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This paper concerns steady, high-Reynolds-number

flow around a semi-infinite, rotating cylinder placed

in an axial stream and uses boundary-layer type of

equations which apply even when the boundary-layer

thickness is comparable to the cylinder radius, as

indeed it is at large enough downstream distances.

At large rotation rates, it is found that a wall

jet appears over a certain range of downstream

locations. This jet strengthens with increasing rotation,

but first strengthens then weakens as downstream

distance increases, eventually disappearing, so the

flow recovers a profile qualitatively similar to a

classical boundary layer. The asymptotic solution

at large streamwise distances is obtained as an

expansion in inverse powers of the logarithm of the

distance. It is found that the asymptotic radial and

axial velocity components are the same as for a non-

rotating cylinder, to all orders in this expansion.

1. Introduction
When a semi-infinite rotating cylindrical body is placed

in a high-Reynolds-number axial flow (see figure 1),

an axisymmetric boundary layer develops along the

cylinder. Initially thin, this layer becomes of thickness

comparable with, then larger than the cylinder radius at

sufficiently large axial distances. Our original motivation

for studying this flow was to undertake a stability

analysis. However, it soon became clear that there are

very few existing studies of the underlying flow,

c© The Author(s) Published by the Royal Society. All rights reserved.
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despite its interesting features, e.g. the appearance of an axial wall jet beyond a certain threshold

value of the rotation rate. The presence of curvature and rotation means that the classical

Prandtl equations need to be generalized to allow for these effects. In particular, rotation leads

to a centrifugal term which couples all three velocity components. This results in significant

qualitative changes in the flow structure, e.g. the wall jet, compared with Blasius flow on a flat

plate.

The non-rotating version of this problem was studied analytically by Seban & Boyd [1] using

a series solution in powers of z1/2, where z is the axial coordinate, non-dimensionalized using

the cylinder radius. This series solution was limited to order 3, and thus only applicable close

to the inlet. Kelly [2] showed that the series solution for the displacement thickness provided by

Seban & Boyd [1] was erroneous, and obtained the correct result. Glauert & Lighthill [3] extended

this work to obtain a solution at all z using the Pohlhausen approximation . At large z, Glauert

& Lighthill [3] also showed that the velocity profile had an asymptotic expansion in inverse

powers of log(z). Jaffe & Okamura [4] were the first to solve the boundary-layer equations for this

problem numerically, thus covering the entire range of z, from small to large values. Boundary-

layer velocity profiles have also been numerically determined by Tutty et al. [5] and Vindod &

Govindarajan [6] in the context of stability analysis.

Petrov [7] appears to be the first to have studied the rotating case. Axial velocity profiles were

obtained in the limit of small z and show the existence of a wall jet for sufficiently strong rotation,

though this interesting feature was not explained in the paper. Motivated as we were by stability

analysis of the flow, Kao & Chow [8] and Herrada et al. [9] solved the present problem numerically.

However, both papers limit themselves to a range of rotation rates insufficiently large to produce

a wall jet. Furthermore, the centrifugal term is missing in the boundary-layer equations of Kao &

Chow [8], and so they are incapable of yielding a wall jet even at large rotation rates.

In §2, we define the two non-dimensional control parameters of the problem, Re and S, the

Reynolds number and non-dimensional rotation rate. The boundary-layer equations, valid for

largeRe, and allowing for boundary-layer thickness to be comparable with the cylinder radius are

given. These equations generalise the Prandtl equations and apply for arbitrary (not necessarily

small) ratios of boundary-layer thickness to cylinder radius. Suitable rescaling of the variables

renders the problem independent of Re, leaving only S as control parameter. Section 3 describes

the numerical scheme and its verification, while §4 gives results and discussion, in particular

focussing on the wall jet. Finally, §5 gives asymptotic analyses of the limits of large Z = z/Re and

large S. The boundary layer on the nose is discussed in the appendices. It is found that the precise

shape of the nose is unimportant: the input to the boundary-layer equations of §2 being the Blasius

flat-plate flow (generalized to include the azimuthal component due to rotation), independent of

the nose shape.

2. Boundary-layer equations
A semi-infinite cylinder of radius a rotates about its axis with angular velocity Ω and is placed

in an axial stream of incompressible fluid of velocity U∞ and viscosity ν (see figure 1). Assuming

large Reynolds number, an initially thin boundary layer develops along the cylinder. If the

cylinder were sharply truncated at the nose, flow separation would occur as is usually the case at

a salient edge [10]. To avoid this scenario we assume there is a smooth nose, as shown in figure 1.

