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ABSTRACT

We address the problem of learning a data description model
from a dataset containing probability measures as observa-
tions. We estimate the data description model by optimizing
volume-sets of probability measures where each volume-set
is defined as a set of probability measures whose representa-
tive functions in a reproducing kernel Hilbert space (RKHS)
belong to an enclosing ball. We present three data descrip-
tion models, which are functions in a RKHS depending only
on some probability measures, named support measures in
analogy to support vectors. An advantage of the method is
that we do not consider any particular form for the probabil-
ity measures. We validate our method in the task of group
anomaly detection, with artificial and real datasets.

Keywords

Kernel on distributions, One-class classification, support vec-
tor data description, embedding of probability measures,
mean map, group anomaly detection. MV-set

1. INTRODUCTION

Data description (DD) is the task of building models to de-
pict the common characteristics of objects in some data set
alming to perform machine learning tasks such as anomaly
and novelty detection, clustering and classification |21} [24}
23,130, |4]. The main idea of DD methods is to assume that
observations are generated by an underlying unknown distri-
bution. Consequently, a valid approach is to estimate some
distribution information from a training dataset. For exam-
ple, an empirical probability density function, or a density
level set, or some information about the density support set.

Very often, DD methods are defined for datasets given
by sets of the form: {x;}/L;, x; € R”, where N is the
number of observations in the dataset. However, there is a
growing interest in machine learning methods for datasets
whose individual observations are clusters, groups or sets of
points in RP (32} |33} 20, [19] |25, |35, [10} |34} 261 15, |18]. Such
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Figure 1: a) The distributions of points of the two
groups in the red box are considered anomalous with
respect to distribution of the ones in the blue box.
b) Overlap between the means of anomalous groups
(red points) and the means of non-anomalous groups
(blue points). Note how hard it is to find group
anomalies using only one representative value (in
this case, a mean) per group.

datasets are sets of the form:
T = {si}is, (1)

where N is the number of observations, each s; is a set
{Xgi),xgi), e x(qu)} with cardinality L;, and x;R”. Practi-
cal examples of observations taking the form of s; are: sets
of image features in an image dataset [17]; sets of spatio-
temporal features [16]; sets of replicate values in a measure-
ment process [31]; sets describing point wise uncertainty [25,
35); or sets describing the invariance of some particular ob-
ject [10].

1.1 Group anomaly detection

Group anomalies can be given by [32]: 1) point-based
anomalies, defined as being an aggregation of anomalous
points; 2) distribution-based anomalies, defined as being an
anomalous aggregation of non-anomalous points. In order to
construct robust DD models for datasets given by and
detect group anomalies, DD methods must take into account
the distribution information provided by each s;. Figure
shows how the information provided by each local distribu-
tion of points is crucial to perform a right description of .

1.1.1 Related work

Several solutions have been proposed to this kind of esti-
mation, including representing groups by sets of features [3,



14], or estimating group anomalies by clustering point anoma-
lies [5]. However, such procedures heavily rely on the fea-

ture engineering process or ignores the fact that anomalous

groups can be formed by non-anomalous points. Recently, a

generative approach based on hierarchical probabilistic mod-

els was proposed to identify group anomalies |32} 33| Fur-

thermore, one-class support measure machine was proposed

as a discriminative approach to perform group anomaly de-

tection [19]. Both approaches (generative, or discrimina-

tive), give state of the art results.

1.2 Contributions

This work presents three novel discriminative and non-
parametric DD models for datasets of the form given by ,
named support measure data description (SMMD) models in
analogy to support vectors in kernel methods. The potential
applications of the models presented here are: clustering,
classification and other related machine learning tasks for
datasets of the form of . In this paper, we focus in the
use of the SMDD model, as one-class classification models,
to the task of detecting group anomaly.

The estimation of the SMDD models is based on the fol-
lowing assumptions: 1) the observations s; are distributed
according to an unknown probability measure P;; 2) the
empirical measure P; is obtained from s; in @, ie. P; =
L% Zf;l dx, (si) approximates well the true unknown prob-
ability measure P;; 3) the representative functions, wp,, of
the probability measures in a RKHS can be used to find the
description of the set {P;}*_, and hence a DD model for
: 4) the DD model of the set {P;}X; can be estimated by
optlmlzlng volume-sets of probability measures, where each
volume-set is constructed using the information provided by
enclosing balls of the representative functions in a RKHS; 5)
the DD model will be a function in a RKHS relying only on
a subset of representative functions of probability measures.

