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SPECTRUM OF THE LAPLACIAN WITH WEIGHTS
BRUNO COLBOIS AND AHMAD EL SOUFI

ABSTRACT. Given a compact Riemannian manifold (M, ¢g) and two positive functions p
and o, we are interested in the eigenvalues of the Dirichlet energy functional weighted by
o, with respect to the L? inner product weighted by p. Under some regularity conditions
on p and o, these eigenvalues are those of the operator —p~1div(cVu) with Neumann
conditions on the boundary if OM # (. We investigate the effect of the weights on
eigenvalues and discuss the existence of lower and upper bounds under the condition
that the total mass is preserved.

1. INTRODUCTION

Let (M,g) be a compact Riemannian manifold of dimension n > 2, possibly with
nonempty boundary. We designate by {\;(M, g)},~, the nondecreasing sequence of eigen-
values of the Laplacian on (M, g) under Neumann conditions on the boundary if 9M # ().
The min-max principle tells us that these eigenvalues are variationally defined by

Vul?v
Me(M,g) = inf  sup 7fM| 2‘ g
EeSiaiuenfo)  Jy 170
where S is the set of all k-dimensional vector subspaces of H'(M) and v, is the Rie-
mannian volume element associated with g.

The relationships between the eigenvalues A\;(M, g) and the other geometric data of
(M, g) constitute a classical topic of research that has been widely investigated in recent
decades (the monographs [3, 4, 7, 24, 35] are among basic references on this subject). In
the present work we are interested in eigenvalues of “weighted” energy functionals with
respect to “weighted” L? inner products. Our aim is to investigate the interplay between
the geometry of (M, g) and the effect of the weights.

Therefore, let p and o be two positive continuous functions on M and consider the

Rayleigh quotient
B [y IVul?o v,

Ry po =
(o)1) Jas u?pvg
The corresponding eigenvalues are given by
pi(p,o) = inf  sup R pe)(u). (1)

E€Sk+1 yeE\{0}
Under some regularity conditions on p and o, pf(p, o) is the k-th eigenvalue of the problem
—div(cVu) = ppu in M (2)
2010 Mathematics Subject Classification. 35P15, 58J50.
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2 BRUNO COLBOIS AND AHMAD EL SOUFI

with Neumann conditions on the boundary if OM # ). Here V and div are the gradient
and the divergence associated with the Riemannian metric g. When there is no risk of
confusion, we will simply write p(p, o) for pi(p, o).

Notice that the numbering of eigenvalues starts from zero. It is clear that the infimum
of Ry o) (w) is achieved by constant functions, hence pf(p, o) = 0 and
:u? <p7 J) = . inf R(g,p,o) (U) (3)

A Upvg=0

One obviously has pf(1,1) = A\ (M,g). When o = 1, the eigenvalues py(p, 1) cor-
respond to the situation where M has a non necessarily constant mass density p and
describe, in dimension 2, the vibrations of a non-homogeneous membrane (see [31, 24]
and the references therein). The eigenvalues (1, 0) are those of the operator div(cVu)
associated with a conductivity o on M (see [24, Chapter 10] and [2]). In the case where
p = o, the eigenvalues p(p, p) are those of the Witten Laplacian L, (see [12] and the
references therein). Finally, when o and p are related by o = pnT_Q, the corresponding
eigenvalues p (p, pnT_Q) are exactly those of the Laplacian associated with the conformal
metric p» g, that is wi(p, p%) = )\k(M,p%g).

Our goal in this paper is to investigate the behavior of i (p, o), especially in the most
significant cases mentioned above, under normalizations that we will specify in the sequel,
but which essentially consist in the preservation of the total mass. The last case, corre-
sponding to conformal changes of metrics, has been widely investigated in recent decades
(see for instance [9, 22, 23, 26, 28, 29, 33, 34]) and most of the questions we will address in
this paper are motivated by results established in the conformal setting. These questions
can be listed as follows:

(1) Can one redistribute the mass density p (resp. the conductivity o) so that the
corresponding eigenvalues become as small as desired?

(2) Can one redistribute p and/or o so that the eigenvalues become as large as desired?

(3) If Question (1) (resp. (2)) is answered positively, what kind of constraint can one
impose in order to get upper or lower bounds for the eigenvalues?

(4) If Question (1) (resp. (2)) is answered negatively, what are the geometric quantities
that bound the eigenvalues?

(5) If the eigenvalues are bounded, what can one say about their extremal values?

