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Abstract

We consider a random walk in i.i.d. random environment with dis-
tribution v on Z. The problem we are interested in is to provide an
estimator of the cumulative distribution function (c.d.f.) F of v from
the observation of one trajectory of the random walk. For that pur-
pose we first estimate the moments of v, then combine these moment
estimators to obtain a collection of estimators (F,);>1 of F', our final
estimator is chosen among this collection by Lepskii’s method. This
estimator is therefore easily computable in practice. We derive con-
vergence rates for this estimator depending on the Holder regularity of
F and on the divergence rate of the walk. Our rate is optimal when
the chain realizes a trade-off between a fast exploration of the sites,
allowing to get more informations and a larger number of visits of each
sites, allowing a better recovery of the environment itself.

Keywords and phrases : random walk in random environment, non-parametric
estimation, oracle inequalities, adaptive estimation .
AMS 2010 subject classification : Primary 62G05, Secondary 62E17, 60K37

1 Introduction

Since its introduction by Chernov [Che67] to model DNA replication, ran-
dom walks in random environment (RWRE) on Z¢ have been widely studied
in the probabilistic literature. This model is now well understood in the case
d = 1, the case d > 1 is more complex and only partial results have been
obtained. A recent overview can be found for example in [Zeil2].

In this paper, we are interested in estimating the distribution v from the
observation of one trajectory of a random walk in random environment v on
Z. The problem of estimation for RWRE was originally considered in [AE04]



who introduced an estimator of the moments of the distribution. The state
space of the walk in [AE04] is more general than Z but their estimators have
a huge variance, they are therefore unstable and cannot really be used in
practice. More recently, [FLMT4, [FGL14, ICFL" 14, [CFLLI6] considered the
random walk on Z and investigated the problem in a parametric framework.
They proved consistency of the maximum likelihood estimator in various
regimes of the walk and even its asymptotic normality and efficiency in the
ballistic regime, see Section [2| for details.

Although very interesting, this approach suffers several drawbacks both
for practical applications and from a statistical perspective. First, the re-
sults are stated in a purely asymptotic framework where the number n of
sites visited by the walk tends to infinity. Next, the quality of the es-
timator strongly relies on the assumption that the unknown distribution
lies in a parametric model. Both assumptions impose severe restrictions
for applications. The robustness of the procedure to a misspecified model
for the unknown distribution, or the dependence of the performances of
the maximum likelihood estimator with respect to an increasing number of
parameters to recover are not considered. Moreover, the maximum likeli-
hood estimator can be evaluated only after solving a maximization problem
that is computationally intractable in general. Finally, the estimators of
[FLM14, FGL14, ICFL" 14, [CFLLI6] are not exactly the same depending on
the regime of the walk (recurrent or transient). This is an important prob-
lem from a statistical perspective since the regime depends on the unknown
distribution of the observations, see Section [2| for details.

In this paper, we propose by contrast a non-asymptotic and non-parametric
approach to tackle the estimation of the unknown cumulative distribution
function (c.d.f.) of the environment from one observation of the walk. All
our concentration results are valid in any regime, the only difference be-
tween the regimes lies in the convergence rate of the c.d.f. estimator. Our
approach is based on the estimation of the moments of the unknown dis-
tribution, these estimations can always be performed in linear time. Those
primary estimators are then combined to build a collection of estimators
with non-increasing bias and non-decreasing variance and the final estima-
tor is chosen among them according to the Lepskii method [Lep91]. The
resulting estimator is therefore very fast to compute and provides at least a
starting point to an optimization algorithm computing the maximum likeli-
hood. It satisfies an oracle type inequality, meaning that it performs as well
as the best estimator of the original collection. The oracle type inequality
is used to obtain rates of convergence under regularity assumptions on the
unknown c.d.f.. More precisely, the rate of convergence of our estimator,



stated in Theorem [I| below in terms of the number n of visited sites, is given
logn \ 7/ (27H4K)

n )

in the recurrent case by k\’fﬁ" and in the transient case by (

where 7 is the Holder regularity of the unknown c.d.f. and x > 0 is a param-
eter related to the rate at which the chain derives to infinity, see Section
for details. This rate can be compared with the one we would achieve if
we observed the environment (wg)i<z<n. Actually, the empirical c.d.f. is
known to converge at rate 1/y/n, without assumptions on the regularity
of F' by the Kolmogorov-Smirnov theorem and Dvoretzky-Kiefer-Wolfowitz
inequality [DKWH56], Mas90] gives a precise non-asymptotic concentration in-
equality. Our result is therefore much weaker, which is not surprising since
we only observe a trajectory of the RWRE, but it can be noticed that, in
the recurrent case, we recover, up to the logarithmic factor, this usual rate
of convergence. Indeed, in this regime, the walk visits every site infinitely
often and it allows to learn the environment itself. One could also recover
this rate in the limit v — oo. In Theorem [l v is assumed to be smaller
than 2, the extension of our results to v > 2 would require further technical
analysis that is not performed here. The optimality of the dependence in k
in general remains also an open question.

