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In ubiquitous computing, systems evolve surrounded by a heterogeneous smart-devices and software services, offering functionalities that enable new applications to be created. In such system, we need to consider the unpredictability of software infrastructure changes. To tackle the issue of the dynamic variation of the software infrastructure, compositional adaptation is now often used. The problem is that adaptation entities are independent-written. In such case, they may interfere when they are composed. In this paper, we propose a formal approach that allows composing applications at run time and managing these interferences. The formal model of the system and adaptations are defined in term of graphs. In particular, we demonstrate the symmetry property of our composition process.

I. INTRODUCTION

A ubiquitous system offers a new opportunity to augment people's lives with new technologies that facilitate their everyday tasks. It relies on heterogeneous, variable and communicating devices that are scattered in our physical environments. The software infrastructure on which is based a ubiquitous system appears dynamically populated by functionalities of these devices. Due to the mobility of devices which may appear or disappear at any time, ubiquitous applications have to be adapted in order to consider these changes. Compositional adaptation [START_REF] Mckinley | A taxonomy of compositional adaptation[END_REF] allows adding or removing software elements into the applications at runtime and is well suited to handle infrastructural changes [START_REF] Bouzeghoub | Complementarity of Process-oriented and Ontology-based Context Managers to Identify Situations[END_REF]. As a consequence, adaptations can be designed and integrated later during execution. By nature, compositional adaptation requires applications based on a modular architecture with a loose coupling between software entities composing it.

In order to manage all these constraints, various paradigms are used in middleware for ubiquitous computing. Componentoriented middleware and service-oriented middleware [START_REF] Issarny | A perspective on the future of middleware-based software engineering[END_REF] provide new ways of designing dynamic and heterogeneous applications. The loose coupling between components and their execution environment control facilitates the dynamic reconfiguration of components assemblies. Accordingly CBSE is well suited for compositional adaptation [START_REF] Greenwood | Interactions in ao middleware[END_REF]. Moreover, services-oriented approaches provide solutions to manage the heterogeneous devices involved in the system. Services have also the characteristic of an autonomous existence without predefined information on their use in applications, which seems appropriate with devices blackbox property. Recently, new approaches combine components and services and use components assembly to compose preexisting services such as Service Component Architecture (SCA) [START_REF] Chappell | Introducing sca[END_REF] or SLCA [START_REF] Hourdin | Slca, composite services for ubiquitous computing[END_REF]. In this paper, we will present an adaptation mechanism that can be applied on such approaches.

A. Requirements and constraints

All the previous challenges lead to the emergence of new requirements in software adaptation. First, the adaptation must be done at run time (without stopping the application) in order to consider infrastructure changes. Moreover, these adaptation must tolerate the unpredictability of these changes. Second, different designers with various skills may deploy new adaptations. Accordingly, a designer cannot predict all possible adaptation of a system and adaptation entities may be developed independently. As a consequence, they must respect the separation of concern principle. Such independent adaptation entities have to be composed together and with the base application.

There are also some constraints to consider during the adaptation process. It will compose n adaptation entities in order to obtain the final application. In such case, they may interfere when they are composed. Interference is defined as "a conflicting situation where one adaptation that works correctly in isolation does not work correctly anymore when it is composed with other adaptation" [START_REF] Sanen | Modeling context-dependent aspect interference using default logics[END_REF]. These interferences should be managed in order to ensure the consistency of the application after the adaptation process.

Classical approaches to manage interferences consist either in defining explicitly dependencies between adaptation entities or either in calculating all possible combinations between the adaptations in order to choose the most appropriate [START_REF] Munoz | Validation challenges in model composition: The case of adaptive systems[END_REF]. Since the result of the composition may depend on the order in which adaptations are made, the number of combinations to be calculated from n adaptations may be n!. However, interferences must be detected and managed automatically because the number of adaptation entities that may be deployed is finite but not bounded (we can add adaptations entities at any time). Another reason is that it's hard for a human to integrate a new adaptation entity with existing ones while verifying the good behavior of the adaptation system. Moreover, since the changes of the software infrastructure cannot be known in advance, the order of application of adaptation entities in reaction to these changes cannot be known either. The application resulting from adaptations should always be the same, regardless of the order in which service have appeared.

B. Our proposal

In this paper, we present an adaptation mechanism that allows composing dynamically adaptations with the base application. It embeds an automatic mechanism to manage interferences. Accordingly, there is no need for a designer to manage explicitly these problems when deploying adaptation entities or to stop the adaptation mechanism. Thus, our mechanism can be used in self-adaptation control loops. Our adaptation operation should be symmetric because we cannot know the order in which adaptations will be applied and deployed. It means that the order in which adaptations are composed is not important. Thus the composition operation ensuring this property is presented in this paper. Moreover, since adaptation mechanism will modify only the structure of the application, we model applications and adaptations entities by graphs. The interference resolution step will operate on the graph by applying a set of graph transformation rules.