(6) Is it possible, in some specific situations, to compute or to have sharp estimates
for the first positive eigenvalues?

In a preliminary section we deal with some technical issues concerning the possibility
of relaxing the conditions of regularity and positivity of the densities. In the process, we
prove a 2-dimensional convergence result (Theorem 2.1) which completes a theorem that
Colin de Verdiere had established in dimension n > 3 . Question (1) is discussed at the
beginning of Section 3 where we show that it is possible to fix one of the densities p and
o and vary the other one, among densities preserving the total mass, in order to produce
arbitrarily small eigenvalues (Theorem 3.1). This leads us to get into Question (3) that
we tackle by establishing the following Cheeger-type inequality (Theorem 3.2):

12(.0) > gy (M) gy (M)

4



SPECTRUM OF THE LAPLACIAN WITH WEIGHTS 3

where h, (M) and h,,(M) are suitably defined isoperimetric constants, in the spirit of
what is done in [27].

Whenever a Cheeger-type inequality is proved, a natural question is to investigate a
possible reverse inequality under some geometric restrictions (see [6] and the introduction
of [32] for a general presentation of this issue). It turns out that in the present situa-
tion, such a reverse inequality cannot be obtained without additional assumptions on the
densities. Indeed, we prove that on any given Riemannian manifold, there exists families
of densities such that the associated Cheeger constants are as small as desired while the
corresponding eigenvalues are uniformly bounded from below (Theorem 3.3).

Questions (2) and (4) are addressed in Section 4. A. Savo and the authors have proved
in [12] that the first positive eigenvalue p;(p, p) of the Witten Laplacian is not bounded
above as p runs over densities of fixed total mass. In Proposition 4.1 we prove that, given
a Riemannian metric go, we can find a metric g, within the set of metrics conformal to g
and of the same volume as gy, and a density p, among densities of fixed total mass with
respect to go, so that uf(p, 1) is as large as desired. The same also holds for pf(1,0).

However, if instead of requiring that the total mass of the densities is fixed with respect
to go, we assume that it is fixed with respect to g, then the situation changes completely.
Indeed, Theorem 4.1 below gives the following estimate when M is a domain of a complete
Riemannian manifold (M, go) whose Ricci curvature satisfies Ricg, > —(n — 1) (including
the case M = M if M is compact): For every metric g conformal to gy and every density
p on M with [, pv, = |M|y, one has

g 1 2 =
i 1) < — (Auk? + BalM3,) (1)
|M|g

where | . |, and | . |4, denote the Riemannian volumes with respect to g and g, respectively,
and A, and B,, are two constants which depend only on the dimension n.

A direct consequence of this theorem is the following inequality satisfied by any density
pon (M, g) with [, pv, = M|,

) Ty B ricy (5)

pi(p, 1) < A, (

where ricy is a positive number such that Ric, > —(n — 1)ricy g (see Corollary 4.1).

| M,

Regarding the eigenvalues 1(1,0), we are able to prove an estimate of the same type
as (5): For every positive density o on (M, g) with [,, ov, = |M|, one has (Theorem 4.2)

2
E \n
7(1,0) < A, | —— | + Byrico, 6
10 < A () + B ©)
where A, and B, are two constants which depend only on the dimension n. It is worth
noting that although the estimates (5) and (6) are similar, their proofs are of different
nature. That is why we were not able to decide whether a stronger estimate such as (4)
holds for u(1,0).

When M is a bounded domain of a manifold (M, §) of nonnegative Ricci curvature (e.g.
R™), the inequalities (5) and (6) give the following estimates that can be seen as extensions
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V]

2
n

|Mlg |Mlg
that [, pv, = M|, and [,, ov, = |M|,. Notice that if we follow Kroger’s approach, then
we get an upper bound of 7 (p, 1) which involves the gradient of p and the integral of %
(see [16]).
According to (5) and (6), it is natural to introduce the following extremal eigenvalues
on a given Riemannian manifold (M, g):

of Kroger’s inequalitiy [30]: pi(p,1) < A, <L> and pj(1,0) < A, <L> B provided

pi(M,g) = sup pi(p,1) and 4g"(M,g) = sup pji(l,0)
far pvg=1 fur ovg=1
In section 5 we investigate the qualitative properties of these quantities in the spirit of
what we did in [9] for the conformal spectrum, thereby providing some answers to Question

(5). For example, when M is of dimension 2, we have the following lower estimate (see
9, Corollary 1]):

This means that, given any Riemannian surface (M, g), endowed with the constant mass
disribution p = 1 (whose eigenvalues can be very close to zero), it is always possible to
redistribute the mass density p so that the resulting eigenvalue 1 (p, 1) is greater or equal

_k_
to 87T‘M|g.