The paper is organized as follows: Section [2] gives some
background in Hilbert space embedding for probability mea-
sures. All the SMDD’s models are presented in Section
The relationship among all the SMDD models is presented
in Section |4 We show, through a set of experiments in Sec-
tion [5] the behavior of such models in the group anomaly
detection task using artificial and real-world datasets. Fi-
nally, some conclusions are given in Section @

Notation. We consider a random variable X on a proba-
bility space (Q, F,P) as a Borel measurable map: Q — R,
satisfying X (w) = w, Yw € Q, i.e, X is an identity map.
We use B(RP) to denote the Borel o-algebra of RP. In ad-
dition, we always assume that @ = R” and F = B(RP),
implying, for all B € B(R”), the induced probability mea-
sure by X given by Px(B) = P{w : X(w) € B} is equal to
P(B), i.e., Px = P. We always write P(a < X < b) instead
of P{w : a < X (w) < b}. Letter H denotes a RKHS of func-
tions f : R? — R, with reproducing kernel k : R xR” — R,
norm ||.||%, and inner product (-, -)3. We denote by k(., s)
the mapping ¢ — k(t, s) with fixed s. Notation Exp[f(X)]
means the expectation of f(X), where X is distributed ac-
cording to P

Remark. We do not include any proofs in this paper
because of size restrictions. They are available upon request.

2. KERNEL HILBERT SPACE EMBEDDING

This section gives a little background on Hilbert space

embedding for probability measures. The main concepts
presented here are mean map, Hilbert space embedding and
kernel on probability measures.

Hilbert space embedding of probability measures [13] |29}
1}, |26], gives a way to represent probability measures P; as
functions in a RKHS. Such functions are commonly named
as representative functions, mean functions or mean maps.
We present them in the following definition.

DEFINITION 1 (MEAN MAP). LetP be a probability mea-
sure and X ~ P. The mean map in H is the function:

,LL]pZRD — R

t > pp(t) = Eslk(X,t)] = / Ko dP(x),
2

A sufficient condition guaranteeing the existence of up in H
is given by assuring that up(X) = Ep[k(X, X)] < oo, and
k(.,.) being a measurable function |12} 26| |28]. As a conse-
quence, the reproducing property (f, up) = (f, Ep[k(X,.)]) =
Ep[f(X)] holds for all f € H.

The Hilbert space embedding for probability measures is
given in the following definition.

DEFINITION 2. The embedding of probability measures P €
P in H is given by the mapping

uw:P = H

P — ,u,]p:E]p[k(X,.)]:/ k(X

x€RD

,)dP(x).

Hence, pp acts as the representative function in H for
P. Choosing characteristic kernels |8 |27, [28] for k, makes
the embedding p injective. Some examples of characteristic
kernels are the Gaussian, Laplacian, inverse multiquadratics,
Ban+1-splines kernels. See (28] for details. Furthermore, an
empirical estimator of pp from the sample {xl}gl drawn
i.i.d. from P assure a good approximation for up, i.e., the
term ||up — templ|, Where pemp is an empirical estimator of
up, is bounded [26].

2.1 Kernel on probability measures
The mapping

PxP — R
(]Pa Q) = <]P>7 Q>P = <)u‘[Pa MQ)’H
defines an inner product on P. Indeed, from Fubini’s theo-
rem
(e, p)n = [iexp [epp k(%X )dP(x)dQ(x’). Conse-
quently, the real-valued kernel on P x P, defined by
k(P,Q) =(P,Q)p = (up, po)n
(3)

/xeRD/xeRD x, x')dP(x)dQ(x")

is positive definite [1].

3. SMDD MODELS

In this section, we introduce three DD models, for datasets
given by sets of probability measures. We call these mod-
els Support Measure Data Description Models (SMDD’s).
Those models are based on the concept of minimum volume-
set and enclosing balls for the representative functions up,



of probability measures. SMDD is a data description model
given by a function in a RKHS relying only in some subset
from the training set: the support measures.

3.1 Minimum Volume Sets

Volume-sets are widely used to find a description of datasets
of the form {x;}X,, x; € RP |21} {24} 23]. A minimum
volume-set (MV-set) is a volume-set satisfying some opti-
mization criteria over all the possible volume-sets. The class
of sets used in DD methods ranges from convex sets [21] to
sets implicitly defined in a RKHS via positive definite ker-
nels (23] |19, [30].

We assume that the points in s;, are i.i.d. EI realizations of
arandom variable X ~ P;. A generalization of the definition
of MV-set given in 21| 24, 23] to the case of probability
measures is stated below.

DEFINITION 3 (MV-SET FOR PROBABILITY MEASURES).
Let (P, A, &) be a probability space, where P is the space of
all probability measures P on (R, B(RP)), A is some suit-
able o-algebra of P and £ is a probability measure on (P,.A).
The MV-set is the set

G, = argmin{p(G)|E(G) > a, (4)
GeA

where p is a reference measure on A and o € [0,1]. The MV-
set G7,, describes a fraction o of the mass concentration of

E.

