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THE COMPUTATION OF WAVELET-GALERKIN
APPROXIMATION ON A BOUNDED INTERVAL
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This paper describes exact evaluations of various finite integrals whose integrands involve products of
Daubechies’ compactly supported wavelets and their derivatives and/or integrals. These finite integrals play
an essential role in the wavelet-Galerkin approximation of differential or integral equations on a bounded
interval.
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1. INTRODUCTION

In a recent paper, Daubechies' constructed a family of orthonormal bases of compactly supported
wavelets for the space of square-integrable functions, L2(R). Due to the fact that they possess sev-
eral useful properties, such as orthogonality, compact support, exact representation of polynomials
to a certain degree, and ability to represent functions at different levels of resolution, Daubechies’
wavelets have gained great interest in the numerical solutions of ordinary and partial differential
equations.>™"! In each of these papers the wavelet discretization of differential equations is based
on the Galerkin approach. As a result, the wavelet-Galerkin scheme involves the evaluation of
connection coefficients!> 13 to approximate derivatives as well as non-linear terms. The connection
coefficients are integrals with integrands being products of wavelet bases and their derivatives.
Due to the derivatives of compactly supported wavelets being highly oscillatory, it is difficult and
unstable to compute the connection coefficients by the numerical evaluation of integral. In order
to overcome this problem, dedicated algorithms have been devised!>~!6 for the exact evaluation of
connection coefficients.

We note that the connection coefficients and the associated computation algorithms developed in
References 12-16 are essentially based on an unbounded domain. It is therefore not surprising that
the above-mentioned applications of the wavelet-Galerkin method are limited to the cases where
the problem domain is unbounded or the boundary condition is periodic. In order to apply the
wavelet-Galerkin method to the solution of finite-domain problems, the authors'”'® have derived
algorithms for computing some finite integrals of products of wavelets and their derivatives or



integrals. As motivated by the successful construction of orthogonal interval wavelets,'>?° we
present in this paper algorithms for computing useful finite integrals of wavelets for the wavelet-
Galerkin method on a bounded interval. More precisely, let ¢(x) denote the scaling function of
Daubechies’ wavelets, we consider the computation of the following functionals:

6"y = L ¢(x) (1)
6,(0) = / / " 60 dy - dyerdyn @
n- tuple
pe = [ T ymy - k)dy 3)
I = [ 60 - o0 dy @)
A2 = [y~ 090 dy 5)
1) = [ 6y - K80y ©)
00 = [ 680 -6 - kyay ™

In the above equations, j,k € Z, m,n,x € Z* + {0}, and Z and Z* denote the sets of integers
and positive integers, respectively.

Before attempting to present the computational algorithms for the above integrals, we first give
in the following section a brief description of the construction of Daubechies’ class of orthonormal
wavelets and the basic properties of these wavelets.

2. DAUBECHIES’ ORTHONORMAL WAVELETS

The family of compactly supported orthonormal wavelets constructed by Daubechies' includes
members from highly localized to highly smooth. Each wavelet member is governed by a set of
L (an even integer) coefficients { px: £ = 0,1,...,L — 1} through the two-scale relation

L—1
o) = T p;#2x - ) ®)
j=
and the equation

Y(x) = Z (=1) pr—j ¢(2x - %)
j=2eL
where ¢(x) and y(x) are called scaling function and mother wavelet, respectively. The fundamental

support of the scaling function ¢(x) is in the interval [0,L — 1] while that of the corresponding
wavelet Y/(x) is in the interval (1 — L/2,L/2].



The coefficients p; in the two-scale relation (8) are called the wavelet filter coefficients.
Daubechies' established these wavelet filter coefficients to satisfy the following conditions:

L1
2 pi=2 (10)
j=0
L=1
Pj Pj-m = Go,m (11)
j=0
1 ]
> (=1)Y pi—j pj-2m =0 for integer m (12)
j=2-L
L-1 _
S (=1Yj™"p; =0, m=0,1,...,L/2—1 (13)
j=0

where 8y, is the Kronecker delta function. Correspondingly, the constructed scaling function ¢(x)
and wavelet y/(x) have the following properties:

[ #mex= (14)

/: ¢(x — j)p(x —m)dx = O;m (15)
/C: d(x)Y(x —m)dx =0 for integer m (16)
/:x".p(x)dx=o, k=0,1,..,L72-1 (17

It is noted that the property (17) is equivalent to that the elements of the set {1,x,...,x%/>~'} are
linear combinations of ¢(x — k), integer translates of ¢(x). The exact expression for such linear
combinations is given by Reference 12:

00 n . (n ¢ :
S Pex—D=x"+ 3 (-1y (j) MPx", n=0,1,..,L/2-1 (18)
l=— j=1
In the above equation, Mf denotes the jth moment of ¢(x), which can be computed by the
recursive relation:'3

MY = / x* p(x)dx

1 L

-1 k k P
=g 5 7, (1) )

with the initial condition M{ = 1. :

Denote by L%(R) the space of square-integrable functions on the real line. Let ¥; and W, be the
subspaces generated, respectively, as the L?-closure of the linear spans of @ x(x) = 212 p(20x - k)
and ¥ x(x) = 2/2y(2/x — k),k € Z. Then the condition (16) implies that

Vin=V; & W, (20)
The above relation further implies®!

VoCcWVC---CV;CVjy (21)



and
Vin=VooW, oW, &---dW; (22)

where @ denotes the orthogonal direct sum. For the Daubechies wavelets, we have the following
orthogonal properties:

/ $a(x) by dx = B¢ (23)
/ U)W () dx = 6,1 6 (24)
/ 6,40) Ym(x) dx = 0 (25)

It is noted that there are no explicit expressions for calculating the values of the scaling function
¢(x) and the corresponding mother wavelet y(x) at an arbitrary point of x. However, the function
values of ¢(x) and y(x) at the dyadic points k/2/ for integers j and & can be recursively computed
from the two-scale relations (8) and (9) provided that ¢(1), ¢(2),...,¢(L—2) have been obtained.
The algorithm for obtaining ¢(k) for £k = 1,2,...,L — 2 will be given in the next section.

3. COMPUTING THE DERIVATIVES AND INTEGRALS OF WAVELETS

In this section, we present computational algorithms for evaluating the derivatives and integrals
of the scaling function ¢(x). Once the values of scaling function ¢(x) are obtained, the mother
wavelet Y(x) can be computed from the relation (9).