The limitation of designer's intervention makes the challenge of maintaining the consistency of adaptation's results even more difficult. However, it seems unavoidable considering the requirements and constraints previously presented. In practice, in the proposed approach, a designer deploys its adaptations on the fly and no longer manages the interferences among adaptations. However, it may intervene in cases that are not resolved by the adaptation mechanism. Accordingly, the produced application will always be consistent. The remainder of this paper is organized as follows: next section introduces the model of our applications and details the example that will be used all along the paper to illustrate our approach. Then section III details formally our composition process and how it addresses the issue of interference management. Particularly, we show in the section IV the symmetry property that allows us to offer a deterministic solution when we compose adaptation entities. Then, we briefly describe our implementation (section V). Finally, we present some related works (section VI) before concluding (section VII) on the contribution of this work and its perspectives.

II. FORMALISING SOFTWARE APPLICATIONS AND THEIR ADAPTATIONS

A. Motivating Example

As an example, we define a domestic application that relies on variable and communicating devices which define its software infrastructure. This software infrastructure appears dynamically populated by the functionalities of these devices. As a consequence, the application has to be adapted during execution time in order to consider these changes. As all young people, Bob listens to music all the time on his Smartphone. At home, he has an adaptation that redirects the sound from his phone to any available audio device (Home cinema, speaker...). Bob lives alone. Today his mother visits him. Bob's mother had recently hearing problems; she cannot withstand the high tones. For this reason, she has 
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The link must be unique an adaptation that specifies the threshold of the sound level for audio devices in her surrounding physical environment. Bob doesn't know that his mother had hearing problems. He increases the level of music. This example shows an interference problem. What is the resulting behavior when both adaptations are relevant to be applied? In this case, the system will respect the threshold defined by the mother? Or will let Bob increases the level of sound independently of the threshold. This scenario will be used throughout this paper to present our approach.

B. Application design in ubiquitous environments

Software services are often used to encapsulate functionalities provided in ubiquitous environments, whether they are device-based or purely software services. The software infrastructure that we consider is a dynamic set of services. Our applications are created as an assembly of the available services of the infrastructure. In particular, components are instantiated when services appear and deleted when services disappear. An appropriate structural model for our software applications (which is a component assembly) are graphs. Components are represented by vertices and their links by edges in this model. Definition 1. A component assembly graph G is a set of vertices V and a set of directed edges

E (G = (V, E)). A vertex v i of V is defined by a tuple (Id(v i ), T yp(v i ))
where Id(v i ) is the identifier of v i and the attribute T yp(v i ) is its type. An edge e j of E is written as e j = (v i , v k , l j ) where l j is a label.

Each vertex has a type. We separate vertices into two groups: (i) Black box vertices (T yp(v)='Port' and id(v)='ComponentName:PortName'), representing component ports (event and method call); (ii) White box vertices (or connectors) which determine the flow of the execution when events are triggered. The attribute T yp(v) of a white box vertex indicates the kind of connectors. The table I details the set of our basic connectors.

The vertices CALL and DEL are special connectors that will never be instantiated in the final application because they are used only to modify some links. This latter must be used carefully because if the developers are using it without knowing the set of possible interferences, the correctness of the resulting application can be compromised. In order to facilitate the comprehensibility of this paper, we use a lightweight representation. Each black box component will be represented by a rectangle on which we add a label on the form Component instance Name:Port Name. The white box vertex will be represented by a rectangle on which we add a label on the form Connector Name. Each directed edge represents the execution direction between two vertices. For our motivating example, we consider that the original application (called the base assembly) was built from a physical audio device that is represented by a Black box component AudioHome at software level.