To Compute a MV-set of a set of probability measures
with the above procedure is very general. Therefore, we
limit our attention to the class of sets A formed by sets of
probability measures satisfying some certain criteria. We
will assume that {P;}X; is an i.i.d. sample distributed ac-
cording to £ (Def. , where each P; is unknown. As G € A
is some set of probability measures, a first empiricaﬂ ap-
proximation for G in is given by:

Co(R,c) = {Pi € P | ||X; —¢|* < R*}, (4)

where we consider a hypersphere of radius R € R™ and cen-
ter ¢ € RP. A MV-set will be found optimizing over R and
c. However, has two main drawbacks: it does not con-
sider complex models, and some P; will be in (§)), if only
if all possible realizations of X; ~ P; are inside the hyper-
sphere (R,c). Such limitations are overtaken considering
the following three classes of sets described below.

The first class of volume-sets is defined by considering only
the representative functions or mean maps pup, of each P;,
and is given as follows:

Gi(R.c) = {Pi € P | |lpe, — cll3 < R*}, (6)

The second class considers mean maps with norm one (we
explain the motivation for this in Section |3.3).

Ga(R,c) = {Pi € P | |lue, —cllf < R, |luellf = 13 (7)

The third class considers bounding values KC = {;}, ki €
[0,1]. Thus, P; is in the volume-set G, if a subset of the re-
alizations of the random variable k(X,-),X ~ P; is inside
the hypersphere (R, c¢), with probability less than 1 — k;.

G3(K) = {Pi € P| Pi(|k(Xi,.) —cll3 < R*) > 1—ri}. (8)

Independent and identically distributed.
?Empirical in the sense of sample {P;};.

All three formulations use a Hilbert space embedding for
probability measures, with the advantage that the knowl-
edge of the the density P; is not explicitly needed.

3.2 First model SMDD

The MV-set G7, for volume-sets G of the form given by @
can be computed solving the following optimization prob-
lem. Given the mean functions {up, }7x, of {P;}IL,, the
SMDD model is:

PROBLEM 1.
N
min RP+ 1> &
c€H,RERT £eRN |

|, — el < R* +&,i=1,...,N
£>0,i=1,...,N.

subject to

PROPOSITION 1 (DUAL FORM). The dual form of the pre-
viously problem is given by:

PROBLEM 2.
N N 3
max a;k(P;,P;) — a;aik(P;, P
mag ; (P, P) JZZI iE(Ps, Py)
subject to 0<a; <A, i=1,...,N

N
Zai =1
=1

where ];(]P)»L',Pj) = (up,, pp; ) by , and o is a Lagrange
multiplier vector with non negative components .

PROPOSITION 2 (REPRESENTER THEOREM). The repre-
senter theorem for Problem[1| is:

()= oupp, i€{icT|0<a <A},

where T = {1,2,...,N}. Furthermore, all P;, i € {i €
T | i = 0} are inside the MV-set Gy, AllP;, i € {i €
T | oy = A} are the training errors. AllP;, i€ {i€Z1|0<
a; < A} are the support measures.

THEOREM 3. Let n be the Lagrange multiplier of the con-
straint Y"1, a; = 1 of Problem |4, then R® = —n+ ||c||3%.

Consequently, to decide if some test probability measure
P; is in the SMDD model, we have to compute the score
lle, — c||3;, which, using Proposition [2| and Theorem [3| can
be written in terms of the kernel k by:

k(PP — 23 k(P Py) + ) ciok(Pi,Py),  (9)
K2 1,7
where indices i, j belongs to the support measure set. This
score must be compared against the value R to decide if Py
is in the description of SMDD.

Note that, if the linear kernel: k(x, x') = (x,x’) on R” x
RP is used in , Problem is equivalent to the dual prob-
lem of SVDD [30], because, k(P;,P;) = Ep,[Ep,[(X, X)]]
will be (p;, pt;).



3.3 Second SMDD Model

This SMDD model considers mean maps with norm one,
i.e., |lup; ||> = 1 and Stationary kernels|9], which are kernels
of the form kr(x,x’) = f(x — x’), that is, they only depend
on the difference x — x’.

Implicit feature maps of stationary kernels are functions
kr(x,-) in a RKHS lying on a surface of a hypersphere be-
cause they have constant norm. To see that, note that sta-
tionary kernels satisfy:

k/‘l(x7 X/) = <k1(x7 ')7 k‘](X, )>H =6 Vx € RD7

where € is a constant value. So [|kr(x,-)|[x = +/|€|, conse-
quently, functions k;(x, ) lie on a surface of a hypersphere
of radius /e[ However, mean maps up = Ep[k;(X,.)], do
not have constant norm, because:

el = Ee(kr (X))l < Belllkr(X.,) 3] = V/lel,

by convexity of ||.|[ and Jensen’s inequality.