3.1. Evaluation of the nth derivative of ¢(x)
Denote by ¢ (x) the nth derivative of the scaling function ¢(x):

d"gx) _

d
¢ = — = 0@, 60 = ¢() (26)

It follows from (18) that the derivatives ¢(")(x), n = 0,1,...,L/2 — 1, exist. Hence, applying the
two-scale relation (8) to the above equation, we have

PN (x) = 2" Lz_jl 2ed™(2x — k)dx 27)
k=0

This is the two-scale relation for ¢")(x), which is analogous to the two-scale relation (8) for
@(x). Obviously, this two-scale relation can be used to compute the values of ¢”(x) at all dyadic
points x = k/2/, j = 1,2,..., provided that the values ¢"(k), k = 1,2,...,L — 2, are given.

To obtain the values ¢(x) at integer points, we substitute x = 1,2,...,L—2 into the two—scale
relation (27) to give the homogeneous linear system of equations

27" =P (28)
where

® = [¢(1) ¢™M(2) - "L -2))T (29)



(the superscript T denotes transpose) and P is the (L — 2) x (L — 2) matrix

P=[py-ilicjk<i-2 (30)

with j being the row index and k the column index. Equation (28) indicates that the unknown
vector & is the eigenvector of the matrix P corresponding to the eigenvalue 27", The values of
(1), d"™(2),...,¢"(L — 2) can be determined uniquely by first finding the eigenvector of the
matrix P which corresponds to the eigenvalue 27", and then normalizing with the condition

:z::j(—k)%("’(k) =n! (31)

which is obtained by differentiating (18) »n times and then letting x = .
Once the values of ¢™)(x) for x = 1,2,...,L — 2 are obtained, the relation

(%) =2 % mo (55 -1) (2)

and the facts that ¢(")(x) = 0 for x<0 and x>L — 1 allow one to determine the values of ¢ (x)
at x = k/2/ for k = 1,3,5,...,2°(L - 1)—1 and j = 1,2,... Here, it should be pointed out that the
above algorithm for generating ¢ (k), k = 1,2,...,L—2, also holds for n = 0, which corresponds
to the scaling function ¢(x) itself. For n = 0, (27) is exactly the same as the two-scale relation
(8) for ¢(x). Moreover, the relation (18) with n = 0 is called the resolution of identity of the
scaling function ¢(x).

3.2. Evaluation of multiple integrals of ¢(x)
Denote by 0,(x) the n-tuple integrals of ¢(x), i.e.

X Yn V2

0u(x) = / / / $(y1)dyi ... dya_r dya
0 0 0
N e’

n-tuple
=/0 Bu-1(y)dy (33)

The algorithm for computing 6,(x) at dyadic points k/2/ has been derived by authors in a recent
paper.!” For completeness, we repeat the derivation here.
Applying the two-scale relation (8) to (33), we have

On(x) = Zpk// /¢(2x1 k)dx; ... dx,

—Z"Zpkl)(lx k) (34)

This is the two-scale relation for 6,(x), which is analogous to the two-scale relation (8) for ¢(x).
Hence, the values of 8,(x) at dyadic points k/2’/ can be computed recursively for j = 1,2,...
provided that the values of 8,(x) at integer points x = 1,2,... , are pre-computed. Since the values
of 6,(x) for x=L — 1 do not vanish, the computation of 8,(x) for x = 1,2,... is quite different
from that of ¢(x).



Here, we first examine some properties of 8,(x) for x=L — 1. Let us recall the facts that ¢(x)

vanishes for x =L — 1, and that fGL - ¢(x)dx = 1. Hence, for x=L — 1, we can obtain from the
last equation of (33) that

L~}

o= [  ¢(y)dy+ f $(y)dy=1 (35)
1] L~1
L1 x

o= [ o+ [ sy

= G,(L — 1 . id
2( }+f,, y ,
=0L-D)+G-L+1) (36)
L1 X
93(35):/0 Gz(y)dy“*"/L 0L =)+ (= L+ D]y

= (L~ D)+ 0(L - x—L+1)+ il-; Oi(L - )(x—L+1y 37
By induction, we can write 8,(x) for x=L — 1 as follows:
2=l (x - L+ 1)y
Ou(x) = }:0 (_.__?_.,_)_ O (L-1) (38)
/= !

where 0;(L—1) = 1, but the values of 8, (L —1) for j =0,1,...,n—2 are still to be determined.
For determining 8,(L ~ 1) for n = 2,3,..., we go back to the two—scale relation (34) for 8,(x).
Substituting x = L — 1 into the equation yields

L—1
6L ~1)=2"" 3 pp 6, 2L —2~k) (39)
k=0
Since 2L -2 - k=L ~1for k =0,1,...,L — 1, from (38) it follows that
n—} —_1 kY
0oL =2 =) = T Bpe st - 1) ET=EE (40)
j=o !

As a result, 8,(L — 1) can be expressed as

_ k=l ol L—1~kY
bL-1D=2" % p 5 byt - nETLEY
K=o j=0 :
B L1 a1 L=1 L—1-—k}
2 L-1DY S T b - ) ETEY (41)
k=0 i=1 k=0 :
Applying the relation (10), we then have the recursive formula
1 a1 /L= L—1—kY
Ol —1)= 5 ¥ (z: Pe ﬁ-———'—-l—) Bpi(L ~ 1) “42)
2" -2 \i=o J!

for computing 8,(L —1) for n = 2,3,..., starting with 6;(L — 1) = 1. Having obtained 8,(x) for an
integer x 2L — 1, the values of 8,{(x) for x = 1,2,...,L — 2 can be determined from the following
linear system of equations:

d-2""Py9, =¢ (43)



where

©p = [04(1) 6,(2) -+ Ou(L—2)]" (44)
c =[c1 Ccy " CL— 2]T (45)
ci = Z pk 6.2i — k) (46)

and the matrix P is defined by (30). The equations of the linear system (43) come from (34) by
letting x = 1,2,...,L — 2.

4. COMPUTING THE CONNECTION COEFFICIENTS OF WAVELETS OVER A
BOUNDED INTERVAL

In solving a differential-integral equation of the form

d d2 X X X|
f(x,ai—),a-;%,...,/ ydxl,/ / ydxzdxl,...) =0 47

defined on a bounded interval x € [a,b] by the wavelet-Galerkin method, the dependent variable
y(x) is approximated by the wavelet series

Ny
Yx)= 3 Pidsi(x) (48)
k=N,

By the Galerkin approach, the coefficients y, are determined from the following equations:

2 X X pX)
/ ¢Jk(x)f (x’ gy : 22" / }‘}dxl,/ / }‘;dxde],..-) =0 (49)

for k = Ny, N, + 1,...,Np. The construction of these equations involves the computation of fi-
nite integrals in (3)«7). As x— o0, these integrals are called the connection coefficients of the
wavelets.!3 In this section, algorithms will be derived for computing the connection coefficients of
wavelets over a bounded interval.