Another way to avoid flow separation would be to consider a thin hollow cylinder. The boundary-

layer equations formulated in this section hold good for both these cases. A detailed analysis of

the nose region is given in appendix B.
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U∞ Ωr

a z

Figure 1. Schematic diagram of the problem.

The natural length and velocity scales are a and U∞. These scales are used to non-

dimensionalize the axisymmetric, steady Navier–Stokes equations in cylindrical coordinates,

z, r, θ. There are two non-dimensional parameters, namely the Reynolds number

Re=
U∞a

ν
, (2.1)

and the rotation rate

S =
Ωa

U∞
. (2.2)

Assuming a large Reynolds number, the length scale for axial variation of the flow is much

longer than that for radial variation. This separation of scales leads to the boundary-layer

approximation. Thus,

uz
∂uz
∂z

+ ur
∂uz
∂r

=−∂p
∂z

+
1

Re

(

∂2uz
∂r2

+
1

r

∂uz
∂r

)

, (2.3)

u2θ
r

=
∂p

∂r
, (2.4)

uz
∂uθ
∂z

+ ur
∂uθ
∂r

+
uθur
r

=
1

Re

(

∂2uθ
∂r2

+
1

r

∂uθ
∂r

− uθ
r2

)

, (2.5)

∂uz
∂z

+
1

r

∂rur
∂r

= 0 (2.6)

are obtained by dropping terms of higher order from the Navier–Stokes equations in the usual

manner. Note that we have not assumed the boundary layer to be thin compared with the radius.

The boundary conditions are

uz = 0, ur = 0, uθ = S z > 0, r= 1, (2.7)

uz → 1, uθ → 0, p→ 0 z > 0, r→∞. (2.8)

The above equations contain the azimuthal component, uθ , of the velocity. This is due to

rotation of the cylinder, which induces the centrifugal term on the left-hand side of equation (2.4),

leading to a significant radial pressure gradient. Such an effect is not present in classical

boundary-layer theory, which predicts near constancy of the pressure across the layer. Compared

to the Prandtl equations of a classical boundary layer, equations (2.3)–(2.6) allow for the additional

effects of both rotation and curvature. Near the nose the boundary layer is thin compared with

the cylinder radius and curvature effects are negligible. But at large z, boundary-thickening

eventually makes the thickness comparable to, then larger compared with the radius, and the

full set of equations is required.

The above problem needs to be completed by inlet conditions. At distances from the nose of

O(a), the boundary layer is thin compared to the radius and is described by the axisymmetric

Prandtl equations given in appendix B. On the cylinder (after leaving the nose), these equations
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become the flat-plate Prandtl equations, and as z increases, we expect the flow to forget the

precise initial conditions and to approach the Blasius solution, independent of the nose shape

(here, we implicitly suppose the nose length to be of the same order as its diameter). There are, in

fact, two asymptotic regions, z =O(1), where the equations of appendix B apply, and z =O(Re),

where the boundary-layer thickness is comparable to the cylinder radius and equations (2.3)–(2.8)

hold. Matching between these regions requires that the inlet condition be the Blasius solution

(generalized to include the azimuthal component due to rotation). The same is true for the case

of the hollow cylinder. In either case, equations (2.3)–(2.8) are supplemented by Blasius initial

conditions as z→ 0.

Introducing the scaled variables

R= r, Z =
z

Re
, (2.9)

Uz = uz, Ur =RurRe, Uθ =Ruθ, P =R2p, (2.10)

equations (2.3)–(2.8) become

Uz
∂Uz

∂Z
+
Ur

R

∂Uz

∂R
=− 1

R2

∂P

∂Z
+
∂2Uz

∂R2
+

1

R

∂Uz

∂R
, (2.11)

U2
θ =R

∂P

∂R
− 2P, (2.12)

Uz
∂Uθ

∂Z
+
Ur

R

∂Uθ

∂R
=
∂2Uθ

∂R2
− 1

R

∂Uθ

∂R
, (2.13)

∂Uz

∂Z
+

1

R

∂Ur

∂R
= 0, (2.14)

Uz =Ur = 0, Uθ = S R= 1, (2.15)

Uz → 1, Uθ =0, P = 0 R→∞. (2.16)

It is apparent that, using these scalings, Re has disappeared from the problem, leaving S as

the only non-dimensional parameter. This result indicates, among other things, that the natural

scaling of the axial coordinate is z =O(Re). Thus, as noted earlier, the distance needed for

the boundary-layer thickness to become comparable with the radius is Re times the radius.