The performance of the estimator seems to deteriorate as k increases, that
is when the chains derives faster to infinity, which is confirmed by our short
simulation study in Section [6] However, when expressed in terms of the
number of observations, that is the number T}, of steps of the walk, the
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log log T}, log Ty when 0 < k < 1,
n

rates become Tog T, In the recurrent case, (T—

2 0
% " Wwhen k = 1 and ( when k > 1, see the remark

after Theorem It follows that the best rate is actually achieved when
k = 1. This looks surprising compared to the results of [FLMI4] where
the rate 1/4/T), can be recovered in the ballistic regime (k > 1). The non-
parametric problem that we consider seems therefore more complex than the
parametric case. Actually, our rate of convergence is optimal in a regime
where the walk realizes a trade-off between visiting more sites to obtain more
information and spending more time on each site to learn the environment
itself.

More generally, from a statistical perspective, we believe that the RWRE can
be seen as a toy model for non-linear inverse problems in statistics. While
linear inverse problems have been deeply studied in the last decades, see for
example [Cav1ll [ABT13| for recent overviews, much less is known when the
observation is not a noisy version of some linear transformation of the signal
of interest. The problem considered in this paper is a typical example which

.
log T, \ 27+4k
T7L



has been intensively studied from a probabilistic point of view. As such,
many tools for statistical analysis, such as concentration inequalities, are
already proved, or can be easily derived from existing results on the walk.
The paper is organized as follows. In Section [2| we present the model, recall
a few basic results on the RWRE and state our main theorem. In Section
we present the construction of the estimators of the moments of the distri-
bution of the environment, which are the building blocks of our procedure.
We also present their concentration properties and the key martingale ar-
guments leading to these results. Section [4] presents the construction of the
collection of estimators for the c.d.f. and states the concentration proper-
ties of these estimators. It also presents the oracle type inequality satisfied
by the final estimator chosen among the precedent collection by the Lep-
skii method. A short simulation study is presented in Section [5] showing
the actual performances of our estimators. The most technical proofs are
postponed to Section [6]

2 Setting

Let w = (wz),ez be an independent and identically distributed (i.i.d.) se-
quence of random variables taking values in (0, 1), with common distribution
v. The random variable w is called the environment and its distribution on
(0,1)% is denoted by Q” = v®%. Given a realization of the environment
w, let S = (St);¢z, denote the random walk in the environment w, that is
the Markov chain on Z starting at Sy = 0 and with probability transitions
defined as follows:

Wy ify=ao+1
w(Sr1=ylSt=2)=<1-w, ify=2-1.

0 otherwise

The probability measure P, of the chain, conditionally on the environment
w, is usually called the quenched distribution, while the unconditional dis-
tribution given by

P () =/Pw<‘>@“<dw>

is called the annealed distribution. The asymptotic behavior of the walk
(S,;)tGZ depends on the random variables p, = % More precisely, if

E¥ Hlog pol] is finite, Solomon [Sol75] proved the following classification:

1. if E¥ [log po] < 0, limy_yo0 St = 00,



2. if B [log po] = 0, limsup,_,,, St = 0o and liminf; . S} = oc.

The exact divergence rate of (Si),c;, in the first case was obtained by
Kesten, Kozlov and Spitzer [KKS75]. Suppose that the distribution of log pg
is non arithmetic (that is the group generated by the support of log pg is
dense in R) and that there exists some x € (0, 00) such that

B [pf] =1 and E¥ [pflog" (po)] < o (1)

where log™ (x) = log(z V 1).

When « exists, a simple convexity argument shows that it is unique. This
value determines the asymptotic divergence rate of (St)t€Z+' More precisely,
let T}, denote the first hitting time of n € Zy, T,, = inf {t € Z4, S =n}:

1. if k < 1, Ty, /n'/* and S;/t* converge in distribution to some non trivial
distribution,

2
2. if k=1, anogn and (logtt) S; converge in probability,

3. if k > 1, % and % converge in probability.

The first two cases are called the sub-ballistic cases and the last one the
ballistic case, where T}, and S; grow linearly.

In the recurrent case, the order of magnitude of the fluctuations of S; was
obtained by Sinai [Sin82]. Suppose that E” [log po]| = 0, E¥ {(log pO)Q] >0
and that the support of the law of pg is included in (0, 1), then S;/(logt)?
converges in distribution to a non trivial limit.

Our main result is valid either under the assumptions of [KKS75] or under
a slightly weaker version of the ones presented in [Sin82]: let us introduce
the following assumption

E” [log po] = 0, E* [ (log o)’ | >0
and Ja > 0, E” [p§] +E¥ [py ] < +o0
or (H)
E¥ [log po] < 0, the distribution of log pg is non arithmetic
and 3k € (0,00), E” [p§] =1 and E” [pflog(po)] < oo .

Under (H), (St)tez, 1s either transient to the right, when E” [log po] < 0 or
recurrent, when E” [log po] = 0. In both cases, T,, is almost surely finite for
any n € Z.



