ≤ ν ≤ 2N ; they are defined
by the formulas :

κj = 2
√

1− λ2
j , δj = κjλj , γj =

√

1−λj

1+λj
,;

xr,j = (r − 1) ln
γj−i
γj+i , r = 1, 3, τj = −12iλ2

j

√

1− λ2
j − 4i(1− λ2

j )
√

1− λ2
j ,

κN+j = κj , δN+j = −δj , γN+j = γ−1
j ,

xr,N+j = −xr,j , , τN+j = τj j = 1, . . . , N.

(3)

eν 1 ≤ ν ≤ 2N are defined in the following way :

ej = 2i
(

∑1/2M−1
k=1 ak(je)

2 k+1
− i

∑1/2M−1
k=1 bK(je)

2 k+1
)

,

eN+j = 2i
(

∑1/2M−1
k=1 ak(je)

2 k+1
+ i

∑1/2M−1
k=1 bk(je)

2 k+1
)

, 1 ≤ j ≤ N,

ak, bk ∈ R, 1 ≤ k ≤ N.

(4)

ǫν , 1 ≤ ν ≤ 2N are real numbers defined by :

ej = 1, eN+j = 0 1 ≤ j ≤ N. (5)

Let I be the unit matrix and Dr = (djk)1≤j,k≤2N the matrix defined by :

dνµ = (−1)ǫν
∏

η 6=µ

(

γη + γν

γη − γµ

)

exp(iκνx− 2δνy + τνt+ xr,ν + eν). (6)

Then we have the following result :

Theorem 2.1 The function v defined by

v(x, y, t) = −2
|n(x, y, t)|

2

d(x, y, t)2
(7)

where

n(x, y, t) = det(I +D3(x, y, t)), (8)

d(x, y, t) = det(I +D1(x, y, t)), (9)
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and Dr = (djk)1≤j,k≤2N the matrix

dνµ = (−1)ǫν
∏

η 6=µ

(

γη + γν

γη − γµ

)

exp(iκνx− 2δνy + τνt+ xr,ν + eν). (10)

is a solution to the KPI equation (1), dependent on 2N − 1 parameters ak, bh,
1 ≤ k ≤ N − 1 and ǫ.

3 Expression of solutions to the KPI equation

in terms of wronkians

We want to express solutions to the NLS equation in terms of wronskians. Thus,
we need the following notations :

φr,ν = sinΘr,ν , 1 ≤ ν ≤ N, φr,ν = cosΘr,ν , N + 1 ≤ ν ≤ 2N, r = 1, 3, (11)

with the arguments

Θr,ν = κνx
2 + iδνy − i

xr,ν

2 − i τν2 t+ γνw − i eν2 , 1 ≤ ν ≤ 2N. (12)

We denote Wr(w) the wronskian of the functions φr,1, . . . , φr,2N defined by

Wr(w) = det[(∂µ−1
w φr,ν)ν, µ∈[1,...,2N ]]. (13)

We consider the matrix Dr = (dνµ)ν, µ∈[1,...,2N ] defined in (10). Then we have
the following statement

Theorem 3.1

det(I +Dr) = kr(0)×Wr(φr,1, . . . , φr,2N )(0), (14)

where

kr(y) =
22N exp(i

∑2N
ν=1 Θr,ν)

∏2N
ν=2

∏ν−1
µ=1(γν − γµ)

.

From the initial formulation, the solution v to the KPI equation can be written
as

v(x, y, t) = −2
|det(I +D3(x, y, t))|

2

(det(I +D1(x, y, t)))
2 .

Using (14), the following relation between Fredholm determinants and wron-
skians is obtained

det(I +D3) = k3(0)×W3(φr,1, . . . , φr,2N )(0)

and
det(I +D1) = k1(0)×W1(φr,1, . . . , φr,2N )(0).