C. Adaptation entities as Graph Transformation rules

In this section, we define adaptation entities introduced in our example as graph transformation rules [START_REF] Ehrig | Handbook of graph grammars and computing by graph transformation: Applications, Languages and Tools[END_REF]. In the following, we use a visual notation to define rules. Each rule is defined in a separate figure which consist of two parts: Left (L) and Right (R). A graph transformation rule has the form of p : L → R and is applicable to a graph G Base if there is an occurrence of L in G Base . It will replace the subgraph L of G Base by a subgraph R. The SoundRedirect adaptation graph is depicted in the Figure 1. The vertex mapping indicate that vertices of the left side will be linked when the rule is applied. In order to be applied, this adaptation requires that there are instances of Phone* and Audio* components in the initial assembly (for example, if no component with audio capability is found, this adaptation will not be applied at all). A simple wildcard '*' is used in this example, but more complex regular expression can be defined (Component instances' types and component ports' names can both be wild-carded). This wildcard will be replaced by the real device type of the infrastructure. It allows these adaptations to be applied to real application although its configuration is not completely known at design time. This adaptation adds a new edge between the port RedirSound of the component Phone* and the port Play of the component Audio*. Through this link the Audio* device will receive the music to play. The Threshold Level adaptation is depicted in the Figure 2. The adaptation that is not relevant to the application at the beginning, can become relevant only when its required components appear in the application assembly (components tagged in the figure by a '*'). This adaptation specifies that when an Audio device is detected, the user can define using his phone the threshold for the sound level. The M in vertex is a new connector which will be defined in the next section. It is used to forward the minimal received values from its input vertices. The CALL vertex allows rewriting existing links.

We consider that adaptation process will integrate a set of structural changes in the base component assembly.These changes are expressed separately by different designers and often introduce behaviors to be executed concurrently. The key idea of this contribution is to provide the formal composition of adaptation entities. This composition manages automatically interferences in a symmetric way. In the next section we show that these adaptations may interfere when they are composed. In such case, we demonstrate how graphs and graph transformations rules are used to detect and repair interferences.

III. COMPOSITION PROCESS INCLUDING INTERFERENCE MANAGEMENT

A. Adaptation as Graph transformation rule execution

Previously, we have presented the adaptation entities as graph transformation rules. During the step of rule matching, The abstract description of the Left graph will be transformed to a concrete one (replacing '*' wildcard by the type of real components in the base assembly). If various components match the L graph of an adaptation rule, then it can be applied as many times as there are combinations of components instances. Each rule of adaptation is applied on the graph of the base assembly. Subsequently, all computed graphs need to be composed. The composition mechanism considers then these graphs, in order to generate a single graph representing the adapted assembly. Despite the order of graphs composition the final graph will be the same due to the commutativity and the associativity properties. There are two steps in the composition process: the first step superimposes all graphs and also identifies potential interferences. The superimposition operation builds a unique graph G T = (V T , E T ) from the set of graph representing the initial assembly G initial and several graphs resulting from the graph transformation rules applying. When two graphs g 1 and g 2 share a vertex (vg1 and vg2 have the same T yp and Id) the superimposition operation: (1) keeps one vertex vg1 in the resulting graph (2) copies the incoming edges (respectively the outgoing edges) of the vg2 to vg1 (by modifying their target vertex and their source vertex to be vg1). Starting from this point, interferences may appear in the G T graph.

The second phase is accomplished by the Merging engine which resolves these problems using other kind of graph transformation rules. The final graph that represents the new configuration of the system, will be exported to the adaptive execution platform.

B. Interference detection Step

The definition of interferences types is given in a graph representation depicted in Figure 3. Interference will occur only when adaptations share at least one port. We defined two types of interferences: (1) Control flow interference occurs when adaptation entities share an output port of the same component (2) Concurrent method call occurs when adaptation entities share a method call of a component. In our previous Figure 3. the two patterns of interference used by the superposition step. It adds ⊗ vertex to mark problems work [START_REF] Fathallah | MergeIA: A Service for Dynamic Merging of Interfering Adaptations in Ubiquitous System[END_REF], we have considered only output port to detect interferences (type 1). In this paper, we introduce new White box vertices and we focus on a new type of interference that occurs when several adaptations try to access a shared component's ports (type 2) Therefore, we obtain a general approach that considers two interference cases: Output port and Input port. As mentioned before, the SoundRedirect adaptation and the Threshold Level adaptation cause an interference problem when they are composed. Their superimposition illustrates an example of interference of type (2) presented above. They share the port P lay of the component AudioHome. Each adaptation sends different value to this device. To tag this point in the graph G T , a ⊗ vertex has been added in the Figure 4 (step a).In the next section we detail the resolution process of this problem.