Our problem here is to estimate the c.d.f. F' of the distribution v using the
path Sjo7,] = {S, 0 <t <T,}. As we need to assume that F' is Holder
continuous to bound the bias of our estimators, we recall the definition of
~v-Holder seminorms and spaces: for any v € (0, 1], the Holder space C7 is
the set of continuous functions f : [0, 1] — R such that

|f(v) = fu)|
flly =sup —V—FF— < o0
51l = sup 50—
and for v € (1, 2] the Holder space C7 is the set of continuously differentiable
functions f : [0,1] — R such that

() = f'(u)]

|v —u|y—1 =

1£lly = 1 lsc + sup
UFV

The following theorem is the main result of the paper.

Theorem 1. Suppose that the c.d.f. F(t) = fg v(dw) is y-Hélder for some
v € (0,2] and that v satisfies Assumption . There exists a constant C,,
depending only on the distribution v such that, for any integer n > 2, there
exists an estimator ﬁn = fn (S[O’Tn}) satisfying

logn ﬁ . v
C,,( ) if E[log po] < 0

n

C, oz if E¥[logpo] =0

E [I1Fn — Flloo | <

]Lloreover, for any integer n > 1 and any real z > 0, there exists an estimator
F? = f? (S[O7Tn}) such that if E” [log po] < 0,

Y
~ 1 2y+4r
IW@ﬁ—M@za(”“Wﬁ” )gfe
n

Remark 1. In the recurrent case, the rate logn/+/n is, up to the logarithmic
factor, the rate of convergence of the empirical c.d.f. when the environment
(Wg)o<z<n is observed. This is the best rate reached by our estimator ex-
pressed in terms of the number n of visited sites. This is not surprising
since the walk visits each site many times and can basically learn the envi-
ronment itself. When k > 0, the rate deteriorates as k increases, which was
also expected since the walk derives faster to infinity in this case. However,
the rate of convergence can also be expressed in function of the number of



observations, that is the time T, it took to reach site n. In the recurrent
regime, log Ty, ~ n'/2, so the rate becomes
loglog T,

log T),

1/k

In the transient regime, for k < 1, T, ~ n'/"  so the rate of convergence

becomes o
log TTL 2v+4k
Ty

When k=1, T, ~ nlogn and we get the rate of convergence

(t5)

T

While for k > 1, T, ~ n and the rate of convergence is

log T, \ &%
Ty

Therefore, the best rate expressed in the number T, of observed steps of the
walk is obtained in the sub-ballistic regime where k = 1. The situation is
slightly more complicated in the non-parametric problem considered in this
paper than in the parametric setting of [FLM1],[FGL1},|CFL" 14,[CFLL16|,
where the optimal rates were obtained in the ballistic regime. In the non
parametric case, there seems to be a trade-off between exploring more sites
(increasing k) to get information about more realizations of v and spend
more time on theses sites (decreasing k) to have a better knowledge of these
realizations.

3 Estimation of the moments of the environment

This section presents the estimators of the moments of the environment
and the key martingale arguments underlying their concentration properties.
These will be the basic tools to build and control the estimator of the c.d.f.
in the following sections.

Following [CFL™14|, we write the likelihood of the observation using the
following processes. Let

L(to,l’) = Z J'lé{S,g:a:,StJrl::1:—1}a

0<t<tp—1

R(t()?x) = Z “é{St:x,St_‘_l:x—i-l}
0<t<tp—1



denote the number of left (resp. right) steps for S until time #y and from
site . The likelihood L, (S[O’Tn]) of the observation can be expressed in
the following way, see [CFL™14],

/ (H wf (1 — w)”ﬂ»@) Q”(dw)

€L
1
“11 / GBTn) (1 ) L) ()
0

TEZ

Now, our choice of T,, implies that L(7,,n) = 0 and

R(T,,x), Ve <0

LTy, x+1) =
( ) {R(Tn,x)—l, Vo e [0,n — 1]

Hence,

1
£ ) = T[ [/

z<n—1

The collection (L(T},, x))z<n is therefore an exhaustive statistic in our prob-
lem on which we will base our estimation strategy. An important result of
IKKST75] is that the process

(Zy)o<z<n = (L(Th,n — x))o<e<n

is a branching process in random environment with immigration. This rep-
resentation was successfully used in |[CFL™14] to deal with the parametric
case. In particular (see [CFL™14, Proposition 4.3]), under the annealed law
P”, (Z})o<e<n has the same distribution as (Z;)o<z<n Where (Z;)zez, is an
homogeneous Markovian process with transition kernel

K¥(i, j) = (Zj]) /Olaiﬂ(l—a)jy(da) . (2)

Moreover, if E¥ [log po] < 0, (Z;)zez, is positive, recurrent and aperiodic
and admits the unique invariant probability measure 7 defined, for any i €
Z+aby

(@) =E [W 1 -W™)] where W= i V=V (3)
=0



and for any x € Zy, V, = >_7_,log p, (see [CFLT14, Theorem 4.5]).
Equation shows that it is natural to estimate the moments

1
me? =8 w0 —e0)’] = [La0 —ayvda), 05 e
0

Our estimation strategy is based on the remark that, for any o, 5 € Z .,
. t—a+7—0B\ i .
Vi > H1—a) =a*(1—a)? . 4
P> o Z%( e ) (- =a®(1-0) . (4

Integrating this equality with respect to a leads to the relation.