As Θ3,j(0) contains N terms x3,j 1 ≤ j ≤ N and N terms −x3,j 1 ≤ j ≤ N , we
have the equality k3(0) = k1(0), and we get the following result :
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Theorem 3.2 The function v defined by

v(x, y, t) = −2
|W3(φ3,1, . . . , φ3,2N )(0)|

2

(W1(φ1,1, . . . , φ1,2N )(0))
2

is a solution KPI equation depending on 2N − 1 real parameters ak, bk and ǫ,
with φr

ν defined in (11)

φr,ν = sin(κνx
2 + iδνy − i

xr,ν

2 − i τν2 t+ γνw − i eν2 ), 1 ≤ ν ≤ N,

φr,ν = cos(κνx
2 + iδνy − i

xr,ν

2 − i τν2 t+ γνw − i eν2 ), N + 1 ≤ ν ≤ 2N, r = 1, 3,

κν , δν , xr,ν , γν , eν being defined in(3), (2) and (4).

4 The limit case when ǫ tends to 0

4.1 Families of rational solutions of order N depending on

2N − 2 parameters

We obtain here families of rational solutions to the KPI equation depending on
2N − 2 parameters. To get it, it is sufficient to make the parameter ǫ tend to 0.
Then, we get the following result :

Theorem 4.1 The function v defined by

v(x, y, t) = lim
ǫ→0

−2
|W3(x, y, t)|

2

(W3(x, y, t))
2 (15)

is a rational solution to the KPI equation (1) quotient of two polynomials n(x, y, t)
and d(x, y, t) depending on 2N − 2 real parameters ãj and b̃j, 1 ≤ j ≤ N − 1 of
degrees 2N(N + 1) in x, y and t.

4.2 Rational solutions of order 3 depending on 4 parame-

ters

In the following, we explicitly construct rational solutions to the KPI equation
of order 3 depending on 4 parameters.
Because of the length of the expression, we cannot give it in this paper. We
only give the expression without parameters and we present it in the appendix.

We give patterns of the modulus of the solutions in the plane (x, y) of coordinates
in functions of parameters a1, b1, a2, b2 and time t.
The solutions of KP equation being derived from the solutions of the NLS
equation, one recovers similarity with figures already obtained by Akhmediev
et al. [45, 44, 46] and the author [23, 35] in the case of the NLS equation.
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Figure 1. Solution of order 3 to KPI, on the left for t = 0; in the center for
t = 0, 01; on the right for t = 0, 1; all the parameters are equal to 0.

Figure 2. Solution of order 3 to KPI, on the left for t = 0, 2; in the center for
t = 102; on the right for t = 103; all the parameters are equal to 0.

Figure 3. Solution of order 3 to KPI, on the left for a1 = 103; in the center
for b1 = 103; on the right for a2 = 106; here t = 0.
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Figure 4. Solution of order 3 to KPI, on the left for t = 0, b2 = 106; in the
center for t = 0, 01, a1 = 103 all the other parameters are equal to 0; on the

right for t = 0, 1, b1 = 103 all the parameters are equal to 0.

