On Solving One-Dimensional Partial Differential Equations With Spatially Dependent Variables Using the Wavelet-Galerkin Method - Archive ouverte HAL
Article Dans Une Revue Journal of Applied Mechanics Année : 2013

On Solving One-Dimensional Partial Differential Equations With Spatially Dependent Variables Using the Wavelet-Galerkin Method

Résumé

The discrete orthogonal wavelet-Galerkin method is illustrated as an effective method for solving partial differential equations (PDE's) with spatially varying parameters on a bounded interval. Daubechies scaling functions provide a concise but adaptable set of basis functions and allow for implementation of varied loading and boundary conditions. These basis functions can also effectively describe C 0 continuous parameter spatial dependence on bounded domains. Doing so allows the PDE to be discretized as a set of linear equations composed of known inner products which can be stored for efficient parametric analyses. Solution schemes for both free and forced PDE's are developed; natural frequencies, mode shapes, and frequency response functions for an Euler-Bernoulli beam with piecewise varying thickness are calculated. The wavelet-Galerkin approach is shown to converge to the first four natural frequencies at a rate greater than that of the linear finite element approach; mode shapes and frequency response functions converge similarly.
Fichier principal
Vignette du fichier
JAMHAL.pdf (270.44 Ko) Télécharger le fichier
JAMJonesHaLDep.zip (398.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01330602 , version 1 (17-06-2016)

Licence

Identifiants

Citer

Simon Jones, Mathias Legrand. On Solving One-Dimensional Partial Differential Equations With Spatially Dependent Variables Using the Wavelet-Galerkin Method. Journal of Applied Mechanics, 2013, ⟨10.1115/1.4023637⟩. ⟨hal-01330602⟩
68 Consultations
589 Téléchargements

Altmetric

Partager

More