4.1. Evaluation of MPx) = [ y"d(y — k)dy
Let the integral of the product of y™ and ¢(y — k) be denoted by

X
My = [ ymoty -y (50)
0
Performing integration by parts successively m times on the above integral, we have

MP(x) = fo Y"é(y — k)dy

x—k
=x"0)(x — k) — m[k (y + kY 1¢(y)dy

= B G (s = )+ (-1 () (51)



Hence, the integral M"(x) can be computed exactly in terms of ,(x), which is the multiple
integral of the scaling function ¢(x) defined in Section 3.1.

4.2. Evaluation of integrals T}(x) = [; ¢"(y — k)dp(y)dy

Denote the integral of the product of the scaling function ¢(x) and its ath-order derivative
¢™(x ~ k) by

Tix) = /0 FD(y — k) §(y)dy (52)

The evaluation of I';}(x) plays an important role in applying the wavelet-Galerkin method to solve
differential equations.'® Since there are no explicit expressions for representing the scaling function
¢(x) and its derivatives, the values of the integral I'f(x) cannot be computed directly from (52).
An algorithm has been developed by Beylkin'? to compute I'/(co). The authors!” developed an
algorithm for computing the values of the integrals I'/'(x) at dyadic points k/2/ for positive integers
J and k. To make this paper self-contained, we derive the algorithm in this subsection.

As we begin, we note that I'/(x) has the following properties:

Tf(x)=D}L-1) for x>L-1 (53)
Ifx)=0 for |k|2L—1 or x<0 or x<k (54)
(L —-1)=(-1)'T{L—-1) for k=0 (55)
T (x)=(=1Y'THL—-1) for x—k>L—1 (56)

The properties (53) and (54) come from the fact that the support of ¢(x) is in the interval [0,L—1],
which does not overlap with that of ¢")(x — k) for |k|>L — 1. The last two properties are derived
from (52) by performing integration by parts for n times.

Now, applying the two-scale relation (27) and (8) to (52), we have

If()=2" E }: pip; / $"2y — 2 - B2y - j)dy

i=0 j—

T / (= 2% — i+ )dy)dy

i=0 j=0

L—1 L—1
=2'"Y ¥ pipi T (2x = j) (57)
i=0 j=0
This relation allows one to compute the exact values of I'/(x) at dyadic points x = k/2/ provided
that the values of I'(x) at x = 1,2,...,L — 1 are given. To determine the values of I'}(x) for
integers k and x, we first compute the values of I'}(L—1) for k =0,1,...,L—2. Lettingx = L—1,
we obtain from (53) and (57) that

Fk(L -1)=2" ! Eo Z pipj F2k+l—j(2L 2-))
i j=0

=2"" ‘20 EP:PJF2k+x—,(L 1) (58)
i j=



For n > 0, the equations obtained by substituting k = 0,1,...,L — 2 into (58) constitute the
following homogeneous system for unknowns I'’(L — 1), I =0,1,...,L — 2:

I"(L~1)=DI"(L-1) (59)

T"L~1)=[T§L~-1) THL~1) - Tf_yL— DI (60)

D =[dimloci,msr—2 (61)

dwm=2"( ¥ pp+C1Y T ppy) (62)
0<$/SC 0SI<iT

2Uti=~j=m 2+i—fj=—m
It is noted that in the formulation of (59) the property (56) has been used.

As indicated by (59), the vector I'?(L—1) is the eigenvector of the matrix D that corresponds to
the unity eigenvalue. However, the homogeneous linear system of equations in (59) does not admit
the vector I'"(L — 1) to be determined uniquely. The required additional constraint or normalization
condition can be derived from (18). The derivation of such a normalization condition is given
below.

The nth-order derivative of (18) is

k_f) k"¢ x — k) = n! (63)

Multiplying both sides of this equation by ¢(x) and then taking integration from x = —o0 to oo,
we obtain

X k[ #Pe-ieme= £ emie-)

k=—oc

= n! /m P(x)dx
o (64)

Substituting the relations I'}(L — 1) =0 for |k|>L — 1 and T" (L — 1) = (-1)"T{(L - 1) into
the above equation, we have
n!

L2
kzlk"l‘,:‘(L—l)=7' forn >0 (65)

which is the desired normalization condition for the eigenvector of the matrix D associated with
the unity eigenvalue.

Once the values of I'/(L — 1) are obtained, we can determine the values of I'/(x) for x =
0,1,...,L — 2 and |k|<L — 2. To this end, we note from (53)~(56) that there are only (L — 2)?
independent members in the set {I'/(x): x = 1,2,...,L —2; x — L + 2<k<x — 1}. Let the
independent members be packed in the vector

r"=[r"1) r«) --- r*"@ -2 (66)
where
Tx) =[P () T pgs(x) -+ TP i), x=1,2,...,L -2 (67)

Then the equations obtained from (57) by substituting k by x —L+2,x—L+3,...,x—1 and x
by 1,2,...,L — 2 can be put into the following matrix—vector form:

Q@"1-Q)xrr=d (68)



where

QI,] Q1,2 e QI,L—Z

Qz,] Qz,z T Q2.L-2
o=| U . (69)

Q21 Qa2 o Q-2
Qi,j = [qi,j,k,m] 1<k,m<L—2 (70)
9i.jkm = P2i—~j P._(_ysm (1)
d=1[d(1) d2) --- d((L-2)))] (72)
dmL—2m+k)= 5 pipThy (L—1) (73)
i,jepu(k,m,L)
and the index set p(k,m,L) is given by

ulk,m,L) == {(i,j): L—-1<2m—-2k—i or L—1<2m—j),0<i,j<L-1} (74)

It is important to note that the eigenvalue set of the matrix Q includes 2=, m =0,1,...,L—2 with
multiplicities L/2 — [((L — 2)/2) —m|, but does not include 2. Hence, the vector I'® can be obtained
by solving the linear system (68). For n > 0, however, the matrix (2! ~"I — Q) is singular and the
rank deficiency is n. To have a linear independent system of equations for the unknown vectors
I',n=1,2,.-., we seek in the following for additional relations among the members of I'".
Multiplying both sides of (63) by ¢(») and then taking integration from y=0 to y =x, we obtain

S & / $(»)"(y — k)dy = ! / $(y)dy (75)
0 0

k=—00
or

S k"TIx) = n! 6)(x) (76)

k=—00

For an integer x = m, the above equation can be written as

m—1
S k"TP(m) = n!6;(m) 2
k=m—L+2
where 0;(x) is defined in Section 3.2. The above equation can be written in the form
[(m—L+2)" m—=L+3) --. (m— 1)'IT"(m) = n! 6;(m) (78)

Hence, the linear independent system of equations for I', can be finally obtained as follows: (i)
For i = 1,2,...,n, replace the mth row (m € {1,2,...,L — 2}) of the submatrix Q,; in (69) by
[G—L+2y (i—L+3) --- (i—1)"] and the mth row of Q, ;,j # i by a zero row vector,
(ii) Replace the mth element of the subvector of d that corresponds to the submatrix Q; ; by n! 8;(i).
4.3. Evaluation of integrals Ap"(x) = [ y™¢"™(y — K)$(y)dy

In solving a differential equation with non-constant coefficients by the wavelet-Galerkin method,
it is required to compute the following integral:

AP(x) = /0 Y 6Oy — D))y, mn0 (79)

In this subsection, we devote an effort to the evaluation of this integral.