5 Conclusion

In this article, solutions to the KPI equation have been built, starting from the
solutions of the nonlinear Schrödinger equation in terms of wronskians and what
made it possible to obtain rational solutions in terms of quotients of two polyno-
mials of degree 2N(N+1) in x, y and t depending on 2N−2 parameters. Other
approaches to build solutions of KPI equation in terms of wronskians have been
led and ones can be mentionned those most significant. In 1989, solutions were
built in relation to time dependent Schrödinger equation [6]. The expressions
of the solutions given were however not explicit. The following year, Hirota and
Ohta [40] built, the solutions as particular case of a hierarchy of coupled bilin-
ear equations given in terms of Pfaffians. In 1993, Oevel [53] used the Darboux
transformations to obtain among others the solutions of the multicomponent
KP hierarchy. No explicit solutions were also given. In the following article
published in 1996 [54], the same author gave explicit solutions in terms of wron-
skians of order 2 but different from the ones we have constructed in this paper.
More recently, in 2013 [43], wronskians identities of bilinear KP hierarchy were
given which has made it possible to search new wronskian solutions of PDE’s.
In 2014, using iterated Darboux transformations, in particular, solutions of KPI
equation were constructed in terms of reduced multicomponent wronskian so-
lutions [61]. In the later study, an explicit solution at order 1 was built but
different from the one which we have given in this article. Only one asymptotic
study has been carried out for order higher than 2.
Here we have given a new method to construct solutions to the KPI equation.
We have constructed two types of representations of the solutions to the KPI
equation at order N . We have given an expression in terms of Fredholm de-
terminants of order 2N depending on 2N − 1 real parameters. We have also
given a representation in terms of wronskians of order 2N depending on 2N − 1
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real parameters. When one of parameters (ǫ) tends to zero, we obtain ratio-
nal solutions to the KPI equation depending on 2N − 2 real parameters. In a
forthcoming paper, we will give a general formulation of rational solutions to
the KPI without limit at order N which will depend on 2N −2 real parameters.
We will show that these solutions can be expressed in terms of polynomials of
degree 2N(N+1) in x, y and t; we will prove that the maximum of the modulus
of these solutions is equal to 2(2N + 1)2. We will give a systematic approach
to find explicit solutions for higher orders and try to describe the structure of
these rational solutions.
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Appendix The solutions to the KPI equation which we have constructed can
be written as

v3(x, y, t) = −2
|n3(x, y, t)|

2

(d3(x, y, t))2

with
n3(x, y, t)

d3(x, y, t)
=

F3(2x, 4y, 4t)− iH3(2x, 4y, 4t)

Q3(2x, 4y, 4t)

with

F3(X,Y, T ) =
∑12

k=0 fk(Y, T )X
k,

H3(X,Y, T ) =
∑12

k=0 hk(Y, T )X
k,

Q3(X,Y, T ) =
∑12

k=0 qk(Y, T )X
k.

f12 = 1, f11 = −36T, f10 = 594T 2+6Y 2−18, f9 = −5940T 3+
(

−180Y 2 + 780
)

T,

f8 = 40095T 4+15Y 4+
(

2430Y 2 − 13770
)

T 2−450Y 2−225, f7 = −192456T 5+(−19440Y 2

+136080)T 3+
(

−360Y 4 + 10800Y 2 + 5400
)

T, f6 = 673596T 6+20Y 6+(102060Y 2

−850500)T 4 − 1380Y 4 +
(

3780Y 4 − 113400Y 2 − 48060
)

T 2 + 1980Y 2 − 2700

f5 = −1732104T 7+
(

−367416Y 2 + 3551688
)

T 5+
(

−22680Y 4 + 680400Y 2 + 184680
)

T 3

+
(

−360Y 6 + 23400Y 4 + 7560Y 2 + 70200
)

T, f4 = 3247695T 8+15Y 8+(918540Y 2

−10103940)T 6−1620Y 6+
(

85050Y 4 − 2551500Y 2 − 109350
)

T 4+2250Y 4+(2700Y 6

−164700Y 4 − 251100Y 2 − 1077300)T 2 + 2700Y 2 + 14175, f3 = −4330260T 9
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+
(

−1574640Y 2 + 19420560
)

T 7 +
(

−204120Y 4 + 6123600Y 2 − 1603800
)

T 5

+
(

−10800Y 6 + 615600Y 4 + 1263600Y 2 + 7376400
)

T 3+(−180Y 8+17520Y 6

+1800Y 4 + 399600Y 2 − 429300)T, f2 = 3897234T 10 + 6Y 10 + (1771470Y 2

−24210090)T 8 − 810Y 8 +
(

306180Y 4 − 9185400Y 2 + 5904900
)

T 6 + 3420Y 6

+
(

24300Y 6 − 1287900Y 4 − 2259900Y 2 − 23886900
)