C. Concurrent method call interference resolution

To resolve concurrent method call interference, we have defined new connectors (which have two predecessors vertex and one successor vertex). The first connector is [v1, v2]•F W . When a data comes from v1 and/or v2, this connector forward it to its successor vertex (the method call). In other cases, it would be necessary to add an [v1, v2]•AN D or [v1, v2]•XCHoice connectors (the Select connector can be instantiated according to several strategies such as M in, M ax, XOR,.. It allows to choose one data from its input vertices). Similarly to the Control flow interference resolution, adaptations entities should specify connectors that should be added for each method call. Otherwise, the merging engine will apply its default solution (F W connector). In order to merge interfering vertices, we first need to get the list of ⊗ vertices from G T graph. Each ⊗ vertex has exactly two predecessor' vertices. Then, we set v1 to the first predecessor vertex and v2 to the second predecessor vertex. Given two vertices v1 and v2, the merging engine starts by searching the correspondent graph transformation rule. If there is no graph transformation rule able to solve this problem, then the default solution will be applied. For example, if a designer has defined a permissive policy, all adaptations will be met at the same time (parallel composition). This is similar to applying a Forward FW connector to each adaptation graph. The default solution will replace the ⊗ vertex (which cannot be resolved) by a FW vertex (this rule is called DefautRule).

Using our case study, we will show the merging operation steps. In our example, interference has been detected on the port P lay of the component AudioHome. Thus, we will apply our merging process to resolve this problem. The ⊗ vertex has two predecessors vertices v1 = M in and v2 = P honeBobLG : RedirSound. The rule r that will be applied is given in the Figure 4.Throughout this rule the designer has defined that he wants rewrite an existent link (due to the CALL use). The trivial way to do this, is achieved by propagating v2 into the second branch of the M in connector. The rule will reconnect these vertices using a new ⊗ vertex. The rule R1 depicted in the Figure 4 can be applied because there is an occurrence of the left graph L on G T . The matching step will unified the L graph variables as following: A:a is P honeBobLG : RedirSound ; B:b is P honeM otherSony : SetV alue port. The Figure 4 (step b) shows the result of R1 execution (Step1). First, ⊗ vertex is propagated in M in branch. Since there are still ⊗ vertices, the merging algorithm will continue the resolution process. In this example, there is a CALL connector and a port. In that case, the merging will apply a graph transformation rules that will connect the port to the output vertex of the CALL connector. It was previously mentioned that this connector allows rewriting an existent link. The graph of components assembly of the final application is depicted in the Figure 4 Step 2. We note that CALL connector will not be instantiated in the final assembly because it is used only for the interference resolution. When we define adaptation entities, this connector should be used carefully.

IV. THE SYMMETRY PROPERTY DEMONSTRATION

More than a simple mechanism for compositional adaptation, our merging process guarantees the property of symmetry of the composition mechanism. This property provides a good independence between adaptation entities, that is to say that there is no need to define some explicit dependency between them since the composition process ensures the consistency of the result. Let C be the set of connectors defined in the section II. The symmetry is defined via three sub-properties:

• Idempotency: ∀c1 ∈ C and c1⊗c1=c1. Merging a connector with it self should return the same connector. This is achieved by construction. We have specified a graph transformation rule that keep only one connector when we compose the same connector (ie.,

PAR•[a,b]⊗PAR•[a,b]=PAR•[a,b] when a =b ). • Commutativity : ∀c1, c2 ∈ C; c1⊗c2=c2⊗c1. It should
not matter in which order connectors are merged.

• Associativity: ∀c1, c2, c3 ∈ C; ((c1⊗c2)⊗c3) =(c1⊗(c2⊗c3)).
If the merge operation is associative, then generalization to more than two connectors can be achieved merely by repeated merges, in any order. Without these properties, the merging process must compute all possible combinations between adaptation, and then choose the more suitable combination. In ubiquitous computing since we cannot know the order in which components will appear or disappear from the assembly, we need a non-ordered composition mechanism. This is guaranteed by the symmetric property. Consequently, the result of adaptations weaving will be the same independently of their order. Particularly, we need to prove the associativity property to conclude that our composition is symmetric. In this section, we focus on the proof of this property. We will use the previous example. In order to resolve interferences at input port, we have extended the set of White Box vertices to support new semantic. Thus, for each new connector, we must prove the associativity property of its merging rules. Let N ewC be the new connector. N ewC do not necessarily need to be symmetric, but its composition with itself and other connector is symmetric (for example SEQ connector is not symmetric because: when a =b, SEQ•[a,b] = SEQ•[b,a]). In order to prove that the merging of N ewC is symmetric, we need to demonstrate that:

1) The merging of N ewc with itself is associative.