The factors of R appearing in equation (2.10) have been introduced to improve numerical

convergence.

3. Numerical scheme and validation
The boundary-layer thickness goes to zero like Z1/2 and Ur →∞ like Z−1/2 as Z = 0 is

approached. To maintain numerical accuracy in the presence of such singular behaviour, we

introduce the variables

ζ = (2Z)
1

2 , σ=
R − 1

ζ
, Vr = ζUr, Vz =Uz , Vθ =Uθ. (3.1)

Here, the boundary-layer thickness is prevented from going to zero in the radial coordinate σ by

dividing R − 1 by ζ. Vr is kept finite by use of the factor ζ and ζ is used in place of Z to make the

solution a smooth function of the axial coordinate. Using these variables in the boundary-layer
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equations (2.11)–(2.16) results in

ζVz
∂Vz
∂ζ

+

(

Vr − ζ

R
− σVz

)

∂Vz
∂σ

=
1

R2
(σ
∂P

∂σ
− ζ

∂P

∂ζ
) +

∂2Vz
∂σ2

, (3.2)

ζ

R

(

V 2
θ + 2P

)

=
∂P

∂σ
, (3.3)

ζVz
∂Vθ
∂ζ

+

(

Vr + ζ

R
− σVz

)

∂Vθ
∂σ

=
∂2Vθ
∂σ2

, (3.4)

ζ
∂Vz
∂ζ

− σ
∂Vz
∂σ

+
1

R

∂Vr
∂σ

=0, (3.5)

with the boundary conditions

Vz = Vr = 0, Vθ = S σ= 0, (3.6)

Vz → 1, Vθ = 0, P = 0 σ→∞. (3.7)

These equations govern the axial evolution of the flow. The inlet condition (Blasius solution) is

obtained by setting ζ = 0 and solving the resulting equations.

The radial coordinate σ is discretized using Chebyshev collocation points:

xn = cos

(

nπ

N − 1

)

0≤ n<N, (3.8)

σn =
σ̂(1 + xn)

1− xn
, x ∈ [−1, 1]→ σ ∈ [0,∞]. (3.9)

The parameter σ̂ controls the distribution of points such that half of them lie between 0≤ σ ≤ σ̂.

The velocities Vz and Vθ are represented by their values at all collocation points. However, since

there is no boundary condition for the pressure at the surface, it is represented at all points except

σ= 0. Similarly, there is no boundary condition for Vr at σ=∞ and so it is represented at all

points apart from σ =∞. The Chebyshev derivative matrices for P and Vr are correspondingly

modified (e.g. appendix A in [12]).

The coordinate ζ is discretised using small, equally-spaced steps, ζi = i∆, and the variables

Vz, Vr, Vθ, P are represented by their values at ζi. Equations (3.2), (3.4) and (3.5) are evaluated at

mid-step, ζi+ 1

2

, using an implicit scheme that employs centered finite differencing to represent the

ζ-derivatives. Equation (3.3) is evaluated at the step position ζi, rather than at the midstep. At each

step, the equations are solved using Newton–Raphson iteration, thus allowing forward marching.

The inlet solution is obtained from equations (3.2)–(3.7) using ζ = 0. Following discretization in σ

using the collocation points, the result is again obtained by Newton–Raphson iteration.

The code was first tested by changing the numerical parameters N, σ̂,∆, and observing the

dependence of the solution on these parameters. Based on the convergence results we decided to

use N =128, σ̂= 5,∆= 0.001 in our computations. These values gave convergence to better than

seven decimal places. The code was also tested using the volume-flux and momentum balance

equations. The results respect these equations to seven decimal places. Although use of the Blasius

solution at the inlet has earlier been justified by an asymptotic argument, it is interesting to see

the effect of a change in inlet profile on the solution. Thus we modified the inlet profile to be

U∗
z =Uz + Aσexp(−0.5σ), where Uz is the Blasius profile. Taking A= 2, it was found that the

change in the Uz at Z = 2 was in the sixth decimal place. This illustrates the fact that the flow

forgets the initial condition as Z increases and becomes insensitive to the precise inlet profile

used.