10



Since ¢™)(x) = 0 for x>L — 1 or x<0, it is easy to verify that the integral A7""(x) has the
following properties:

A™"(x) = AL~ 1) for x>L—1orx—k>L—1 (80)
AP"(x)=0 for x<0 or x<k or |k|ZL-1 (81)

Applying the two-scale relations (8) and (27) for ¢(x) and ¢"(x), respectively, to the integral
(79), we obtain the following two-scale relation for A7""(x):

L-lL=1 m
AP (x) = 201 Y zp,-p,( ) AT (2x - ) (82)

i=0 j=01i=0
Since Ak (x) = TjJ(x), the above relation allows one to recursively calculate A7""(x) for
m = 1,2,.... However, for fixed integers m and n, the values of A7""(x) at various mtegers k

and x have to be determined simultaneously. The formulation of a linear system of equations for
solving A;*"(x) at integer points of k and x is given below.
Substituting x = L — 1 into (82), we obtain

L-1 L—-

21+m—nAmﬂ(L— 1)—- z:o E PlP; A’Z"k'lj+t(L_ 1)
i j=0

L-1Ll-1 m

+.Zo 7‘0 pr,p,( ) AL - 1) (83)
i=0 j I=1

It follows from (81) that A}""(L — 1) vanishes for |k|>L — 1. Then, substituting k =2 — L,

3-1L,...,.L —2 into (83), we have the following linear system of equations for the unknowns
AP — 1)

@I A) AL - 1)=b (84)
Here 1 is the (2L — 3) x (2L — 3) identity matrix, and
AMML-1) = [A'z"’_"L(L -1) A;";"L(L -1) - AZ";"Z(L - 1)]T (85)
@ ray UG sy T Gy,
aJ—-L.Z—L al—L.J—L a!—L«L—I
A= : : . : (36)
aL—Z.Z—L aL—;'.]—L aL—Z.L—l
a, s = E Pi Py (87)
0"—/’—‘»'[__2"
b=[b2-L)bB-L) --- BL-2)" (88)
L=l L—-1 m
=5 o] ) A1) (89)
i=0 j

Since the matrix A has the eigenvalues 2!~ for i = 0,1,...,L — 1, the matrix (2'*"" 1 — A)
is singular for 0<<n — m<L — 1. Hence, for the case of n<m, we can directly solve the linear
system (84) to find A;""(L —1) for k =2 —L,3~L,...,L — 2. As for the case of n > m, we
have to look for an additional equation which allows, along with (84), one to determine the vector
A™(L — 1). To this end, we apply the relation (18) to obtain

E kn—m/ m¢(n)(y)¢(y k)dy = Z( I)J( )M¢/:_ n—j¢(")(y)dy (90)

k=—oc

1"



By performing integration by parts on the last integral of (90) for n — j times, we have

/oo "M x)dx = (~=1)" (n —j)!/oo ¢ (x)dx

—00 ~00

(=)' (n= )PV (00) — gU™N(~00)], j>1
= (—1)"n!/ d(x)dx, j=0

— o0
_ {0 izl
={Coym, 720 on
Substituting (80), (81), and (91) into (90), we have
L-2 m . .
> Sk AL -1)=(=1)"n! fornzm (92)
k=2-L j=0

Making a rearrangement yields

m L-2 A .
e AL -D=(1)"nt =3 ) ; Lk"-'"+f A"IML - 1) (93)
J=lk=2-

L-2
2

k=2—
This is the desired additional relation for the vector A™"(L — 1). Hence, the non-singular system
of equations for A™"(L — 1) can be formed by replacing any equation in (84) by (93).

Having obtained the values of AJ""(x) for x = L — 1, we are to determine the values of AJ""(x)
for x = 1,2,...,L—2 and |k|<L—2. If m and n are specified, there are only (L —2)? independent
unknowns to be determined simultaneously. These independent unknowns are packed into the
vector

A™T = [A™(L) A™(2) oo AL - 2)]T (94)

i

where
! A™M(x) = [AY () AT 3(x) -+ ATR(0)), x=1,2,...,L -2 (95)

By letting k =x—L+2,x—L+3,...,x—1andx = 1,2,...,L -2 in (82), we obtain the following
system of equations for the unknown vector A™";

@M - QA =e (96)
|
where
e=[e(l) e2) --- e((L -2 97)
exL -2x+k)y= 3 pipi AR (L-1)
i, j€Vm. (ks X)
L-1L-1 m M\ mein )
+ ¥ pip; ( I)J A i1 (2x =) (98)
i=0 j=0 /=1

The matrix Q is defined by (69) and the index set v, ,(k x) is given by
Vmn(k,x) == {(i,j): (L—1<2x—2k—i or L-1<2x—j),0<i,j<L-1} 99)

As mentioned before, the eigenvalue set of the matrix Q contains 27/, i = 0,1,...,L — 2, with
multiplicities L/2 — |((L — 2)/2) — i|. Hence, for n > m the matrix (2!*”~"I — Q) is singular and
its rank deficiency is n» — m. To have a linear system of independent equations for A™”", we seek
in the following for additional relations among the elements of A™",
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Multiplying both sides of (63) by y"¢(y) and then taking integration from y =0 to y = x, we
obtain

X

5 & /0 Yy — K)p(y)dy = ! /0 Y é(y)dy (100)

k=—o0
For integer x = i, the above equation can be written as
i—1
3 KAPT(G) = nt M) (101)
k=i—L+2

The equations in (101) with i = 1,2,...,n—m can be used together with (96) to construct a linear
system of independent equations for the unknown vector A™". The procedure of constructing such
a system has been described in Section 4.2.

At this point, we have derived algorithms for computing the values of A}""(x) at integer points x.
Once these values are obtained, the values of A}""(x) at dyadic points x = k/2/ can be recursively
obtained from the two-scale relation (82).