2) The merging of N ewc with all the existent connectors is also associative. In this paper we will demonstrate this property for the rule R1 presented previously. This rule shows the merging of a port with a M in connector. Let G1 = [a, CALL]•M in, G2 = c, G3 = d be the set of input graphs of the composition operation where a, b, c and d are ports' components. We will compose theses graphs as fellows (Figure 5): Comb1 = (G1 ⊗ G2) ⊗ G3 and Comb2 = G1 ⊗ (G2 ⊗ G3) and we will show that the resulting graph is the same. There are several configuration to consider during composition: We conclude that the rule R1 is associative. The proofs of the associativity property is the same for all other graph transformation rules. The proof of other rules is out of the scope of this paper. In order to facilitate this task, we have implemented a tool for associativity automatic proof. The input of this tool is the definition of the N ewc connector and its graph transformations rules. As output, it will show in which case this property is failed (if it exists). Thus, the designer can modify the set of rules that cause problems to guarantees the property.

V. PRACTICAL ISSUES

The example given in this paper show that the dynamic interferences management is crucial for the adaptation in the field of ubiquitous environment. The implementation of the compositional adaptation mechanism presented in this paper is an extension of the Aspect of Assembly [START_REF] Tigli | WComp Middleware for Ubiquitous Computing: Aspects and Composite Event-based Web Services[END_REF] weaver of our WComp framework, which is based on the dynamic and lightweight component model SLCA (Service Lightweight Component Architecture) [START_REF] Hourdin | Slca, composite services for ubiquitous computing[END_REF]. Components allow the management of the black box properties of devices. The interaction is limited to the use of their required and provided ports (the direct access to implementation is forbidden). The merging engine implementation has been presented in [START_REF] Fathallah | MergeIA: A Service for Dynamic Merging of Interfering Adaptations in Ubiquitous System[END_REF]. The merging engine uses graph transformation mechanism in order to merge vertices where interferences have been detected. Currently, the framework use AGG (Attributed Graph Grammar) [START_REF] Taentzer | Agg: A graph transformation environment for modeling and validation of software[END_REF]. Performance is a decisive factor in self adaptive systems (ubiquitous systems need to be quickly adapted to consider their infrastructure changes). For that reason, we measured the execution time of the composition operation. Then we can conclude in which case our solution can be used. The ruling that the response time is acceptable or not depends on application's domains. The results of our experiments are briefly presented in [START_REF] Fathallah | Adaptations interferences detection and resolution with graph-transformation approach[END_REF].

VI. RELATED WORK

Many studies propose to use AOP Aspect Oriented Programming), with the aim of achieving dynamic adaptations. In this area, the problem of interference was well defined and several solutions were proposed. David et al [START_REF] David | An aspect-oriented approach for developing self-adaptive fractal components[END_REF] consider that software adaptation is a crosscutting concern of the application and use aspects to encapsulate adaptations code. Greenwood et al. [START_REF] Greenwood | Interactions in ao middleware[END_REF] define several strategies to resolve interferences such as priority, precedence and logical operators. The strategies specifications are made by the developer who should include all dependent relationships between the adaptations. It is a complex task because we consider multi designers approach. Moreover, the strategy of interference resolution may depend on the runtime state of application. Dinkelaker et al. [START_REF] Dinkelaker | The art of the meta-aspect protocol[END_REF] propose to dynamically change the resolution strategies according to the application context. They define an extensible ordering mechanism which can be modified at runtime. Such approach still suffers limitation in term of software adaptation because interference management at runtime needs to be anticipated. In that direction, Cheung et al. [START_REF] Cheung | Wcomp: a multidesign approach for prototyping applications using heterogeneous resources[END_REF] propose a composition mechanism that repairs interference problem in an anticipate manner. Since interference can occur at input and/or output of components, they propose two composition mechanisms, based on two different languages for adaptations (ISL4WComp and BSL), to handle these problems separately. But we have shown previously that these problems need to be resolved together and not separately. Their solution can resolve interference either for the output of component or for the input of component but not for both interferences types. Graph are not only intuitive representation of software architecture but are also used to identify errors on the analysis level. The integration of the paradigm of graph with the aspectoriented paradigm has been proposed by Cirarci et al [START_REF] Ciraci | A graph-based aspect interference detection approach for uml-based aspect-oriented models[END_REF]. They use graph formalism to identify interference. Graphs represent the several states of a program according to different order of aspect weaving. Interference is detected if the final state changes according to the selected order.

VII. CONCLUSION

The aim of this paper is to address the problem of interferences that may occur when we compose independently developed adaptations (but jointly deployed). In order to ensure the consistency of the final application, we propose an automatic composition process, which is able to manage interferences at run time. In this paper, we have shown that the order in which adaptations entities are composed is not important and the final result will be the same. This property allows facing the unpredictability of adaptations and the order of their deployment. As future works, we will focus on others properties for the composition operation in order to address the semantic of adaptations entities when they are composed.
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