T 4 − 83700Y 4 + (810Y 8

−70200Y 6 − 180900Y 4 − 2446200Y 2 + 3746250)T 2 + 287550Y 2 + 28350,

f1 = −2125764T 11+
(

−1180980Y 2 + 17714700
)

T 9+(−262440Y 4+7873200Y 2

−8660520)T 7 +
(

−29160Y 6 + 1428840Y 4 + 612360Y 2 + 36012600
)

T 5

+
(

−1620Y 8 + 123120Y 6 + 793800Y 4 + 5670000Y 2 − 18638100
)

T 3

+
(

−36Y 10 + 4140Y 8 + 57240Y 6 + 394200Y 4 − 1854900Y 2 − 850500
)

T,

f0 = 531441T 12+Y 12+
(

354294Y 2 − 5786802
)

T 10−138Y 10+(98415Y 4−2952450Y 2

+4822335)T 8−8145Y 8+
(

14580Y 6 − 656100Y 4 + 1443420Y 2 − 20047500
)

T 6

−37260Y 6+
(

1215Y 8 − 79380Y 6 − 984150Y 4 − 6002100Y 2 + 40935375
)

T 4+327375Y 4

+
(

54Y 10 − 5130Y 8 − 182340Y 6 − 1509300Y 4 + 3106350Y 2 + 1129950
)

T 2+141750Y 2−14175

h12 = 0, h11 = 0, h10 = 24Y, h9 = −720TY, h8 = 9720T 2Y+120Y 3−360Y,

h7 = −77760T 3Y+
(

−2880Y 3 + 8640Y
)

T, h6 = 408240T 4Y+240Y 5−3360Y 3

+
(

30240Y 3 − 90720Y
)

T 2−3600Y, h5 = −1469664T 5Y+
(

−181440Y 3 + 544320Y
)

T 3

+
(

−4320Y 5 + 48960Y 3 + 99360Y
)

T, h4 = 3674160T 6Y+240Y 7−5040Y 5+(680400Y 3

−2041200Y )T 4− 10800Y 3+
(

32400Y 5 − 280800Y 3 − 486000Y
)

T 2− 32400Y

h3 = −6298560T 7Y+
(

−1632960Y 3 + 4898880Y
)

T 5+(−129600Y 5+777600Y 3

−1166400Y )T 3 +
(

−2880Y 7 + 37440Y 5 − 100800Y 3 + 734400Y
)

T

h2 = 7085880T 8Y +120Y 9−1440Y 7+
(

2449440Y 3 − 7348320Y
)

T 6+41040Y 5

+
(

291600Y 5 − 972000Y 3 + 14288400Y
)

T 4−151200Y 3+(12960Y 7−64800Y 5+1144800Y 3

−3823200Y )T 2+113400Y, h1 = −4723920T 9Y+
(

−2099520Y 3 + 6298560Y
)

T 7

+
(

−349920Y 5 + 233280Y 3 − 36741600Y
)

T 5+(−25920Y 7−77760Y 5−2980800Y 3

+14904000Y )T 3+
(

−720Y 9 − 2880Y 7 − 4320Y 5 + 1425600Y 3 + 874800Y
)

T

h0 = 1417176T 10Y +24Y 11+600Y 9+
(

787320Y 3 − 2361960Y
)

T 8−20880Y 7

+
(

174960Y 5 + 349920Y 3 + 30967920Y
)

T 6−231120Y 5+(19440Y 7+213840Y 5
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+2235600Y 3−27507600Y )T 4−59400Y 3+(1080Y 9+21600Y 7−114480Y 5−4644000Y 3

−7273800Y )T 2 + 113400Y

q12 = 1, q11 = −36T, q10 = 594T 2+6Y 2+6, q9 = −5940T 3+
(

−180Y 2 + 60
)

T,

q8 = 40095T 4+15Y 4+
(

2430Y 2 − 4050
)

T 2−90Y 2+135, q7 = −192456T 5+(−19440Y 2

+58320)T 3+
(

−360Y 4 + 2160Y 2 − 3240
)