A possible solution to prevent small values for the radius
is to scale mean maps pp to have norm one, to lie on the
surface of some hypersphere. The following theorem is due
to Muandet et al |19).

THEOREM 4  (SPHERICAL NORMALIZATION [19]). If ker-
nel k(.,.) is characteristic and the examples are linearly in-
dependent in the RKHS H, then the spherical normalization:

<M1P’7 M@>7'¢ 7 (10)
Ve, e (po, po)n
preserves the injectivity of the mapping p: P — H.

Basically, Theorem 4] says that all the information is pre-
served after performing spherical normalization of the data.

The MV-set G, for volume-sets G of the form given by
can be computed by solving the optimization problem simi-
lar as the one given in Problem [2] but with kernel:

k(P Py) = — %(p“]f)j) : (11)

k(P;, P:)k(P;, P;)

because of Theorem |4, Furthermore, note that k is given by
but with k~ernel kr.

As vazl a;k(P;, P;) is constant in Problemwhen a ker-

nel k is used, the MV-set G; can be computed by the fol-
lowing optimization problem:

PROBLEM 3.
N =
max — a;aik(P;, P,
acRN Z J ( J)
i,7=1
subjectto 0<a; <A, i=1,...,N

N
Z o4 = 1.
i=1

This formulation is very similar to the dual formulation of
One-class Support Measures Machines [23| [19] but is not
directly equivalent. We discuss this point in Section [4

3.4 Third SMDD model

The MV-set G, for volume-sets G of the form given by
can be computed solving the chance-constrained optimiza-
tion problem. Given the mean functions {up, }fV: ; of {Pi}ﬁil,
and {x;}1L1, ki € [0,1], the SMDD model is:

PROBLEM 4.
N
min RZ+ )\ Z &
cEH,RER,ECRN P

Pi(|k(Xi,.) —c()l3 < B* + &) > 1 — ki,
€i Z 07

subject to

forall i=1,...,N.

The chance constraints of Problem [ control the probabil-
ity of constraint violation, allowing flexibility to the model.
However, each constraint requires we deal with every possi-
ble realization of k(X,-), X ~ P;. To implement this prob-
lem, it is necessary to turn probabilistic constraints into de-
terministic ones.

For a non negative random variable X ~ P and t > 0,
this can be achieved by Markov’s inequality which bounds
P(X > t) by Ep[X]/t.

Ee[|[k(Xi, ) — c()]13]
R2+¢; ’
(12)

Pi(||k(Xs,.) — ()5 > R* + &) <

holds, for all : =1,2,..., N.

3.4.1 Trace of the Covariance Operator

The term Ep[||k(X;,.) — ¢(.)||% in the numerator of
can be computed using the trace of the covariance operator
in H and mean maps pp. The covariance operator in H
with kernel k is the mapping % : H — 7, such that for all
f,g € H it satisfies:

(. £%g)n = Ex[f(X)g(X)] — Ep[f(X)]Ez[g(X)],

because the reproducing property El The covariance opera-
tor is subsequently the matrix:

S = Bplk(X, )k(X,.) "] — Ep[k(X, )]E:[k(X,.)]T. (13)

From this, the trace of =™ can be obtained as: E|

() = [ Beb(X kX0

—Ep[k(X, t)|Ep[k(X,t)] " dt
= Ep[(k(X, )k(X,.))n]

—(Ep[k(X, )], Ep[k(X, )]}
= Epk(X, X)] — (e, tr) 2,

where the last line is due to the reproducing property and
Def. [1} Therefore, using , yields

tr(2M) = Ep[k(X, X)] — k(P, P), (14)

that is, the trace of a possible infinite dimensional matrix
can be computed in terms of kernel evaluations. We then
have the following lemma.

LEMMA 5.

Ee[[k(X,.) = ()13 = tr(E™) + llue — ()5

3% is a bounded operator on a separable infinite dimen-
sional Hilbert space and can be represented by an infinite
matrix [6].

“Because pp(X) < 0o, it follows that tr(X*) < oco.



3.4.2 Deterministic Form

From Lemma , the deterministic form of the Prob-
lem []is the following optimization problem. Given the mean
functions {up, }Xy of {P;}Y, and {k:}X,, wi € (0,1], the
SMDD model is:

PROBLEM 5.

c€H,RER,EERN

N
min RP4+AY &
i=1

e, — ()3 < (R? + &)k — tr(S]),

61207

subject to

for all i =1,..., N, where tr(X) is given by .

PROPOSITION 6  (DUAL FORM). The dual form of Prob.[3

is given by
PROBLEM 6.
ma Z (g, , s, ) Z?fj:l vt (e, s e ) 1
i(UP;, UP; )H —

o €RY i= Zil @

N

+ Z aitr(21)

i=1

subject to 0 < ki <A, i=1,...,N

N
E ;K = 1,
=1

where (up,, pr; )3 is computed by k(Pi7Pj), « is a Lagrange

multiplier vector with a; non negative components; and tr(EZH)

is given by .