It turns out that this phenomenon is specific to the dimension 2. Indeed, we prove
(Theorem 5.1) that on any compact manifold M of dimension n > 3, there exists a
1-parameter family of Riemannian metrics g. of volume 1 such that

i (M, g.) < Cke™5

where C is a constant which does not depend on . This means that in dimension n > 3,
there exist geometric situations that generate very small eigenvalues, regardless of how
the mass density is distributed.

Regarding the extremal eigenvalues p;* (M, g), a similar result is proved (Theorem 5.2)
which is, moreover, also valid in dimension 2.

Note however that it is possible to construct examples of Riemannian manifolds (M, g)
with very small eigenvalues (for the constant densities), for which p; (M, g) and pi*(M, g))
are sufficiently large (see Proposition 5.2).

The last part of the paper (Section 6) is devoted to the study of the first extremal
eigenvalues pi and pi*. We give sharp estimates of these quantities for some standard
examples or under strong symmetry assumptions.

2. PRELIMINARY RESULTS

This section is dedicated to some preliminary technical results. The reason is that in
order to construct examples and counter-examples, it is often more convenient to use
densities that are non smooth or which vanish somewhere in the manifold. The key
arguments used in the proof of these results rely on the method developed by Colin de
Verdiere in [14].

Let (M, g) be a compact Riemannian manifold, possibly with boundary.
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Proposition 2.1. Let p € L>®(M) and o € C°(M) be two positive densities on M. For
every N € N*, there exist two sequences of smooth positive densities p, and o, such that,

vk < N,
pr(Pp, 0p) = pr(p, o)
as p — Q.

Proof. Using standard density results, let p, and o, be two sequences of smooth positive
densities such that, p, converges to p in L*(M) and o, converges uniformly towards o.
Assume furthermore that %inf p < pp < 2supp almost everywhere and that (replacing
o, by 0, + |0, — 0|l if necessary) o < o, on M. Then the sequence of quadratic forms
gp(u) = [y, [VulPo,v, together with the sequence of norms [ul|2 = [, u*ppv, satisfy the
assumptions of Theorem 1.8 of [14] which enables us to conclude. 0J

Let My be a domain in M with C'-boundary and let p be a positive bounded function
on My. In order to state the next result, let us introduce the following quadratic form

defined on H'(My):

Qolu) = /M VulPu, + /M L HEP,

where H(u) is the harmonic extension of uw to M \ My, with Neumann condition on
OM \ OMy it OM \ OMy # O (i.e. H(u) is harmonic on M \ My, coincides with u on
OMy \ OM, and 22 = 0 on OM \ OM,. The function H(u) minimizes | i, | VU
among all functions v on M \ My which coincide with u on M, \ OM). We denote
by vx(Moy, p) the eigenvalues of this quadratic form with respect to the inner product of

L*(My, pv,) associated with p, that is,

Vul?v, + VI (u) 20
(Mo, p) = inf  sup fMO‘ g fM\M0| (u)|*vy

2
BESY,; uek\{0} Jary WP Vg

where S is the set of all k-dimensional vector subspaces of H'(M).

Proposition 2.2. Let My C M be a domain with C'-boundary and let p € L°°(M) be a
positive density with essinfy, p > 0. Define, for every € > 0, the density p. € L>(M) by

po(z) = { p(x) if © € My

€ otherwise.
Then, for every positive k, ug(pe, 1) converges to (Mo, p) as e — 0.

Proof. The eigenvalues ju(p., 1) are those of the quadratic form g(u) = [, |Vul*vy, u €
H'(M), with respect to the inner product |[ul|? = [, u*p-vy. Set Mo = M \ M, and
' =0MyNIMy = OM, \ OM. We identify H'(M) with the space H. = {v = (vg, V) €
H'(My) x H'(My) 1 Voo = v/E 0.} through the map W.(u) = (uy,, ,vEup, ). We
endow H. with the inner product given by |[(vo, veo)|l5 = fMo vipu, + fMoo vZ v, and
consider the quadratic form g.(vo,ve) = [3, [Vvo|*v, + %fMoo |V ?v,, so that, for
every u € H'(M)