T, q6 = 673596T 6+20Y 6+(102060Y 2

−442260)T 4 − 180Y 4 +
(

3780Y 4 − 22680Y 2 + 42660
)

T 2 + 540Y 2 + 2340

q5 = −1732104T 7+
(

−367416Y 2 + 2082024
)

T 5+
(

−22680Y 4 + 136080Y 2 − 359640
)

T 3

+
(

−360Y 6 + 1800Y 4 − 1080Y 2 − 55080
)

T, q4 = 3247695T 8+15Y 8+(918540Y 2

−6429780)T 6+60Y 6+
(

85050Y 4 − 510300Y 2 + 1931850
)

T 4−1350Y 4+(2700Y 6

−2700Y 4+72900Y 2+639900)T 2+13500Y 2+3375, q3 = −4330260T 9+(−1574640Y 2

+13122000)T 7+
(

−204120Y 4 + 1224720Y 2 − 6502680
)

T 5+(−10800Y 6−32400Y 4

−1069200Y 2−4676400)T 3+
(

−180Y 8 − 2640Y 6 − 70200Y 4 − 421200Y 2 + 45900
)

T

q2 = 3897234T 10+6Y 10+
(

1771470Y 2 − 17124210
)

T 8+270Y 8+(306180Y 4−1837080Y 2

+13253220)T 6+13500Y 6+
(

24300Y 6 + 170100Y 4 + 5321700Y 2 + 19561500
)

T 4+78300Y 4

+
(

810Y 8 + 20520Y 6 + 661500Y 4 + 3321000Y 2 − 984150
)

T 2−36450Y 2+12150

q1 = −2125764T 11+
(

−1180980Y 2 + 12990780
)

T 9+(−262440Y 4+1574640Y 2

−14959080)T 7+
(

−29160Y 6 − 320760Y 4 − 11284920Y 2 − 41319720
)

T 5+(−1620Y 8

−58320Y 6−1927800Y 4−7938000Y 2+6374700)T 3+(−36Y 10−2340Y 8−83880Y 6

−405000Y 4−429300Y 2−234900)T, q0 = 531441T 12+Y 12+
(

354294Y 2 − 4369626
)

T 10

+126Y 10+
(

98415Y 4 − 590490Y 2 + 7184295
)

T 8+3735Y 8+(14580Y 6+218700Y 4

+8791740Y 2+34015140)T 6+15300Y 6+(1215Y 8+56700Y 6+1834650Y 4+4203900Y 2

−3485025)T 4+143775Y 4+(54Y 10+4590Y 8+150300Y 6+639900Y 4+2782350Y 2

+2020950)T 2 + 93150Y 2 + 2025
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tions for Darboux-Pöschl-Teller potentials and their difference extensions,
J. Phys A : Math. Theor., V. 42, 1-16, 2009

[14] P. Dubard, P. Gaillard, C. Klein, V. B. Matveev, On multi-rogue wave
solutions of the NLS equation and positon solutions of the KdV equation,
Eur. Phys. J. Spe. Top., V. 185, 247-258, 2010

[15] P. Gaillard, Families of quasi-rational solutions of the NLS equation and
multi-rogue waves, J. Phys. A : Meth. Theor., V. 44, 1-15, 2011

11



[16] P. Gaillard, Wronskian representation of solutions of the NLS equation and
higher Peregrine breathers, J. Math. Sciences : Adv. Appl., V. 13, N. 2,
71-153, 2012

[17] P. Gaillard, Degenerate determinant representation of solution of the NLS
equation, higher Peregrine breathers and multi-rogue waves, J. Math.
Phys., V. 54, 013504-1-32, 2013

[18] P. Gaillard, Wronskian representation of solutions of NLS equation and
seventh order rogue waves, J. Mod. Phys., V. 4, N. 4, 246-266, 2013

[19] P. Gaillard, V.B. Matveev, Wronskian addition formula and Darboux-
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