We also validated the code by comparing our results with the existing literature. Tutty et al. [5]

studied the case without rotation. The axial (xt) and radial (σt) coordinates used by Tutty et al. [5]
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are related to those used here via xt/Re=Z and σt =
√
2σ. Figure 2 shows good agreement with

our results for Re= 104, xt = 0.01 and xt =105. Herrada et al. [9] considered the problem of the

rotating cylinder. They do not give velocity profiles, but rather the skin friction on the cylinder:

τ =
∂Uz(Z)

∂R

∣

∣

∣

∣

R=1

=
1

ζ

∂Vz(ζ)

∂σ

∣

∣

∣

∣

σ=0

. (3.10)

Figure 2 shows τ as a function of Z for S = 1 and good agreement is apparent.

-0.1
 0

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5

U
z

σ

Z = 0.001 present study
Z = 0.001 Tutty et. al.

Z = 4.472 present study
Z = 4.472 Tutty et. al.

 0

 0.5

 1

 1.5

 2

 0  0.2  0.4  0.6  0.8  1

τ

Z

present study
Herrada et al.

Figure 2. Comparison of Uz for S =0 at two values of Z with [5] and comparison of skin friction τ for S =1 with [9].

4. Results
Flow profiles were obtained for different values of S and Z. Figure 3 shows velocity profiles for

S = 0.1 and different values of Z. For Z = 0, Vz(σ) corresponds to the Blasius flat-plate solution.

As Z increases, Vz(σ) deviates from the Blasius profile due to cylinder curvature and rotation.

It should be borne in mind that the boundary-layer thickness increases with Z, although this is

not apparent in the figure because the scaled radial coordinate σ = (R− 1)/ζ has been used. Note

that the azimuthal velocity at Z = 0 is Vθ(σ) = S
(

1− Vz(σ)
)

. As Z increases, small departures

from this profile arise. Figure 4 and figure 5 show results for Z = 0.5 and different values of S.

When S . 1, Vz(σ) is a modified Blasius profile. However, for S & 4, Vz(σ) is no longer monotonic

having a maximum at finite σ. At large S, the maximum is large and the profile is better described

as an axial wall jet, rather than a boundary layer. At first sight, it is perhaps surprising that

increasing the rotation rate leads to a stronger and stronger axial flow. Increasing S causes Vθ
to increase (see figure 4). This in turn produces an increasing radial pressure gradient due to the

centrifugal force. Since the pressure is constant outside the boundary layer, the pressure within

the layer drops (see figure 5) with Z. The development of the flow means that the axial presure

gradient becomes larger and larger, thus driving a strong axial wall jet. Whereas for lower values

of S, boundary-layer thickening leads to positive Vr , at large S entrainment by the wall jet gives

negative Vr outside the layer (see figure 4).

The existence of a wall jet at large S is apparent in the axial velocity profiles given by Petrov [7].

However, that article only gives such profiles for the case of small Z (thin boundary layer) and no

explanation is provided. Petrov [7] also gives the maximum axial velocity Umax
z =maxR(Uz(R))

as a function of Z. Figure 6 shows a comparison with our results. A small difference is apparent,
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Figure 3. Velocity profiles Vz(σ), Vθ(σ) and Vr(σ) for different axial positions Z at S =0.1.

the origin of which is unclear.

Figure 7 shows contours of constant Umax
z in the (S, ζ)-plane as well as the boundary (solid

line) separating the region in which Umax
z = 1 from that in which Umax

z > 1 (which we interpret

as indicating a wall jet). It will be seen that there is a threshold, S =4.15, below which Umax
z = 1.

Above this value, the wall jet exists for some range of axial position. Note that, whatever the

strength of rotation, the wall jet eventually disappears sufficiently far downstream.

The thickness of the boundary layer/wall jet can be measured using

δ =
1

Umax
z

∫∞
1

|1− Uz|dR. (4.1)

The absolute value is taken to make the integral always positive and the division by Umax
z allows

for the strong wall jets which arise at large S. Figure 8 shows δ(Z) for different values of S.

The layer thickness is seen to increase with Z in a roughly parabolic manner (recall that the

thickness behaves as Z
1

2 for small Z). Thickening of the layer is due to viscous diffusion in
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Figure 4. Velocity profiles Vz(σ), Vθ(σ) and Vr(σ) at Z =0.5 for different values of rotation rate S.

the usual manner. Increasing S causes the layer to become thinner. At large S, the wall jet is of

increasing strength. Viscous diffusion competes with axial convection, the latter being of growing

importance, hence the decrease of δ with increasing S.