A remark about the nature of that problem it that it is a
fractional programming problem [7].

PROPOSITION 7  (REPRESENTER THEOREM). The repre-
senter theorem for Problem @ 18:
i QP . .
c(.):M,ze{z€I|O<am¢§/\}, (15)

PIFReT

where T = {1,2,...,N}. Furthermore, all P;, i € {i €
T | a; = 0} are inside the MV-set Gi. AllP;, i € {i €
Z | aiks = A} are the training errors. AllP;, ¢ € {i €
Z1]0 < a;ki < A} are the support measures and, from this,
the radius is computed by

cOI? +tr(SF)

Ki

R2 — ||ILL]P1 —

; (16)
forallie {i € T|0< aik; < A}.

Alternatively, we have the following result to compute R.

THEOREM 8. Let n be the Lagrange multiplier of the con-
straint E ., aik; = 1 of the Lagrangian of Problem@ then
R2

As a consequence, to test if some test probability mea-

sure P; is in this SMMD model, we have to compute the
score ||up, — c||3;, + tr(ZI*). Using Prop. [7, Theorem [8] and

Eq. , the score can be written in terms of the kernel k
by:

(P, ;) —zzaz (P, ;) +Zazaj (Ps, P;) + tr(X])

(17)
where indices 7, j belong to the support measure set. This
score must be compared against the value R to decide if Py
is in the description of SMDD.

4. EQUIVALENCES AMONG MODELS

In this section, we describe the relationship among SMDD
models and the equivalence between SMDD models and One-
Class Support Measure Machine (OCSMM) [23] [19]. For
this purpose, we use the notation given in Table[l] We start
showing how M1 can be formulated if we restrict it only to
the case of joint constraints and a sharing covariance matrix.
We then use this formulation to compare the restricted M1
with the original M1 and M2.

THEOREM 9. The Primal form of M1 with joint constraints
sharing the same covariance matriz, i.e., k; = k and LI =
H foralli=1,2...,N and X > 0, can be written as

PROBLEM 7.

N
. [T o
2 p i

=1

c(.)EH,p’ ER, &' ERN

subject to (pe, e(Nw>p —€,i=1,...,N
2
é‘;Z*%a :la"'7N'
where
1 12

Problem [7] is a less flexible formulation of M1 because it
considers the same local covariance and the same x values
for all points. Using optimal ¢ € H and p’ values from
Problem [7} the radius is computed by:

R = /(tr() + [lcl* - 20"))/, (19)

or equlvalently, solvmg Problem |5 l for k;, = Kk and X; = 3,
for all i = 1,2..., N, we can retrieve p’ of Problem [7| I as
follows:

1
p = —§(RQH —tr(2) = [le]l*).

COROLLARY 10 (DuAL ForM). Using the kernel between
probability measures given by , the dual of Prob. m s given
by:

PROBLEM 8.

N
1 ~ 1
ané%% 3 ;:1 a;k(P;, P;) 5”5 1%0@ (P;, P))
subject to 0< a; <A, i=1,...,N

LEMMA 11. Let n be the Lagrange multiplier of constraint
Zf.v:l a; = 1 of the Lagrangian of Prob. |8, then p =n.



From this, we can solve Prob. [§| and apply Lemma to
retrieve p, the center by ¢ = >, aipp;, © € {i|0 < oy < A},
and the radius R from .

Under this particular setting for M1, we have the following
equivalence among the SMDD models:

e M1 vs M2, M1 is almost the same as M2 but with a
difference of a scaling factor of 0.5 in the dual objective
function;

e M1 vs M3, after spherical normalization on data, the
dual objective function of M1 as is given by Prob.[8} be-
comes —0.5 Zi.\f].:l aiajk(P;,P;), where k is the kernel
given by , because the other term in the objective
function is constant. Therefore, M1 is equivalent to
M3, with a difference of a scaling factor of 0.5 in the
dual objective function.

We conclude this section describing how SMDD models
are equivalent to OCSMM. It is widely known that SVDD [30]
and One-Class Support Vector Machines (OCSVM) [23] are
similar if stationary kernels are used [23} [30]. Although,
Prob. [7is similar to OCSMM, SMDD is not directly equiva-
lently to it because mean maps under stationary kernels do
not have constant norm. However, under a spherical nor-
malization on data, there is the following equivalence:

COROLLARY 12. M2, M8 and OCSMM [19] are equiv-
alent under a spherical normalization of the training set

P} by @).

Consequently, M1 under the assumptions given by Prob.[§]
is equivalent to OCSMM, with a difference of a scaling factor
of 0.5 in the dual objective function.