We(u)ll, = llulle: and  ge(Ve(u)) = q(u).
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Therefore, the eigenvalues of the quadratic form ¢ : H*(M) — R with respect to || || (i.e.
13 (pe, 1) ) coincide with those of ¢. : H. — R with respect to || ||,

The space H. decomposes into the direct sum H. = K§BKS, with K = {(vo, Vo) € He -
Vs is harmonic, and 22 = 0 on OM \ M, if OM \ OMy # 0}, and K5, = {(vo, vs0) €
H. : vy =0} (Indeed, v = (v, Vo) = (v, VEH (10)) + (0,000 — v/eH (1g))). These two
subspaces are g.-orthogonal and, denoting by A\;(M,,) the first eigenvalue of M., under
Dirichlet boundary conditions on I" and Neumann boundary conditions on OM, \ I, we
have, for every v = (0, v4) € Ko,

00) =2 [ V0P = I0000) [ o, = M)l
Theorem 1.7 of [14] then implies that, given any integer N > 0, the N first eigenvalues
wr(pe, 1) of g- on H. are, for sufficiently small £, as close as desired to the eigenvalues of
the restriction of q. on K.

We still have to compare the eigenvalues of ¢. on K, that we denote ~;(g), with the
eigenvalues v, (Mo, p) of Qo on L*(My, pv,). For this, we make use of Theorem 1.8 of [14].
Indeed, K can be identified to HI(MO) through W2 : u € HY(My) — (u,~/eH(u)) €

5, which satisfies [[W2(u)|2 = [, w’pvy + ¢ [}, H(u)*vy and ¢.(P2(u)) = Qo(u) =
Jas, IVulPvg + [y, [VH(u)Pvy. Hence, we are led to compare, on L*(Mp), the eigenvalues
of the quadratic form Qg with respect to the following two scalar products: ||u||§ =
Juny w0y and [[ul2 = [, w?pv, + [y, H(u)v,.

Now, since H(u) is a harmonic extension of uj,. to Mo, there exists a constant C', which
does not depend on ¢, such that fMoo H(u)*vy < C [ u*vy, where g is the metric induced

on I' by ¢g. Indeed, let n be the solution in M., of An = —1 with 7. = 0 and % =
on OM, \ T'. Observe that we have n > 0 (maximum principle and Hopf Lemma) and,

zin%?thoo 9(V(nH (u), VH(u))v, = 0, [, g(Vn, VH(u)*)vy = =2 [, n|VH(u)[*v, <

H(u)*v, = — y H(u)*Anv, :/ g(Vn, VH(u)*)v, + /u 5,7 < < c/ru%g

Moo

where ¢ is an upper bound of % onT. On the other hand, [}, u*v; is controlled by ||u||i{%(r)
which in turn is controlled (using boundary trace inequalities in My) by |ul|%: (o) Fi-

nally, there exists a constant C' (which depends on essinf,; p but not on €) such that
Jor, Hw)?v, < O( [y, w?pvg + [, IVul?v,) and, then
lullZ < C(llull; + Qo(u)).

Since [|ul|? converges to [|ul|? as e — 0, this implies, according to [14, Theorem L8] (see
also [25, Remark 2.14]), that, for sufficiently small e, the N first eigenvalues v(e) of Qo
with respect to || || are as close as desired to those, v (Mo, p), of Qo, with respect to || ||,.

U

Recall that in dimension 2, one has

15(p, 1) = (M, pg). (7)
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An immediate consequence of Proposition 2.2 is the following result which completes
Theorem III.1 of Colin de Verdiere [14].

Theorem 2.1. Let (M, g) be a compact Riemannian manifold of dimension n > 2 and
let My C M be a domain with boundary of class C*. Let g. be the a family of Riemannian
metrics on M, with g- = g on My and g. = €g outside My. Let k > 1.

(1) (Theorem III.1 of [14]) If n > 3, then A\.(M, g.) converges to A\(My, g) as e — 0
(2) If n =2, then \p,(M, g.) converges to yx(Mo, 1) as € — 0.

From Proposition 2.1 and Proposition 2.2 we can deduce the following two corollaries:

Corollary 2.1. Let p € L*>°(My) be a positive density on a domain My C M with boundary
of class C*. There exists a family of smooth positive densities p. on M such that [,, p-v,
tends to fMo pvg and, for every k € N*, py(pe, 1) converges to v,(My, p) as e — 0.