4.4. Evaluation of integrals Y;""(x) = fg Y"0,(y — k)d(y)dy

In solving an integro-differential equation with non-constant coefficients by the wavelet-Galerkin
method, it is required to compute the integral

() = fo Y0y — K)b(y)dy, n >0 (102)

Since ¢(x) = 0 for x>L—1 or x<0, it is easy to verify that the integral T;""(x) has the following
properties:
T x)=TP(L—1) for x>L—1 (103)
To"(x)=0 for x<0 or x<k or kx>L-1 (104)

With the substitutions of the two-scale relations (34) and (8) for 8,(x) and ¢(x), respectively,
into (102), we obtain

m,n —(m+n+1) S MY Jnam—kyn .
T () =2 Y X X e, ) Tasm@ -0 (105)
It is noted that for k<1 — L and x>0, we have that x —k =x+ L — 1>L — 1 and the integral

0a(x—k) is explicitly given by (42). As a result, the integral Y;""(x) for k <1—L can be explicitly
evaluated by

n—1 j ; Y AY) .
'@ = L 0y~ 1) [zjj (’)(1 j'L) M(;"““(x)] (106)
j= !

i=o \/

Having derived formulas for computing T""(x) for x > L — 1, we can solve the independent
unknown Y""(x),x = 1,2,...,L — 1, from (105). For fixed integers m and n, the independent
unknowns of Y,""(x) are packed in the vector

™= [T T™) - T - D) (107)
where

T™(k) = [ TRl (k) Tl otk) - TREK)), &

I
—_
N
t~

|
—_

(108)
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The total number of elements of the vector T™" is (3L —4)(L — 1)/2. It is noted that the required
linear system of equations for solving this unknown vector is formed from (105), and the system
matrix is full rank. In constructing such a system of equations, the values of the integral T,:”“i'"(x)
in (105) for i < m are known. Hence, the vectors T™” can be computed recursively for m =
0,1,... and n = 1,2,... starting from T%!,

4.5. Evaluation of three-term connection coefficients

The integrals

) = /0 S(S™(y — Ny — k) dy (109)

for 0Oxm<n<lL/2-1 and j,k,m,n,x € Z, play an important role in solving non-linear differential
equations with the wavelet-Galerkin method.” In Reference 13, Q7'(c0) is called the three-term
connection coefficient of wavelets. In order to extend the wavelet-Galerkin method to finite-domain
problems, we devote an effort to compute the values of Q”‘ 2'(x) at dyadic points x = k/2/.

As we begin, we note that Q;"(x) has the following propertles

() =0 for [j|, |k, or |j—k[=L-1 (110)
Q]’.f';‘"(x)=0 for x — j,x — k, or x<0 (111)
(x)—Q"'k"(L— 1) forx—j,x—k orx=L—1 (112)

The formal properties (110) and (111) come from the fact that the supports of ¢()(x) for i =
0,1,2... are all in the interval [0,L — 1].
Now, substituting two-scale relations (8) and (27) into (109), we have

L—1 L—
Oy = 2! EO EO Z Pi, Pin PiS05 5y i 2icip—1, (2% — ia) (113)

l,,— Ib l(
Since Q73"(x) = Q7 (L — 1) for x>L — 1, the values of Qj"' "(L — 1) for integers j,k,m,n can
be first computed For this purpose, we note from (110)—(112) that, for fixed integers m and n,
there are 3L%2 — 9L + 7 unknown QL —1), where k€ [j+2—L,j—-2+LIN[2-L,L-2]
and j=2-1L,...,0,...,2 — L. The equations in (113) associated with these unknowns constitute

a linear homogeneous system as follows:

v=2l-""8y (114)

where
v =[vy v3_p - vio]f (115)
v_":[Q.’Z':’(L 1) Q”H(L— 1) --- Q’""(L— 1] (116)

v=max(j+2—-L,2—-L), u=min(j+ L —2,L —2), and the elements of matrix S involve the
triple products of the form p; p;, p;..

It is found by computation that the matrix S has eigenvalues 2'~* k =0,1,...,L — 2, and that
the multiplicity of the eigenvalue 2'~* is k4 1. Obviously, (114) indicates that the vector v is the
eigenvector of the matrix S corresponding to the eigenvalue of 2(!="—"). However, since the rank
lost of S at this eigenvalue is m+n+1, it is not sufficient to determine the vector v uniquely from
(114). To have a system of linearly independent equations for solving the unknown elements of
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the vector v, we need extra equations. As before, the required extra equations can be derived from
the moment equation (63). By first multiplying both sides of (63) by ¢™(y —j) and ¢"(y —k),
respectively, and then taking integration from y = 0 to y = x, we have

Zk:k” Q™(x) = ! TJ(x) (117)

Y™ Q) = m! Ti(x) (118)
J

For fixed integers m and n, we can form an independent system of equations by deleting the
equations of (114) which correspond to the unknowns Q’J'.'_'(;', j=2-L3-L,...,2—L+n, and
to the unknowns Q’;":,':, k=1,2,...,m, and then adding the equations in (117) for j =0,1,...,n,
and the equations in (118) for k = 1,2,.--,m, with x = L — 1. It is noted that such a replacement
of equations is by no means unique, and a rigorous validation of this rank remedy is difficult. In
practice, however, the rank of the resultant system of equations can be checked by a numerical
computation, and the obtained values of Q'j'.'”,:'(L — 1) can be verified by using equations in (117)
and (118) for 2 —L<j,k<L - 2.

Having obtained the values of Q'j'";" (L—1) for j,k € Z, we can proceed to determine the values
of Q;',;"(x), forx = 1,2,...,L — 2 and j,k € Z. It can be shown from the properties of Q’/”,:"
in (110)-(112) that, for fixed integers m and n, there are only (L — 2)° independent unknowns
among QI'.:',’,"(x),x = 1,2,...,L —2,j,k € Z. These (L — 2) independent unknowns are given by
Q'j’.'_’;:(x) with x—L+2<j,k<x—1, and x = 1,2,...,L —2. The linear system of (L —2)* equations
constructed from (113) by letting x — L +2<j,k<x — 1, and 1 <x<L — 2 has the form

w=Rw+f (119)
where w is the vector formed by the independent unknowns Q77(x), x — L +2<x — Lx =