5. SUPERVISED GROUP ANOMALY DETEC-

TION EXPERIMENTS

In this section, we present an experimental evaluation of
SMDD models for the task of group anomaly detection us-
ing artificial and real datasets. In the experiments, we con-
sider two types of group anomalies: Point-based anomaly
detection, described in Section [5.3] and Distribution-based
anomaly detection described in Sectlon@ Finally, in Sec-
tion [5.5] we use real data from the Sloan Digital Sky Survey
(SDSS) project to detect anomalous groups of galaxies.

5.1 Kernel and covariance estimation

The kernel between probability measures given by was
estimated via the empirical estimator:

k(P;,P;) ~

from a training set given by . Furthermore, the trace
of the covariance operator in the RKHS given by . was
estimated by:

L;
UEIE D
L L (21)
i I
=1 1=1

where k is a positive definite kernel on RP x RP.

Model  Problem Section/Ref.
M1 ©
M2
M3
OCSMM -
SVDD -

Table 1: Models used in the experiments

5.2 Experimental settings

The notations for the DD models used throughout this
section are given by Table[I] For comparison purposes, we
use SVDD, trained using only the empirical group means, as
the baseline. Because some experimental results for group
anomaly detection between OCSMM and other approaches,
including a state of the art method proposed in [33] were
reported in [19], we only compare SMDD models against
the OCSMM model.

We used CVX, a package for specifying and solving con-
vex programs [11] to solve M1. To solve M2, M3, OCSMM
and SVDD, we used the SVM and Kernel Methods Matlab
Toolboz (SVM-KM) (2] El

Remark Because we model anomaly detection as a one-
class classification problem (only the non-anomalous class
is labeled), it is difficult to build a confusion matrix to get
statistics. However, an approach based on testing with arti-
ficial group anomalies will reflect the power of the presented
models.

5.3 Point-Based Group Anomaly Detection over
a Gaussian Mixture Distribution dataset

The goal of group anomaly detection is to find groups of
points with unexpected behavior from datasets given by .
Differently from usual anomaly detection, points of anoma-
lous groups can be highly mixed with points of non-anomalous
groups turning group anomaly detection a challenging prob-
lem. In Point-Based Group Anomaly detection [32], anoma-
lous groups are given by aggregating individually anomalous
points. For this experiment, we generated 50 non-anomalous
groups of points and 30 groups for test. From the 30 groups
in the test set, 20 groups correspond to anomalous groups.
The number of points by group for all non-anomalous and
anomalous groups was randomly chosen from a Poisson dis-
tribution with parameter 8 = 10.

The points for non-anomalous groups were randomly sam-
pled from a Multimodal Gaussian Mizture Distribution or
GMD. We considered two types of non-anomalous groups,
following the same experimental setting described in refer-
ences [33}/19]. The first type was given by groups sampled
from a two-dimensional GMD with three components, mix-
ture weights: (0.33,0.64,0.03); means: (—1.7,—1), (1.7, —1),
(0,2); and 0.2 I as the sharing covariance matrix, where I
denotes the 2 x 2 identity matrix. The second type was given
by groups of points sampled from a GMD with the same pa-
rameters, but with mixture weights: (0.33,0.03,0.64). The
probability of chosen each group was © = (0.48,0.52), re-
spectively. The green box in Fig. shows three non-anomalous

5The Matlab code and datasets for experiments can be found
at http://www.vision.ime.usp.br/~jorjasso/SMDD.html.
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groups for m = 0.48 and the yellow box shows two non-
anomalous groups for m = 0.52.

We generated three different types of anomalous groups.
The first type of group anomalies was given by 10 groups of

points sampled from the normal distribution: AV'((—0.4, 1), I2).

Figure [2|shows five anomalous groups of this type (magenta
box). The second type of group anomalies was given by five
groups of points sampled from a two-dimensional GMD with
four components, with the following parameters: weights:
(0.1,0.08,0.07,0.75); means: (—1.7,—1), (1.7,—1), (0,2),
(0.6, —1); and a sharing covariance matrix given by 0.2 * I5.
Figure[2]shows five anomalous groups of this type (blue box).
The third type of group anomalies was given by five groups of
points sampled from a two-dimensional GMD with four com-

ponents with parameters: weights: (0.14,0.1,0.28,0.48); means:

(-1.7,-1), (1.7,-1), (0,2), (—0.5,1); and 0.2 % I as the
sharing covariance matrix. Figure [2] shows five anomalous
groups of this type (red box).

Figure 2: Group anomaly detection dataset. Green
and yellow boxes contain non-anomalous groups of
points. Red, blue, and magenta boxes contain
anomalous groups of points.