Vi a Z(Z_O‘+]_B)K(”j):m“’ﬁ.

;o i+j
7>0 Lo ( j )
In other words, for any «, 8 € Z,

Vi > a, Vo € [1,n] mPLlisq =E [®o5(Z0 1, Z0)|Z0 1 =1i] , (5)

T

where, for any integers ¢ and 7,

i+j—(a+6)) a—1(~_l B=1/:

C o i—a _ =0 (= DT G = 1)

®a,p(i,7) —“‘{iza,jzﬂ}w = W{iza.,5>8) 0T )
i 1=0

It is therefore natural to estimate m®# by the following estimator.

~ 1 n n—1
mah = WC;@&,B(ZQ_LZQ) where N = ;“‘{zgza} , (6)

with the convention that 0/0 = 0. The following lemma summarizes the
preceding remarks.

Lemma 2. For any integer n > 0, denote by (Fnz)y<y<, the filtration
generated by the sequence (ZQ)nggn' For any o, B € Z., the triangular

arrays (Xfi’f)ggmgn@o defined, for all integer n > 0, by

X9 =0,
Vee{l...on}, X =@ap(Z0 0, 2]) —m W oy

T

are martingale difference arrays with respect to (Fnz)o<p<n<oo-



Proof. For any integers n,«, 8 > 0, the process (Xﬁ"f)ogxgn is adapted to
(Fnz)g<pen Moreover, yields directly E [ngﬂ\fn,x] =0. O

Lemma [2| shows that one can use martingales theory to control the risk of
our moment estimators. As an example, we give the risk bounds derived
from Mc Diarmid’s inequality [McD89| in Theorem |3| and Theorem {4| gives
the central limit theorem satisfied by these estimators.

Theorem 3. Assume that the random walk is either recurrent or transient
to the right, that is E”[log po] < 0, and let o, 8 € Z. For any integer n > 1
and any real number z > 0,

-1
o~ n (fa+p z _
P (‘rn%*g-— nm“*alzz ”C$< N ) 2n/> <2e77 .

Remark 2. Note that, if E[logpg] < 0, % = %Zzzlﬂ‘{nga} converges

according to toE[(1 =W 1] >0 and if E[log po] = 0, Ny/n > 1/2
with large probability (see Lemma Therefore, for any o, > 0, ma’B
converges at parametric rate \/n.

Remark 3. For a = 0, N = n, therefore the convergence rate of the
estimator of the moments E [(1 —wo)?]| for 8 > 0 is deterministic in this
case.

Proof. Notice that

n
Ng(mgﬁ —m®P) = Z n,x Z Zy 1. 2y) — mOé’B“A{ZLlZa} .

=1 =1

Moreover, an elementary combinatoric argument shows that, for ¢ > o and
Jj =B, (Zﬂi:z_ﬁ) (az,@) < (“;J). Thus, for any n > 1 and z <n —1,

1
(a-i—ﬁ) = (I)a,ﬁ(CV?ﬁ) :

[0}

Theorem [3| follows now from Lemma |2/ and Mc Diarmid’s inequality (see
Theorem 6.7 in [McD89]). O

The asymptotic behavior of the estimators in the transient case is given
more precisely in the following theorem.

10



Theorem 4. Suppose that E¥[log po] < 0. For any o, 8 € Z, the estimator
of m®P is asymptotically normal, more precisely

V(me? — mPy —E N(0,V2)

where
ffer]
B [(1—=W)e)

2
Vo =

where (Zx> 1s a Markov chain with transition kernel KV started with the

x>0

invariant distribution 7 (see and (3)).
Theorem W is proved in Section [6.1

Remark 4. When a =0,
2 2
m0:28 _ (mo,ﬁ> < V2, <m®f - (mo,ﬁ)

Moreover, these bounds are tight, the lower bound is reached when k — 0
and the upper bound when kK — co. Qur estimators can therefore be com-
pared to the empirical means, knowing the environment: n%rl gzo(l—ww)ﬁ.
The central limit theorem shows that this random variable is asymptotically
normal with limit variance m%28 — (mo’ﬁ)Q. Therefore, the performance of
our estimators matches those of this ideal case when the chain is almost

recurrent but there is a loss in the constants otherwise.

4 Estimation of the cumulative distribution func-
tion

We now want to use the estimation of the moments m®”? to approximate
the cumulative distribution function F' of v. Define for any u € [0, 1],

[(M+1)u]—1

FM () = () et )

k=0

with the usual convention that Z/Z:lo = 0. Lemma |§| shows that, if F' is
Hélder continuous, FM converges uniformly to F' when M tends to infinity.