5. Asymptotic analysis

(a) Large-Z asymptotics

Suitable coordinates are

η=R/ζ, χ= ln(ζ). (5.1)

Here, we have followed Glauert & Lighthill [3], who used a logarithmic axial coordinate for the

non-rotating cylinder problem. This coordinate reflects slower and slower evolution of the flow in
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Figure 5. Pressure profile P (σ) at Z = 0.5 for different values of S.
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Figure 6. Comparison of Umax
z as a function of Z1/2 obtained by the present study with [7] for the case of S = 5 and

S = 10.

the streamwise direction as Z increases. Using these coordinates, equations (2.11)–(2.16) become

Uz

(

∂Uz

∂χ
− η

∂Uz

∂η

)

+
Ur

η

∂Uz

∂η
=

e−2χ

η2

(

η
∂P

∂η
− ∂P

∂χ

)

+
∂2Uz

∂η2
+

1

η

∂Uz

∂η
, (5.2)

U2
θ + 2P = η

∂P

∂η
, (5.3)

Uz

(

∂Uθ

∂χ
− η

∂Uθ

∂η

)

+
Ur

η

∂Uθ

∂η
=
∂2Uθ

∂η2
− 1

η

∂Uθ

∂η
, (5.4)
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Figure 7. Grayscale plot of Umax
z alongside a contour plot of Umax

z . The figure also shows the boundary (solid line)

between Umax
z =1 and Umax

z > 1.
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Figure 8. Boundary-layer/wall-jet thickness δ versus Z for different values of S.

∂Uz

∂χ
− η

∂Uz

∂η
+

1

η

∂Ur

∂η
=0, (5.5)

Uz =Ur = 0, Uθ = S η= e−χ, (5.6)

Uz → 1, Uθ → 0, P → 0 η→∞. (5.7)

It is shown in appendix A that Uz, Ur, Uθ and P have asymptotic expansions in powers of χ−1.

The factor of e−2χ in equation (5.2) is exponentially small and is hence negligible at all algebraic

orders. Without the corresponding term in equation (5.2), Uz and Ur decouple from Uθ and P ,

though the latter depends on the former. Thus, we expect such decoupling to hold at all orders.
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Figure 9. Comparison of χ(Uz − 1) and uθ =Uθ/R for different values of Z at S = 0.1 with the Z →∞ solution.

This is indeed what is found in appendix A, where the governing equations for the coefficients of

the expansions in powers of χ−1 are obtained for all orders. Given decoupling, rotation does not

enter into the asymptotics of Uz and Ur , which are consequently the same as for the non-rotating

case.

Glauert & Lighthill [3] studied the case without rotation and obtained the expansions of Uz

and Ur . Appendix A extends the analysis to include rotation and gives detailed results up to

order 5. At first order, the asymptotic solution can be obtained analytically and is given by

Uz ∼ 1− χ−1
∫∞
η

e−ξ2/2

ξ
dξ, (5.8)

Ur ∼χ−1(1− e−η2/2), (5.9)

Uθ ∼ Se−η2/2, (5.10)

P ∼−S2η2
∫∞
η

e−ξ2

ξ3
dξ. (5.11)

In figure 9, the results for Uz show convergence to the asymptotic form (5.8), while those for

uθ =Uθ/R converge to uθ ∼ S/R, which is the flow due to a rotating cylinder, infinite in both

axial directions (rather than semi-infinite) and without axial flow.

(b) Large-S asymptotics

As we saw in the previous section, the numerical results show the existence of a wall jet at large S.

In this limit, appropriate scaled variables are

Z∗ =
Z

S
, R∗ =R, (5.12)

U∗
z =

Uz

S
, U∗

r =Ur, U∗
θ =

Uθ

S
, P ∗ =

P

S2
. (5.13)

The scaling of Z reflects the increasing distance required for flow development as the rotation

rate increases. The scaling of Uz and Uθ indicates the strengthening flow velocity as S increases.