1,2,...,L—2, the vector f contains elements Q’;‘,:‘(L— 1). We have found by numerical computation
that the matrix R has a unity eigenvalue with multiplicity K given by

m+n
i if m+n<L/2
K =1 " ' (120)
w (3’—]‘—21’)+£’ﬂ ifL/2 <m+n<L -2
i=L/2+1 2

In other words, (119) is singular and it cannot be used to determine the unknown vector w without
adding extra equations. To remedy the rank deficiency of the linear system (119), we again need
the moment equations in (117) and (118). Instead of using the approach of equation replacement
in Sections 4.2 and 4.3 or the approach of equation argument in Reference 13, we propose here
to combine moment equations to some equations in (119). The moment equations in (117) for
Jj=0,1,...,x—1and x = 1,2,...,L —2 are respectively combined with the equations in (119) that
correspond to unknowns Q’}f’jf'(x), and the moment equations in (118) for k=x—-L+3,...,x—2
and x = 1,2,-..,L — 2 are respectively combined with the equations in (119) corresponding to
the unknowns Q7" ,(x). Although the rank lost of R is K, we combine 2K moment equations
with (119) to ensure the resultant system is of full rank. As illustrated by numerical computation,
this manner of equation combination indeed allows us to form a system of linear independent
equations for the unknown vector w. In addition, the moment equations in (117) and (118) can
be used to verify the computational results.
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Table 1. Daubechies’ wavelet filter coefficients
for L=26
i pi
0-470467207784E + 00
0-114111691583E+01
0-650365000526E + 00
—0-190934415568E + 00

~0-120832208310E + 00
0-498174997316E—01

wmhWN—O

Table IL. The values of ¢(x) ¢'"(x) and 61(x)

L=6

x é(x) ¢V(x) 61 (x)

0-0 0-00000000E + 00 0-00000000E + 00 0-00000000E + 00
0-5 0-60517847E+-00 0-15416762E + 01 0-14131460E + 00
10 0-12863351E+ 01 0-16384523E4-01 0-60074157E 400
1-5 0-44112248E 400 —0:24468283E 4 01 0-10529082E + 01
2:0 —0-38583696E + 00 —0:22327582E 401 0-10967114E 401
2:5 —0-14970591E—01 0-12730265E+01 0-98506614E + 00
30 0-95267546E — 01 0-55015936E + 00 0-98548673E+ 00
335 ~0-31541303E - 01 —0-37227297E + 00 0-10033183E+ 01
4-0 0-42343456E — 02 0-44146491E — 01 0-99965909E + 00
45 0-21094451E - 03 0-43985356E — 02 0-99999151E + 00
5-0 0-00000000E + 00 0-00000000E + 00 0-10000000E 40!

5. NUMERICAL RESULTS

In this section we present computed values of functionals defined in (1)—(7) for the Six-coefficient
Daubechies scaling function. For L = 6, the coefficients pi, £ =0,1,...,5, are listed in Table 1.
Table I lists the values of the scaling function ¢(x), the derivative of ¢(x), ¢()(x), and the
integral of ¢(x), 0,(x), forx = 0,0-5,1.0,1-5,...,5-0. Table III lists the values of M"(x) for £ = 0,
m=1,2,3 and x = 1,2,...,5. The values of non-vanishing functionals of T'}(x), A;'(x), ;" (x)
and Qj."’;((x) atx = 1,2,3,4,5, are listed in Tables IV-VII, respectively. It is noted that in computing
the values in Tables II-VII, the 12 decimal digits of Daubechies’ wavelet coefficients are used.
We have verified the obtained values by using the moment equations that are not employed to
remedy the rank deficiency, and the equation residues are all in the order of 10~%. Moreover, the
computed three-term connection coefficients Q;),‘,‘((S) agree with those listed in Reference 13.

6. AN APPLICATION EXAMPLE

The non-linear parabolic equation

ou ou 1 &u

is known as the Burgers equation,® which is one of the simplest partial differential equations
describing both non-linear propagation and diffusive effects. It represents a first step in the hierarchy
of approximations of the Navier-Stokes equation. Depending on the magnitude of the viscous term,
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Table 11i. The values of My'(x) form=1,2,3

L=6
x My (x) M3 (x) M;(x)
1 0-40662888E+00 0-30755931E+00  0-24746348E + 00
2 0-10138604E+01 0-10542175E+01  0-11618193E+01
3 0-77363652E400 0-53674234E+00  0-52903635E—01
4 0-81603481E+00 0-66267182E+00 0-42355381E+00
5 0-81740117E+00 0-66814467E+00  0-44546004E + 00
Table IV. The values of T'j(x) for L =6
k If(x) x k Ii(x) x k Ti(x)
-3 —0-96071829E — 02 —1  —0-74488223E+00 -4  —0-34246575E— 03
-2 0-24682915E + 00 0 0-45379527E — (2 -3 —0-14611872E—01
-1 —0-10642085E+01 1 0-73437630E + 00 -2 0-14520548E + 00
0 0-82732896E + 00 2 —0:12428316E+00 -2 —0-74520548E+00
-2 0-14376046E+00 3  —1 0-89648439E—05 0  —0-11162444E—16
-1 —0-77113404E 400 0 0-74528563E 400 ] 0.74520548E + 00
0 0-74435080E — 01 1 —0-14539422E+ 00 2 —0-14520548E 400
1 0-56789284E +00 2 0-15053970E — 01 3 0-14611872E — 01
4 0-34246575E—03
Table V. The values of A} (x) for L = 6
k AP (x) x k Ay'(x) x k Ay (x)
-3 0-61238997E — 02 -1 —0-33884086E+00 -4 —0-39622225E—05
-2 0-16013363E 4 00 0  —0-48571617E+00 -3 —0-67621931E —03
—1  —0-74526083E +00 1 0-10513436E+ 01 -2 0-19212883E — 01
0 0-57900506E + 00 2 —0-26736083E+00 -2 —0-12104326E +00
-2 0-36873826E—01 4 0 —0-49996340E + 00 0 0-10224223E + 01
-1 —0-39613509E + 00 1 0-10853692E + 01 1 —0-12104326E+00
0  —0-33492810E+00 2 —0-33106420E +00 2 0-19212883E — 01
1 0-69350982E + 00 3 0-44926126E — 01 3 —0-6762193]1E—03
4  —0-39622225E—05
Table VL. The values of Y,"'(x) for L = 6
k T}(’l(x) x k T,""(x) x k T,l“l(x)
—4  0-40660602E+00 3  —4 0-77363681E+00 4 I —0:76349559E — 01
—3  0-40660225E+00 -3 0-77388859E 400 2 0-58249586E — 02
—2  0-40271563E+00 -2 0-76364511E+00 3 —0-14233365E-03
—1  0-44173660E + 00 -1 0-83517453E4+00 5  —4 0-81740146E+ 00
0  0-10494506E+ 00 0 0-40735866E + 00 -3 0-81749716E + 00
—4  0-10146510E+01 1 —0-48100476E — 01 -2 0-80964464E + 00
-3 0-10080259E +01 2 —0-16157050E — 02 -1 0-87377189E +00
~2  0-10401149E+01 4 -4 0-81603510F + 00 0 0-46400092E + 00
—1  0-10491431E+01 -3 0-81613080E + 00 1 —0-13185340E+00
0 0-56252533E+00 -2 0-80824884E 4 00 2 0-28977257E — 01
1 0-17523787E—01 ~1 0-87069022E + 00 3 —0-11265687E — 02
0 0-50032473E 400 4  —0-81106612E —05
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Table VIL The values of Q7}(x) for L =6