To get reliable statistics, we performed 200 runs, over
training sets of 50 non-anomalous groups and test sets of
30 groups (20 anomalous and 10 non-anomalous groups).
The performance metrics are the area under the ROC curve
(AUCQ), and the accuracy (ACC).

As it is usual in one-class classification tasks, it is not
possible to have a validation set for model selection because
the data (training or test) have no labels. We follow the
same methodology used in literature, that is, we choose ar-
bitrarily a value for the regularization parameter A of the
SMDD model and computed the kernel parameters using
some heuristic on the available data. In this way we avoid
to employ the training or the test set for model selection
(See Chap. 7, pp. 215-219 22| and Sec. 5 in [19].).

A regularization parameter A = 1 was considered and the
kernel in , implemented by a RBF kernel with bandwidth
parameter v, was computed by:

v=1/s(x — x?|1*), (22)

where 4, j are the indices of the groups, k,[ are the indices
of the points , and s is the 0.1 quantile of the Euclidean
distance between all possible pairs of points in the dataset.

Figure [3| shows the AUC, the ACC for non-anomalous
groups, the ACC for anomalous groups, and the plot of
the means of the non-anomalous groups (green points) vs.

the means of anomalous groups (Red, blue, and magenta
points corresponding to the red, blue, and magenta boxes in
Fig. ) This experiment shows that all the SMDD mod-
els (M1, M2, and M3) can detect well such anomalies. The
AUC values close to one indicate that the SMDD models and
also OCSMM (M4) detected group anomalies with few false
positives and false negatives. On the other hand, SVDD
(M5) could not detect those group anomalies using only the
group means as the training set. Because the means of the
non-anomalous groups overlap with the anomalous groups,
methods such as OCSMM and SVDD will not perform well.
The reason for this is that, for such methods, anomalies are
points far away from the mean of the description of the data.

5.4 Distribution-Based Group Anomaly Detec-

tion over a Gaussian Mixture Distribution
dataset

Distribution-Based Group Anomalies [32] are anomalous
groups of points that individually are non-anomalous but
together form anomalous groups. In this experiment, 50
non-anomalous groups of points were generated to form the
training set and 15 anomalous groups of points plus 15 non-
anomalous groups of points were generated to form the test
set. The number of points per group was the same as in the
last experiment.

Points in each non-anomalous group were sampled from a
two-dimensional GMD with three components and the fol-
lowing parameters: mixture weights: p = {1/3,1/3,1/3};
means: (—1.7,1),(1.7,—1),(0,2) and sharing the same co-
variance matrix 0.2 * I5.

To build the group anomalies, groups of points were sam-
pled from the same GMD used to generate non-anomalous
groups. Next, we rotated all the points belonging to the
set containing all the non-anomalous groups by 45 degrees,
that is, xI* = x] R, where R is a rotation matrix of 45 de-
grees. Further, we estimated the covariance matrix of those
rotated points. Finally, group anomalies were sampled from
the same GMD of the non-anomalous groups but with two
of their covariance matrices given by the covariance matri-
ces of the rotated points. That is, individually, points are
non-anomalous, but an aggregation of them is anomalous.

For this experiment, we used a kernel given by imple-
mented by a Gaussian kernel with parameter given by
but with s given by the median of the Euclidean distance
between all possible pairs of points in the dataset. Further-
more, we used a regularization A = 1 for all the models.

Figure [4] shows the performance metrics AUC, ACC for
non-anomalous groups, and ACC for anomalous groups. In
addition, it is shown the group means of non anomalous
groups (green points), and the group means of anomalous
groups (red points).

All the three SMDD models and also the OCSMM (M4)
presented good performance in terms of AUC metric. On
the other hand, the results show that SVDD (M5) was the
model with the worst performance.

5.5 Group Anomaly Detection in Astronomi-
cal Data

In this section, we tested the SMDD models with real
data: The Sloan Digital Sky Survegﬂ (SDSS) project, previ-

Shttp://www.sdss3.org/
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Figure 3: Experimental results and a plot of the group means for the point-based group anomaly detection

experiment.
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Figure 4: Experimental results and plot of the group means for the two distribution-based anomaly detection

experiment.

ously used for comparison in [20} 33| [19].This dataset con-
tains massive spectroscopic surveys of the Milky Way galaxy
and extra solar planetary systems. The idea is to use the
dataset to detect anomalous clusters of galaxies. The dataset
contains about 7 x 10° galaxies, each of them represented
by a 4000-dimensional vector denoting spectral information.
Following [20], each vector was down-sampled to a 500-
dimensional vector and clusters of galaxies were obtained
analyzing the spatial neighborhood of galaxies. The analy-
sis returns 505 clusters of galaxies of a total of 7530 galaxies.
Thus, each cluster of galaxies corresponds to one group of
about 10 — 15 galaxies. Finally, PCA was applied to the
vectors to get a four-dimensional dataset, preserving about
85% of the variance of the data.