The large-S asymptotic expansions of U∗
z , U

∗
r , U

∗
θ and P ∗ proceed as powers of S−1. At leading
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order (S0), we find

U∗
z
∂U∗

z

∂Z∗
+
U∗
r

R∗

∂U∗
z

∂R∗
=− 1

R∗2

∂P ∗

∂Z∗
+
∂2U∗

z

∂R∗2
+

1

R∗

∂U∗
z

∂R∗
, (5.14)

U∗2
θ =R∗ ∂P

∗

∂R∗
− 2P ∗, (5.15)

U∗
z
∂U∗

θ

∂Z∗
+
U∗
r

R∗

∂U∗
θ

∂R∗
=
∂2U∗

θ

∂R∗2
− 1

R∗

∂U∗
θ

∂R∗
, (5.16)

∂U∗
z

∂Z∗
+

1

R∗

∂U∗
r

∂R∗
= 0, (5.17)

with the following inlet and boundary conditions

U∗
z =0, U∗

θ = 0 Z∗ =0, (5.18)

U∗
z = 0, U∗

r =0, U∗
θ = 1 R∗ =1, (5.19)

U∗
z =0, U∗

θ = 0, P ∗ = 0 R∗ →∞. (5.20)

Figure 10 shows the solution of the above problem (solid line) compared with the numerical

results discussed before for Z∗ = 0.1 and different values of S. It is apparent that the asymptotics

are indeed approached as S→∞. Figure 11 shows the leading-order asymptotic solution for

different values of Z∗. We see that the large-Z limit (uθ ∼ SR−1) is approached by uθ as Z∗ →∞.

Note that the limit S→∞ can be reached in two ways: either by increasing the rotation rate, or

by decreasing the velocity U∞ to zero. Note also that uz/S and uθ/S are the velocity components

non-dimensionalized by Ωa, rather than U∞, and that Z∗ = z/ReΩ , where ReΩ =Ωa2/ν is the

Reynolds number based on the rotational velocity Ωa. Thus figure 11 can be interpreted as

showing the flow due to a rotating, semi-infinite cylinder in a still fluid (U∞ = 0). It can be shown

that the separation of radial and axial length scales, which underlies the boundary-layer type

approximation we have used, is valid if either of the Reynolds numbers, Re or ReΩ , is large.
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Figure 10. Comparison of U∗

z and U∗

θ for different values of S and Z∗ = 0.1 with the S →∞ asymptotic solution.
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Figure 11. uz/S =U∗

z and uθ/S at different values of Z∗ for a rotating cylinder in the limit S →∞.

6. Conclusion
In this paper we have presented a study of the flow around a rotating cylinder in an axial

stream. We have assumed a smooth nose to avoid flow separation. The two non-dimensional

control parameters of the problem are: Reynolds number (Re) and rotation rate (S). The flow

equations are formulated using a boundary-layer type approximation, appropriate at large

Reynolds numbers and in which the flow is assumed to evolve slowly in the streamwise direction

in comparison to the radial direction. The resulting equations are not limited to the case in which

the boundary layer is thin compared with the cylinder radius. By using appropriate scalings we

remove Re from the problem.

The results show that the boundary-layer thickness increases with axial distance, becoming

comparable with the cylinder radius a at distances of O(Re a). Prior to this, the layer is thin

compared to the radius and the flow is close to the Blasius profile of a flat plate. However, it

differs from the Blasius solution due to effects of curvature and rotation at larger downstream

distances. As S increases, the centrifugal force creates an increasing radial pressure gradient,

which combined with axial development, implies an increasing axial gradient of pressure. Above

S = 4.15, the maximum velocity exceeds the free-stream velocity for a range of Z and we say that

a wall jet exists. This jet becomes stronger and stronger as S→∞.

In the limit of large Z, we find that the axial and radial components of velocity decouple from

the azimuthal velocity component and pressure. All these quantities are found to have asymptotic

expansions in inverse powers of ln(Z), a result already obtained for the non-rotating case by

Glauert & Lighthill [3], and here extended to include rotation. The leading-order term in the

uθ expansion is uθ ∼ SR−1, which is the flow expected for a rotating cylinder, infinite in both

directions. Because Uθ becomes independent of Z, the same is true of the pressure field resulting

from the centrifugal force, hence the absence of an axial pressure gradient to drive the axial/radial

flow. This is the reason for the decoupling.