x  j k Q% (x) X j k Q4 (x) x j ok Oex)
vl -3 -3 —-071559141E—03 3 1 —4 0-31710703E+00 5 -1 -2 0-87462277E - 01
-2 0-13550268E — 02 —3  —0-13345958E+00 —1 —0-24844590E + 00
—1 0-78711878E — 05 2 -2 0-52989782E — 02 0 0-31358775E 400
0 —0-61485101E—03 —1 —0-11566110E—01 1 —0-12527255E+00
-2 -3 0-52989782E — 02 0 0-25492658E — 01 2 —0-61773222E-02
—2 —0-11566110E —01 1 —0:19359467E — 01 3 0-32901969E — 04
-1 0-25492658E—-01 4 0 2 0-25336150E — 07 0 -4 0-24592627E — 05
0 —0-19359467E —01 —4 0-49689213E+ 00 -3 0-23763642E — 02
-1 -3 —0-22426219E—-01 -3 0-32901910E - 01 -2 0-93548371E — 01
-2 0-60684150E — 01 -2 0-14542464E — 02 -1 —0-62717551E+00
—1 —0-17563529E+ 00 1 —1 —0-24844521E+00 0 0-29322842E — 10
0 0-13782300E + 00 0 0-31359528E + 00 1 0-49689180E + 00
0 -3 0-82360955E — 02 —4 —0-12529008E + 00 2 0-32902689E — 01
-2 0-19635413E+ 00 -3 —0-61351029E—02 3 0-14522972E - 02
—1 —-0:91407419E4 00 2 -2 —0-16454414E—01 4 0-15241273E - 05
0 0-70948150E + 00 -1 0-37778887E — 01 1 -3 —0-44564810E—03
2 -2 -2 —0-16454414E—-01 0 —0-46700711E—01 -2 —0-20741515E-01
—1 0-37778887E — 01 1 0-20316776E — 01 -1 0-87462280E — 01
0 —0-46700711E—01 3 2 —0-71559141E—03 0 —0-24844590E + 00
1 0-20316776E — 01 -4 0-13550268E — 02 1 0-31358775E+00
-1 =2 0-87355550E — 01 -3 0-78711888E — 05 2 —0-12527255E+00
-1 —0-24981584E + 00 —2 —0-61485101E—-03 3 —0-61773222E-02
0 0-31710703E+00 5 -4 —1 —0-76206365E—06 4 0-32901969E — 04
1 —0-13345958E+00 0 —0-44639911E—06 2 =2 0-13394071E-03
0 -2 0-94031790E — 01 —4 0-19493567E — 05 -1 0-49255216E — 02
—1  —0-62003156E + 00 -3 0-48873854E — 06 0 —0-16451344E - 01
0 —0:19146537E —01 —2  —0-12296325E—05 1 0-37810269E — 01
1 0-54276748E + 00 -3 —1 —0-32455570E—-04 2 —0-46774186E — 01
1 —2 —0:22426219E-01 0 —0-72614859E —03 3 0-20491688E — 01
-1 0-60684150E — 01 1 0-12518005E — 02 4 —0-13589007E—03
0 —0-17563529E+00 2 0-24982636E — 03 3 -1 -—0-32455570E—04
1 0-13782300E+ 00 —4 —0-11881821E—02 0 —0-72614859E — 03
3 -1 —1 —0-24844521E+00 -3 0-44515936E — 03 1 0-12518005E — 02
0 0-31359528E + 00 -2 =2 0-13394071E—03 2 0-24982636E — 03
1 —0-12529008E + 00 —1 0-49255216E — 02 3 —0-11881821E—-02
2 —0-61351029E —-02 0 —0-16451344E —01 4 0-44515936E — 03
0 —1 —0-62715213E+00 2 0:37810269E — 01 4 0 —0-76206365E — 06
0 0-28821311E-03 —4 —0-46774186E —01 1 —0-44639911E—06
1 0-49612985E + 00 -3 0-20491688E — 01 2 0-19493567E —- 05
2 0-34806875E — 01 —2 —0-13589007E—03 3 0-48873857E — 06
1 -1 0-87355550E - 01 -1 —1 —0-44564810E—03 4 —0-12296325E — 05

0 —0-24981584E+ 00 0 —0-20741515E - 01

the Burgers’ equation behaves as an elliptic, parabolic or hyperbolic partial differential equation.
Therefore, Burgers’ equation has been widely used as a model equation for testing and comparing
computational techniques.

When the viscous coefficient 1/Re in (121) is small, Burgers’ equation involves phenomena that
change rapidly from point to point. Problems of this type require mathematical representations that
can respond to a local variation. The compactly supported wavelets derived by Daubechies! are
good bases for ‘local’ problems. They have been used successfully to solve Burgers’ equation with
periodic boundary condition.?>24 Due to the lack of accurate finite-domain connect coefficients,
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the wavelet bases have not been used to solve finite-domain problems with non-periodic bound-
ary conditions. In the following, we apply the proposed interval wavelet-Galerkin approximation
scheme to find the solution of the finite-domain Burgers’ equation.

Consider the Burgers’ equation (121) with the following boundary conditions:

u(-1,0=1 (122)
u(l,t) =0 (123)
Let u(x,t) be approximated by the Jth-level wavelet series
A 2o 2 2/t J
ulx,t)= 3. u, (), (x)=2 > u (DP2'x—k) (124)
k=2-L-2 k=2-1-2

where J > 0. Substituting (124) into (121) and then applying the Galerkin discretization scheme,
we have

2-1 du. (¢ 271 271
T S by, (00,0
k=2-L—2 Cdr k—z—L—zf i=2-L—2
21
1
== S cuuu), 1=2-1L-2/3-L-27,..,2/ -1 (125)
k=2—L~2

In the above differential equations, the coefficients g, ,, b,,, and c,, are given by

1
- / 8,00, (x)dx = T0_2* — 1)~ TY_ (=1 - 27) (126)
/ ¢, (), ()22 "’"(’" =2¥2000, ) - (-1-27)1 (127)
2
/ 8,0 0 )dx PI[T2 (27 = 1) =T (~1-2")] (128)

where I'7(x) and Q +'(x) are defined by (4) and (5), respectively. For u(x,f) to satisfy the
boundary conditions (122) and (123), the expansion coefficients u , ,(¢) and u ,_ (¢) must
satisfy the following relations:

g(flfz—)[z—ﬂz Z &, ()] (129)

Z d(u,,,_(1) (130)

u.l.Z—L—2l (t) =

RCIEF}

As a result, there are 27! + L — 4 independent expansion coefficients u,,(¢), k = 3 — L — 27,
4—-L-27,...,27 — 2, that are described by the differential equations in (125) with u , . (¢)
and u , (¢) being replaced by (129) and (130), respectively.