Thus, we only have to estimate F™. We propose the following moment
estimator

M U n
FT]L\/[ NM Z@b ) ] r— I’Z:p) (8)

where

e =S 8 (1) .

and NM = Yoz OH‘{Zn>M} as in @ still using the convention 0/0 = 0. For

any ¢ > M,

-1

ERED S (i LRI

k=0
where @, ps_j is defined in (5). Therefore, the estimator is essentially
the estimator of FM obtained from the moment estimators of Section [3| but
using only the sites x satisfying ZI! > M. F}) FM s an unbiased estimator of
FM as shownAby Lemma @ Moreover, as Zk:o () Gw) = (Zﬂ) for any
i,7 >0, any M is a (random) c.d.f.
The following lemma gives an upper bound on the risk of each estimator
(F") ez, -

Lemma 5. Assume that the random walk is either recurrent or transient to
the right, that is E¥[log pg] < 0, and that the function F is in C7 for some
€ (0,2]. For any integers M,n > 1, and any real z > 0, we have

< 2e% .

~ n [z+logM 2||F|
EM _ Pl > J
£ loe = §m 2n (M +1)1/2

n

Lemma /5] is proved in Section The first term in the bound is random, it
is derived from the martingale argument presented in the previous section.
The second term is the upper bound on the bias of this estimator derived
from regularity assumptions on F'. It is interesting to notice that, although
FM is a histogram, one can take advantage of the regularity of F' up to
v =2.

The estimator F\n given in Theorem [l| is obtained via Lepskii’s method,
see [Lep91], using the collection (ﬁéw)le. This method selects, for any
fixed z > 0, a regularizing parameter ]/\4\ Z > 0 without the knowledge of ~,

such that the estimator F ™ optimizes, up to a multiplicative constant, the
bound given by Lemma

12



Lemma 6. Assume that the random walk is either recurrent or transient to
the right, that is E” [log po] < 0, and that the function F is in C7 for some
v € (0,2]. For any integer n > 1 and any real z > 0, there exists a r.v.
]\//Zi = gn,=(Sp,1,)) such that,

~TF 4 3log M 6||F 2
‘Fé‘/l —FH > inf { n o [Ztolog + I ||7 }] < %e_z .
o

M>1 | NM 2n (M + 1)7/2

The details of the construction of ]\75 and the proof of Lemma |§| are given
in Section .
To derive, from Lemma@ the rate of convergence of the estimator ﬁé = ﬁé\/l n
and conclude the proof of Theorem [I} we have to study the asymptotic
behavior of Néw. This study is performed in section separately for the
recurrent case and the transient case. The reason is that, in the transient
case, the Markov chain (Z;),c;, admits an invariant probability 7 while
it doesn’t in the recurrent case. The proof of Theorem [I| is completed in
Section

PV

5 Simulation Study

This section illustrates the results of Theorem [I| with some experiments on
synthetic data.

We first consider the case of Beta distribution B(a,b). In this example,
F' is clearly infinitely differentiable and simple computations show that the
coefficient  is equal to a — b.

Figures show the estimates of the c.d.f. for various values of kK and n =
500, illustrating the improvement of the convergence rates as x decreases.
They also provide the value of the selected model ]\/Zn and the value of the
loss Noo = ||F — EMn||o. The red curve is the empirical c.d.f. knowing the
environment (W )o<p<p_1-

Figures [p] and [6] illustrate the importance of the regularity assumption. In
Figure |5, we consider the uniform distribution on [0.3,0.9] with n = 10000,
it shows that, at the points 0.3 and 0.9 where the function F' is non differen-
tiable, the convergence is slower. In Figure [6] we consider the distribution
0.309.4 +0.700.7 with n = 10000; in this case the function F' is not continuous
and the convergence of our estimator is not clear.

Finally, in Table for different values of k, the empirical mean of the
loss Noo(n) = ||F — FMn||y is computed on 500 simulations for any n €
{2% x 100, k =0,...,7} and the slope of the linear regression of log Nu (1)

13
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0.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Figure 1: Recurrent case B(3,3):
n = 500, T, ~ 107, M\n = 39, Figure 3: k =1, B(4,3): n = 500,
Ny =~ 0.065. T, = 7892, M,, =19, Ny =~ 0.105.

1.0

0.8

0.6
I

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 2: x = 0.5, B(3.5,3): n = Figure 4: k = 3, B(6,3): n = 500,
500, T, ~ 195046, M,, = 37, Ny, T, = 1930, M, = 3, N ~ 0.406.
0.028.

Q

with respect to logn is compared to the theoretical bound (24 2k)~" of
Theorem (1} here we use Beta distribution B(3+ x, 3) therefore v = 2. When
k = 0.6, we only compute simulations for n € {2¥ x 100, k = 0,...,5}
because of computational complexity. Remark that the slope obtained em-
pirically is usually better than our theoretical bound: this may follow from

14



0
10

0.8

0.6
I

0.4
"

0.2

0.0
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 5:  U(0.3,0.9): n = 10000, Figure 6: D(0.4,0.7,0.3): n =
T, = 106714, M, = 46, No ~ 10000, T, = 66064, M, — 39,
0.068. Noo =~ 0.31.

the use of Mc Diarmid’s inequality to bound the random part of the risk of
FM in Lemma [8f This bound is not optimal as seen in the control of the
risk of g’ presented in Theorem [3| and Theorem