The training set was formed by randomly choosing 455
groups of galaxies among the first 505 groups. Furthermore,
two test datasets, each of them containing the remaining 50
non-anomalous groups, from the original 505 groups, plus
50 anomalous groups, were generated.

In the first test dataset, each anomalous group was gener-
ated by randomly selecting about n; galaxies from the 7530
galaxies, where n; is distributed according to a Poisson dis-
tribution with parameter 8 = 15. As galaxies were randomly
chosen, the aggregation itself of such galaxies is anomalous.

Anomalous groups for the second test dataset were gen-
erated as follows: first, we empirically estimated the co-
variance of the 7530 observations (galaxies) and, then, we
selected randomly three sets of galaxies from the 7530 galax-
ies, each one containing about n; galaxies (the same n; of
the last experiment). We estimated the empirical means of
the three sets and using them and the empirical covariance
matrix ¥, we constructed a GMD with three components
and weights: p = {0.33,0.33,0.33} and a covariance matrix
5% 3. Finally, we generated anomalous groups of points for

the second test dataset from the above GMD with about n;
points per group.

We show in Sub-figures Bl and [Bh, the group means of
the PCA vectors. Green points are the non-anomalous group
means, and red points are the anomalous group means. Each
sub-figure shows four plots: upper-left: the plot of the first
vs. second dimensions, upper-right: the plot of the second
vs. third dimensions, bottom-left: the plot of the third vs.
four dimensions, bottom-right: the plot of the four vs. first
dimensions. Moreover, because the overlapping of the group
means, group anomalies for this experiment are hard to be
detect by common methods.

We carried out 200 runs to get reliable statistics. Figure
shows that performance metrics for the first test set (top),
and the second test set (bottom).

It is important to emphasize that M4 was compared against
other group anomaly generative method detectors [19] and
obtained equivalent performance. Therefore, we compare
only SMDD models against M4 and M5 models.

For the first test set, we computed the RBF kernel param-
eter using but with s being the median. We considered
a regularization parameter letting about 30% of the non-
anomalous groups to be the errors allowed in the training
set. Models M2 and M3 performed a little worse than SVDD
(M5) for this choice of parameters when detecting group
anomalies. However, the AUC metric for SVDD shows that
the performance of this model is no more than chance. On
the other hand, M1 and OCSMM (M4) perform better than
the baseline for detecting group anomalies. Note that the
ACC for the non-anomalous groups is about 70% because
the choice of the regularization parameter.

Results for the second test set are shown in the bottom
part of Fig.[5l The experimental setup is the same as before
but now we considered a regularization parameter A = 1 and
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Figure 5: The results of the experiment for the group anomaly detection task over a SDSS III dataset.

a kernel parameter given by . The ACC for anomalous
groups shows that M2 is the worst for detecting the group
anomalies. The AUC metric shows that all the models per-
formed well. Furthermore, we note that a spherical normal-
ization has a positive effect, increasing M3 AUC value close
to one.

6. CONCLUSION

In this work, we presented a data description method
named SMDD for datasets given as set of points, that is,
each observation is considered to be a set of points dis-

tributed according to an unknown probability measure. SMDD

models describe datasets of probability measures by optimiz-
ing volume-sets of probability measures. Such volume-sets
are constructed using the information provided by the rep-
resentative functions or mean maps of probability measures
in a RKHS. In this work, we considered the class of sets
of probability measures given by enclosing hyperspheres of
mean functions in a RKHS. The main advantage of our ap-
proach is that it does not require a density estimation for
P;. However, the description will be dependent in the choice
of the kernel.

We formulated and described three SMDD models. The
first is a direct extension of the SVDD method for the case
of probability measures. This model also uses the mean map
embedding of probability measures technique. The second
SMDD model is almost the same as the first one but it con-
siders a scaling of data and stationary kernels. The reason
behind this, is that mean maps under stationary kernels do
not have a constant norm in the RKHS. The third model
uses information of covariance matrices and mean maps.
This model is formulated as a chance constrained program,
which is further transformed into a deterministic problem
by Markov’s inequality. We also compared the relationship
among models, showing the cases where the SMDD models
are equivalent.

The SMDD models were tested in the challenging group
anomaly detection task. We showed empirically that they
perform well for such a task, showing that the SMDD method

is an alternative methodology to deal with group anomaly
detection. Experimental evaluation, using those datasets,
shows that SMDD model M1 is better than SMDD mod-
els M2 and M3, and performs similarly to OCSMM. How-
ever SMMD model M1 is more flexible than OCSMM. Also
SMMD model M3 performs better than M2 showing a posi-
tive effect of the spherical normalization of the data. Future
work includes applications in novelty detection, clustering
and classification, for datasets of probability measures.
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