When S is large, we introduce appropriate scalings for Z, Uz, Uθ and P . The asymptotic

expansions of the scaled velocity and pressure proceed as inverse powers of S, beginning with

S0. The leading-order term describes an axial wall jet due to a rotating cylinder in a fluid at rest.
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A. Large Z asymptotic expansions
The flow variables are expressed as asymptotic expansions in inverse powers of χ:

Uz ∼ 1 +

∞
∑

n=1

χ−nU
(n)
z (η), (A.1)

Ur ∼
∞
∑

n=1

χ−nU
(n)
r (η), (A.2)

Uθ ∼ S
∞
∑

n=1

χ−n+1U
(n)
θ (η), (A.3)

P ∼ S2
∞
∑

n=1

χ−n+1P (n)(η). (A.4)

Introducing these expansions into equations (5.2)–(5.5) gives

1

η

d

dη

(

η
dU

(n)
z

dη

)

+ η
dU

(n)
z

dη
= φ

(n)
z , (A.5)

η3
d

dη

(

P (n)

η2

)

= ψ(n), (A.6)

η
d

dη

(

1

η

dU
(n)
θ

dη

)

+ η
dU

(n)
θ

dη
= φ

(n)
θ , (A.7)

1

η

dU
(n)
r

dη
− η

dU
(n)
z

dη
= φ

(n)
r , (A.8)

where

φ
(n)
z = (1− n)U

(n−1)
z +

∑

m

((

U
(m)
r

η
− ηU

(m)
z

)

dU
(n−m)
z

dη
−mU

(m)
z U

(n−m−1)
z

)

, (A.9)

φ
(n)
θ = (2− n)U

(n−1)
θ +

∑

m

((

U
(m)
r

η
− ηU

(m)
z

)

dU
(n−m)
θ

dη
− (m− 1)U

(m)
θ U

(n−m−1)
z

)

,

(A.10)

φ
(n)
r = (n− 1)U

(n−1)
z , ψ(n) =

∑

m

U
(m)
θ U

(n−m+1)
θ . (A.11)

Equations (A.5)–(A.8) are to be solved, along with appropriate boundary conditions (which will

be derived shortly), for the nth-order coefficients of the expansions, U
(n)
z , U

(n)
r , U

(n)
θ and P (n)

(n≥ 1). It should be noted that, in equations (A.9)–(A.11), U
(m)
z , U

(m)
r and U

(m)
θ are to be

interpreted as zero when m≤ 0. The governing equations for U
(n)
z and U

(n)
r are independent

of U
(n)
θ and P (n). Thus, the asymptotics of U

(n)
z and U

(n)
r are the same as for a non-rotating

cylinder and are governed by equations (A.5), (A.8), (A.9) and the first of the equations (A.11).

U
(n)
θ is determined by equations (A.7) and (A.10), while P (n) follows from equation (A.6) and the

second of the equations (A.11). Note that φ
(n)
z , φ

(n)
r and φ

(n)
θ depend only on the solution at lower

orders than n, suggesting a method which proceeds from n= 1 to successively higher values of n.
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The boundary conditions at η→∞ are

U
(n)
z =U

(n)
θ =P (n) = 0. (A.12)

Application of the boundary conditions (2.15) at the cylinder surface requires the introduction

of an inner region, R=O(1), represented by the expansions

Uz ∼
∞
∑

n=1

χ−nÛ
(n)
z (R), (A.13)

Ur ∼
∞
∑

n=1

χ−nÛ
(n)
r (R), (A.14)

Uθ ∼ S

∞
∑

n=1

χ−n+1Û
(n)
θ (R), (A.15)

P ∼ S2
∞
∑

n=1

χ−n+1P̂ (n)(R). (A.16)

Equations (2.11), (2.13) and (2.14) are rewritten using the axial coordinate χ in place ofZ. Equation

(2.14) yields

∂Û
(n)
r

∂R
=0, (A.17)

which, together with the boundary conditions (2.15) gives Û
(n)
r = 0. Equations (2.11) and (2.13)

imply

∂2Û
(n)
z

∂R2
+

1

R

∂Û
(n)
z

∂R
=0, (A.18)

∂2Û
(n)
θ

∂R2
− 1

R

∂Û
(n)
θ

∂R
=0, (A.19)

hence

Û
(n)
z (R) =An lnR+Bn, (A.20)

Û
(n)
θ (R) =CnR

2 +Dn. (A.21)

The boundary conditions (2.15) imply Bn =0, C1 +D1 = 1, and Cn +Dn = 0 for n> 1.