Table 1:

K (2+2k)7" slope
0.6 0.31 0.33
0.75 0.29 0.31

1 0.25 0.29

2 0.17 0.26

3 0.13 0.24

6 Proofs

All along the proofs, C,, C,, denote constants depending only on the dis-
tribution v (or on v and a parameter a), which may change from line to
line.
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6.1 Proof of Theorem [4]

We start by proving the convergence of

\/»Na B B i ’rolé,z@
ni”(mg» —m® ) — e
n = Vvn
We want to apply a central limit theorem [HH80, Theorem 3.2] to the mar-
o.p
tingale arrays <X\/"ﬁ””> . First, notice that, as, PY—a.s. \Xﬁ‘f\ <1,
1<z<n
Bl o 1 2
max *|—0 and FE” [max — (Xg‘f) ] <1. (10)
1<i<n | \/n 1<i<n |n ’

2
Then we only have to prove the convergence of % 22:1 (Xﬁ‘f) to some con-

stant to apply the theorem. (Remark that condition (3.21) in [HH80, Theo-
rem 3.2] is not necessary here as Vi 5 is deterministic.) The process (Zz) ¢z,
is an ergodic Markov chain with invariant distribution 7 defined in .

2
Therefore, as (Xﬁff) is a bounded function of (Z7_;, Z7) and (Z7 )o<,<p

x—1 “x

2
has the same distribution as (Z;)y<,<,, the mean LS (Xf;f) con-

verges PV-a.s. to
o 2
o’ =B’ [(q)a,ﬁ(ZO» Z1) — maﬁ“A{ZozaQ ]

= [ (vastt, 20) | = (mooe [0 - W)

B
Thus, according to [HH80, Theorem 3.2], > ", X"Tnz converges in distri-

bution to A(0,0%). Moreover, the ergodicity of (Z2)yez, shows also that
N /n converges PV-a.s. to EV [(1 — W~1)*]. Theorem (4| follows now from

Slutsky’s lemma.
6.2 Proof of Lemma [5
The proof is decomposed in two parts. By the triangle inequality,

SM M M
In the first part of the proof, we provide an upper bound for the random
term Hﬁfy — M

term HFM — FH
[o¢]

o] <]

and in the second, an upper bound for the deterministic
(o]

16



6.2.1 Control of the random part of the risk

We use a martingale argument. For any 0 <[ < M + 1, let us introduce the
triangular array:

l
V<o <n, VU =oh (20 1, 20) = Wiznoan M <M—i—1>

Lemma 7. For any n > 0, denote by (F})o<, <, the filtration generated
by the sequence (Z))g<p<n- For any 0 < 1 < M + 1, the triangular array

(Yn%l>0<x<n is a martingale difference array with respect to (F)o<p<n-

Proof. The transition kernel of the Markov chain (Z;),c;, (see [2)) yields,
for any | < M + 1,

E' [ (23, 234017

. (ZQ-&—]) -1 zr j
T [0 G (E) (1)

>0 () =
Zg-i—]
H‘{Zn>M}/ zz HZ Z ( ) Zn]ﬂ (M k) 1—a)’v(da) .
k=0 j>M—Fk (“477)
=

Remark that, for any k < M < Z? and j > M — k,
Z?’L - n _ .
k ( A;F 9) M-k k Zl, k
Therefore,

B[ (23, Zy )|

1 -1 .
. M Zn4j—M |
:J%{Z;LZM}/O aZsHl E <k‘> g < ok >(1—a)]l/(da)
k=0 z

j=M—k

1l 1
B I
_%{Zn>M}/ < > (1—a)M ku(da):H‘{Zg>M}FM<M+1>

where the second equality comes from with « = k, 8 = M — k and
1= 2. O

Lemma [§| provides risk bounds for the estimators ﬁéw .
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Lemma 8. For any integers M,n > 1, and any real z > 0,

~ l l n z+log M _
M _ M > <277 .
g <M+1> <M+1>‘N,§W on ] ‘
Proof. First, remark that
M ! — M l max
"\ M+1 M +1 NM1<l<M
Moreover, for any 1 <! < M and ,j > 0,
-1 ,. . M . . S
SO = (00 = (0
k)\M —k k) \M —k M
k=0 k=0

then ¢, € [0,1] and ‘Yn%” < 1. Thus, Mc Diarmid’s inequality (Theorem
6.7 in [McD89]) and Lemma [7] yield for any 1 <1 < M,

v max
0<I<M+1

max
0<I<M+1

e

1 " n z
Pv YMI > [ <2077 .
!NMZ —Ny\/zn]— ‘
rx=1
The result of the lemma follows now from a union bound. O

6.2.2 Control of the bias

Let us now turn to the term ||F' — FM||o.. The rate of convergence depends
on the Holder regularity of F'.