The initial conditions for the differential equations in (125) are derived from the initial condition
u(x,0) of the problem. Here, we consider the discontinuous initial condition

1 for—1<x<0
u(x,O)_{O for 0 < x<l1 (131)

and the continuous initial condition

u(x,0)=%(1—x) (132)
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For the case of the discontinuous initial condition specified by (131), the initial conditions u,,(0)
satisfy

21 0
Z al.kuj_k(o):/ ¢_/J(x)dx
k=2—1-2! -1
! 6,(-H-8 J
227/2-[ (=)= 6i(=1-2")]
I=2-L0L-273-0-27,...,27 -1 (133)

From these equations and relations in (129) and (130), we can obtain the initial conditions u,,(0),
k=3-L-27,4-L—27,...,27 — 2. Similarly, for the case of the continuous initial condition
given by (132), the initial conditions u,,(0) satisfy

21

l 0
E al.ku.l.k(o) = 5 ~/—I(1 _x)¢1./(x)dx

k=2—L-2/
1 _ -
= sl 0@7 = D= 0= =27y =27 M @) + 27 M (=27
1=3-L0L-274-L-27..27 -2 (134)

where a,,, O,(x) and M}(x) are defined in (126), (2) and (3), respectively. Hence, the initial
conditions u,,(0), k=2—-L—2/,4—L—2/,... )2/ — 1, can be obtained from solving the linear
equations of (134) with the additional relations of (129) and (130).

Having obtained the differential equations and initial conditions for u,;(#), we can utilize a
numerical integration scheme to find the expansion coefficients u;(¢). In actual computation,
we have invoked the subroutine DIVPAG in IMSL mathematical library?® to solve the initial-
value problems. In calling this subroutine, the tolerance parameter and the initial time step are
respectively set to 1075 and 0-1, while all the other parameters are set to their default values. By
choosing J = 5 and L = 6, the time evolutions of the waveforms of the wavelet-series solution
of Burgers’ equation are plotted in Figures 1-4. Figures 1 and 2 show the solutions of Burgers’
equation with a linear initial condition for Re = 1 and Re = 100, respectively. The results shown
in Figures 3 and 4 are the solutions evolved from a discontinuous initial condition. From Figures 1
and 3, it can be observed that for a low Reynolds number or high viscous coefficient, the solution
to Burgers’ equation evolves to a smooth steady state, irrespective of continuous or discontinuous
initial conditions. As can be seen from Figures 2 and 4, the solution evolutions of Burgers’ equation
with low viscous coefficients are quite different from those with high viscous coefficients. For the
discontinuous initial condition, the solution of Burgers’ equation with Re = 100 is a shock wave.
Before the shock wave touches the right boundary, its penetration is just like in an infinite domain.
However, when the shock wave touches the right boundary, its action like the billow beats the
reef and generates the spray. In this situation, we cannot find the steady-state solution since the
problem becomes singular.

It is noted that there is no exact solution for the finite-domain Burgers’ equation. In order to
verify the numerical solution, it is often compared it with that of the infinite domain. For the
purpose of demonstrating that the solutions shown in Figures 1-4 are true approximate solutions
of the finite-domain Burgers’ equation, we compare in Table VIII the wavelet-series solutions
u(x,0-92) with the solution u,(x,0-92) obtained by Galerkin approximation using a ninth-degree
polynomial as a trial solution®* and the solution us(x,0-92) of the infinite-domain Burgers’ equa-
tion. Obviously, the local bases used in this paper can respond well to the sharp change of the
shock wave.
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Figure 1. Numerical solutions of Burgers’ equation with Re = 1 and linear initial condition (132)
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Figure 2. Numerical solutions of Burgers’ equation with Re = 100 and linear initial condition (132)

7. CONCLUSIONS

The wavelet-Galerkin method has been shown in the literature to be a powerful tool for the numer-
ical solution of partial differential equations. The computation of wavelet-Galerkin approximation
relies heavily on the evaluation of connection coefficients, which are integrals with their integrands
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Figure 4. Numerical solutions of Burgers’ equation with Re = 100 and discontinuous initial condition (131)

being the product of wavelet bases and their derivatives or integrals. We have described the al-
gorithms for the exact evaluations of connection coeflicients for Daubechies’ compactly supported
orthonormal wavelets on a bounded interval. These algorithms extend the application scope of
the wavelet-Galerkin method to finite-domain problems. They also play an essential role in ap-
plying the newly developed interval wavelets'>?° to the numerical solution of partial differential
equations. This role has been demonstrated by a numerical example.
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Table VIII. Numerical solutions of finite-domain Burgers’ equation

Re =100, t =092

x W-GJ=4 W-GJ=5 PA® ES®
-1.0 1-0000 1-0000 1:0000  1-0000
-0.9 0-8508 0-8722 0-9956  1-0000
-0-8 0-8809 0-8727 10456 1.0000
-07 0-8810 0-8727 10672 1-0000
~0-6 0-8811 0-8728 10402 1.0000
-05 0-8817 0-8737 09831 1-0000
—0-4 0-8860 0-8781 09303  1-0000
-0-3 0-8981 0-8913 09128 1-0000
-0-2 0-9204 09157 09444 1-0000
-0-1 0-9487 0-9465 10159 1.0000

00 0-9752 0-9742 10963 1-0000

01 0-9920 0-9914 1-1411  1-0000

0-2 0-9989 0-9983 1-1057  1-0000

03 0-9948 0-9980 09613 0-9998

0-4 0-9260 09610 07099 09764

05 0-1090 0-1156 0-3933  0-1861

06 ~0-0270 0-0029 0-0905 00015

07 0-0063 0-0000 —0-1017  0-0000

08 0-0000 0-0000 —0-1154  0-0000

09 0-0000 0-0000 0-0091  0-0000

1-0 0-0000 0-0000 0-0000  0-0000

W-G: wavelet-Galerkin; PA: polynomial approximation; ES: exact solution
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