Recalling that R= ζη= eχη, the inner expansions give

Uz ∼A1 +

∞
∑

n=1

χ−n(An ln η + An+1), (A.22)

Uθ ∼ S

(

1 +

∞
∑

n=1

Cnχ
−n(e2χη2 − 1)

)

, (A.23)

Ur ∼ 0, (A.24)

when expressed in terms of the outer coordinate, η. Matching requiresA1 = 1, Cn =0 and

U
(n)
z ∼An ln η +An+1, (A.25)

U
(1)
θ → 1 and U

(n)
θ → 0 for n> 1, (A.26)

U
(n)
r → 0, (A.27)
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as η→ 0. It follows from (A.25) that

η
dU

(n)
z

dη
→An (A.28)

and

An+1 = lim
η→0

(

U
(n)
z −Anlnη

)

. (A.29)

Assuming An is known, equations (A.5)–(A.11) and the boundary conditions (A.12) and (A.26)–

(A.28) can be solved for U
(n)
z , U

(n)
r , U

(n)
θ and P (n). A1 = 1 gets the process started and leads to

the leading-order outer solution, (5.8)–(5.11), in agreement with [3]. Equation (A.29) gives An at

the next order, allowing solution at successively higher orders. It can be shown that

U
(n)
z =Anlnη +An+1 +O(η2lnpnη), U

(n)
θ =1− qn +O(η2), U

(n)
r =O(η2lnqnη), (A.30)

as η→ 0, where qn = pn+1 − 1, p1 =0, p2 =1 and pn =2 for n≥ 3. The terms in (A.30) indicated

by the O() notation are exponentially small in the inner region, while the remaining ones

reproduce the inner solution. Thus, the outer expansions in fact apply in the inner region.

The above procedure has been implemented numerically and results up to n= 5 are presented

in figure 12. Figure 13 shows the comparison of numerical solution of Uz at Z = 5000 and S =1

with the asymptotic solution obtained by truncating at different orders n. Although this result

shows good convergence, and therefore further confirms both numerical and analytical results, it

should be borne in mind that the expansions (A.1)–(A.4) are, in fact, asymptotic as Z→∞, rather

than necessarily convergent at any finite Z.

B. Flow over the nose
Large Reynolds number implies a thin boundary layer over the nose. Schlichting [11] gives

the axisymmetric boundary-layer equations in terms of curvilinear coordinates, x, y, θ, where

x is distance along the surface, and y is distance normal to the surface. Here we use the

non-dimensional coordinates, velocity components and pressure:

ỹ=Re
1

2 y/a, x̃= x/a, (B.1)

ũy =Re
1

2 uy/U∞, ũx = ux/U∞, ũθ = uθ/U∞, p̃= p. (B.2)

The boundary-layer equations in these variables are

ũx
∂ũx
∂x̃

+ ũy
∂ũx
∂ỹ

− ũ2θ
R̃

dR̃

dx̃
=− ∂p̃

∂x̃
+
∂2ũx
∂ỹ2

, (B.3)

ũx
∂ũθ
∂x̃

+ ũy
∂ũθ
∂ỹ

+
ũθũx

R̃

dR̃

dx̃
=
∂2ũθ
∂ỹ2

, (B.4)

∂p̃

∂ỹ
= 0,

∂ũx
∂x̃

+
ũx

R̃

dR̃

dx̃
+
∂ũy
∂ỹ

= 0, (B.5)

with the boundary conditions

ũx = ũy = 0, ũθ = SR̃(x̃) ỹ =0, (B.6)

ũx →Uext(x̃), ũθ → 0 ỹ→∞, (B.7)

where the nose geometry is represented by r= R̃(x̃) and Uext(x̃) is the velocity just outside the

boundary layer. Equations (B.3)–(B.5) can, in principle, be solved to obtain the flow over the nose.

Note the centrifugal term in equation (B.3), which will no doubt produce a wall jet on the nose at

sufficiently large S. The terms containing dR̃/dx̃ vanish on the constant-radius cylinder (where x̃
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Figure 12. First five coefficients of the large-Z asymptotic expansions of Uz , Uθ and Ur .

and z coincide to within an additive constant) and equations (B.3)–(B.5) then become those of a

flat-plate. Thus, we expect the flow to approach the Blasius solution as x̃→∞. There are, in fact,

two asymptotic regions, x̃=O(1) and x̃=O(Re), the former being described by equations (B.3)–

(B.5) and the latter by equations (2.11)–(2.14). Matching of the regions requires the Blasius flow

as inlet conditions to the latter equations, as noted in the main text. Thus, the flow in the region

Z =O(1), which is the subject of this paper, is insensitive to the geometry of the nose. Note that a

wall jet may appear on the nose, subsequently disappearing on the cylinder, later reappearing in

the region Z =O(1).
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Figure 13. Comparison of the numerical solution of Uz with the large-Z asymptotic solution truncated at different orders

for Z = 5000 at S = 1.
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