Lemma 9. Suppose that the function F is in CV for some vy € (0,2]. For
any integer M > 0,

! ! £
F _FM < 7 .
(M+1> <M+1)’_2’Y(M+2)7/2

Proof. We adapt the proof of Theorem 2 in [Mna08]. An integration by
parts shows that, for any [ € {1,..., M},

FM(MJrl) /F Wbyt —(uw) du (11)

binr1—i(u) = = 1)]!\(4;4 — l)!uH(l —u)M!

max
0<I<M+1

where

18



is the probability density function of the beta-distribution with parameters
land M +1 —1. We then introduce a random variable B p;41—;, with
density b; pr+1—;. Recall that expectation and variance of B; p/41—; are given
respectively by

z (M +1-1)
d V|B il = .
M+1 an [ I,M+1 l] (M+1)2(M+2)

E[Biymt1-1] =

Suppose that v > 1. According to ,
l l
M ~F —
(1) = (arer)
l l l
E|F(B ) —F —F B - —
[ (Biar+1-1) <M+1) <M+1>< LML M+1N

As the function F' is y-Holder,
|

! l I
M
_ < -
’F (M+1> F(M+1>’”FH”EHB”M“‘Z M+ 1
l l ||
M _F <||F B LA i s B
‘ <M—|—1> <M+1>‘_H IV Brarsi-] = 2v(M + 2)7/2

and Holder’s inequality leads to
The argument is easily adapted for the case v < 1. O

6.2.3 Conclusion of the proof of Lemma

As |[EM — F||s can be written as

~ l
M _ M _
IBY = Pl = o, s FY () - ()
“[1\1+17M+1[
< F l M !
max —
o<i<m| ™ \M+1 M+1
l l

FM —

o8 ‘ ( M+1 )

+ max su F(u
OSlSMue[ l pl+1 ’ ( )

M+1°>M+1

the result follows immediately from Lemma [§] Lemma [9] and the fact that
F'is v A 1-Holder.
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6.3 Construction of F"* and proof of Lemma@

We follow the construction of Lepskii [Lep91]. A union bound in Lemma
shows that, for C' = 72/3,

n z+ 3log M
<
- NM 2n

P [VM >1, ||[EM - FMH >1-Ce* . (12)
o0

Moreover, by Lemma [0 and the fact that F' is v A 1-Holder

M 2|1 £l
|F—FY < TSR

Fix some real z > 0 and define for any integer M > 1,

oM’ SMAM'
Fn - Fn

A(M) = sup {‘

M'>1

2n |z + 3log M’
NM 2n

The random variable ]\/an is defined by

= . 2n  [z+ 3log M
Mn—argJ\I}l;ri{A(M)—i-Ny\/ 5 }

We now have to check that ]\75 satisfies the inequality of Lemma @ Let

Q:{Vle,

~ + 3log M
FM—FMH < 1z
" oo NT]L\/[ 2n

By (12), P[] > 1 — Ce *. Denote

VM > 1, ﬁn(M):A;lM\/Z+321fL)gM.

On €, by the triangle inequality,

R N R
oo oo

SM  DMAEAM

M FH

< A(M) + 2R, (M7) + A(MZ) + 2R, (M) + _2Fl

- n " (M +1)7/2
2[|F

(M +1)7/2



Now, using the triangle inequality once again, for any M’ > M,
1 R

+ 1P = Fagll + (|| B = FY|| = Ra(u))

s M
Fn _Fn

— 2R, (M) < (Hﬁ% — Py

’ [e.e]

41 F]l
(M+1)7/2

by (13) and the third one is non positive on {2 since ]/%n is non decreasing.

It follows that A(M) < % and the proof is complete.

The first term is non positive on 2, the second one is bounded by

6.4 Asymptotic of NV /n
We start with the transient case.

Lemma 10. Suppose that v satisfies Assumption and E” [log po] < 0.
There is a constant C,, such that, for any integers M > 0, n > 1 and any

real z > 0,
M
P (‘N" —w([M,oo))‘ ZCI,\/?> <277 .
n n

Proof. We will apply the concentration inequality for Markov chains [DG15),
Theorem 0.2] to ZZ;&H‘{ z,>M}- AS (Zz),¢z, is an irreducible aperiodic
Markov chain on a countable state space, we only have to prove that it is
geometrically ergodic. To this purpose, we prove that the return time to
07T =inf{x >1, Z, =0} has an exponential moment. By Lemma 2 in
IKKST75], there is a constant C,, such that for any ¢ > 0,

PY (T >t) < Che T .

Therefore,

ol P L (s
[e v}—/o 50, > (T'>t)dt <oo .

Hence, the Markov chain (Z;).ez, is geometrically ergodic and by [DG15,
Theorem 0.2], there exists a constant C,, such that for any real x > 0 and
any integer M > 0,

NM a2
]P’”( n—Tr([M,oo))‘ Z:c) <2 v
n

The result of the lemma follows O
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The behavior of the tails of 7 is given by the following lemma.

Lemma 11. Suppose that v satisfies Assumption and E¥ [log po] < 0.
There is a constant C,, such that when M tends to oo,

Cy

7w ([M,0)) ~ o

Therefore, up to a change of the constant C,,, for any M > 1,

Cl/
m([M,00)) > o

Proof. By [KKS75] Lemma 1,
P (W >zx)~— . (14)
The definition of 7 given in ,
7 ([M,00)) =E* [(1 = W]

:/1]P’V((1—W_1)M Zu)du
0

1 1
:/ ]P”(WZ 1)du
0 1—um

According to , for any u > 0, using that udr = enrlogu > 14 ﬁlog u,
we get

M* P (Wz : > gCV(M—Muﬁ)chy(loguu)ﬁ .
1—unm
As limpy oo MFPY | W > . 1 > = Cy(log1/u)", dominated convergence
—uM
theorem gives the result. O

To deal with the recurrent regime, as there is no invariant probability in this
case, we use the following lemma.

Lemma 12. Suppose that v satisfies Assumption and that E [log po] =
0. Then, for any a > 0, there is a constant C,, such that for any integer
n > 2,

logn

vn

P (N;;“ < g) < Cu,
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Proof. Let V, = Y7 jlogp; and W, = ZZ_O Vv, Given w, Z, + 1
follows the geometric distribution G (Wx_ 1) (see the proof of Theorem 4.5
in [CFL™14]). Hence,

a

P, (Zy <n®)=1—(1—1/W,)" W7< e (Verminy<e Vi) (15)

We start by proving that, with large probability, (V, — miny<, V) is larger
than (2 + a) logn for many sites . More precisely, consider the event

n
n
En = {ZW{Vzminy<z Vy§(2+a) ]Ogn} 2 2}

Markov inequality yields
ZIP”’ < man < (2+a)logn> . (16)

As the variables p; are i.i.d., for a fixed value z, (Vo —V;)o., o, has the

same distribution as (Ve—y—1)y<, <, then,

P¥ (V}C —minV, < (2+a) 10gn> =P < max Vy, < (24 a) logn> (17)
y<w 0<y<a
We now have to control the random variables maxo<y<,Vy, 1 < x < n.
For this purpose, we use the Komlés-Major-Tusnady strong approximation
theorem (see [KMT76, Theorem 1]): denote by o2 the variance of log po,
on a possibly enlarged probability space, there exists a Brownian motion B
and two constants c;, and ¢z, independent of n such that

C2u

P Viyl —oBy| > c1,,1 <

Therefore,

n
ZP” < max Vy < (2+a)logn>
o 0<y<z
(2+a)+cly
< P By < ——+———
27 e By < 1)

logn> . (18)

r=1
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By the reflection principle [RY99, Proposition 3.7 in Ch III], max,c(o ] By
has the same distribution as |B;|. Thus, there exists a constant C,, de-
pending only on v and a such that

2 v 2 )1
IP’”(maX ByS(HLHCLIOgn>:PV(|Bl|S(( +a)+c1,)ogn>
g

y€[0,z] J\/E
logn
< Chy \% (19)
Equations , , and lead to
1
P’ (Ey) < Coptt (20)

< NG
On the complementary event E,,, the set
I, = {a:e {1,...,n}, Vx—n1<inVy > (2—|—a)logn}
Yysx
has at least /2 elements. Moreover, according to , for any = € I,,,

P, (3w €1y, Zo <n”) < Y Py(Ze <n®) <
xzel,

S

Therefore, on E,,

n—1
n 1
P, (ZHA{ZQW} > 2) <. (21)

It is now easy to conclude the proof of the lemma. Indeed,

n—1 n—1
PNy <) =P (;)ué{zgzna} < Z) — P (Z%{Zg@a} > Z)

=0
n—1 n
=0
Equations and give now the result. O
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6.5 Conclusion of the proof of Theorem
Transient case

By Lemma [10| and a union bound, P¥ () > 1 — C,e™?, where

NM [z +log M
n —W([M,OO))‘SCV Z—I_Og}
n n

On Q, for any M such that 7([M, +00)) > 20,/ ZHeM

0 = {Vle,

n_ C,
NM = w([M,+00))

Therefore, by the second part of Lemma on €21, for any M such that
M—E 2 Cz/ /z+l(;LgM

n
WZCVMH .

n

By Lemmal6}, P (Q2) > 1 — (2/3)e~*, where,

~Tf> ) 6| F|| dn [z +3log M
Qp =< || B~ F| < inf 7
2 { n o S (M 12 T WM on

Therefore, on 2 = Q1 N Qo,

Vi 1 log M
‘Fr]z\/[”—FH <, inf 7+M”1/%
00 1<M<Cy(—ny1/Cr) | M7/2 n

z+log M

<Cy<z+logn>2714ﬁ
n

For the result in expectation, we only have to take z = logn.

Recurrent case

By Lemma@ taking z = logn and M = n'/7, P¥ (Q;) >1— g—z where,

91:{‘

R g _GIE],  4n (1+3/v)10gn}

o \/ﬁ Ngl/’y 2n
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By Lemma PY (Qy) > 1—0%,,1055” where Q9 = {Nf;l/7 > n/Q} There-

i
fore,
EY H F‘g\i’llogn B FH :| S EY H F‘y”llogn B FH 1QIQQ2:| —|—PV (ﬁl) +IFDV (62)
o0 oo
logn
=G
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