Corollary 2.2. Let (M, g) be a compact manifold possibly with boundary and let My C M
be a domain with boundary of class C*. For every integer k > 0 and every € > 0, there
exists a positive smooth density p. on M such that [, pevy = |M|, and

|M0|g
pe(pe, 1) = Ar(Mo, g) — €
| M,
Proof. Let p be the density on M, defined by p = ‘%ﬁ . We apply Corollary 2.1 taking
into account that (M, p) = |‘MM°||:fyk(M0, 1) > |‘MM°||: Ak (My, g). O

Remark 2.1. In dimension 2, it is clear from (7) that the problem of minimizing or
mazimizing i (p,1) w.r.t. p is equivalent to the problem of minimizing or mazimizing
Me(M, g) w.r.t. conformal deformations of the metric g. In dimension n > 3, the two
problems are completely different. To emphasize this difference, observe that, given a
positive constant ¢, one has

Q|

1
inf 125 (p. 1) 2 —pi(1,1) = —A (M, g) > 0
p<c

while
inf Ay (M, pg) = 0.
p<c

Indeed, let B;, j < k+ 1 be a family of mutually disjoint balls in M and consider the
density p. which is equal to ¢ on each B; and equal to € elsewhere. According to [14,
Theorem II1.1], A\g(M, p.g) converges as € — 0 to the (k + 1)-th Neumann eigenvalue of
the union of balls which is zero.

3. BOUNDING THE EIGENVALUES FROM BELOW

3.1. Non existence of “density-free” lower bounds. Let (M, g) be a compact Rie-
mannian manifold of dimension n > 2, possibly with boundary, and denote by [g] the
set of all Riemannian metrics ¢’ on M which are conformal to ¢ with |M|, = |M|,. It
is well known that \.(M,g') can be as small as desired when ¢’ varies within [g], i.e.
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infyeg Ak(M, g) = 0 (Cheeger dumbbells). Since 17 (p, p") = (M, pr g), this property
is equivalent to
i 9 o) =

» Jof Kl p) =0, (8)
Let us denote by R the set of positive smooth functions ¢ on M satisfying fM Pvg =1,
where fM Pvg = ﬁ Il v @vg. The following theorem shows that 1. (p, o) is not bounded
below when one of the densities p, o is fixed and the second one is varying within Rj.
We also deal with the case 0 = p?, p > 0, which includes (8) and the case of the Witten
Laplacian.

Theorem 3.1. For every positive integer k, one has, ¥p > 0

, - N
@ of pup,1)=0

(74) inf px(l,0) =0

g€RY

(i) mf plp,p") =0.

Proof of Theorem 3.1. (i): In dimension 2 one has p(p, 1) = A\e(M, pg) and the problem
is equivalent to that of deforming conformally the metric g into a metric pg whose k-th
eigenvalue is as small as desired. The existence of such a deformation is well known.

Assume now that the dimension of M is at least 3. Let us choose a point xg in M. The
Riemannian volume of a geodesic ball B(z, ) of radius r in M is asymptotically equivalent,
as r — 0, to w,r™, where w, is the volume of the unit ball in the n-dimensional Euclidean
space. Therefore, there exist 9 € (0, 1) sufficiently small and N € N so that, for every
r < % and every r € B(x,€o),

1
awn'r” < |B(z,7)| < 2w,r". 9)
Fix a positive integer k& and let § = 32 so that 6 < 2 — 1. One can choose N € N

sufficiently large so that, for every e < <, the ball B(x,¢) contains k& mutually disjoint

balls of radius 2e2 ¢ (indeed, since § — 0 > 1, 2279 is very small compared to ¢ as the
latter tends to zero). We consider a smooth positive density p. such that p. = ei inside

n

B(xg,€), p. = in M \ B(zg,2¢), and p. < = elsewhere. Thanks to (9), one has

_€n

1
| pety < 1Bl 2]y + <l Ml < 2, -+ | M,
M
For simplicity, we set « = § — 6 = 22 and denote by 1, . . .,z the centers of k mutually
disjoint balls of radius 2 contained in B(x,¢).

For each i < k, we denote f; the function which vanishes outside B(x;,2¢%), equals 1
in B(x;,e%), and fi(z) = 2 — &dy(x, x;) for every x in the annulus B(x;, 2e®) \ B(x;,£%).
The norm of the gradient of f; vanishes everywhere unless inside the annulus where we
have |V f;| = %. Thus, using (9),

1 o |Blxi,e?)]

1
/ f;psvg 2z - fivg=—7—72 _wnenm_l)
M €" J B(wi ) en 2
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and

B i72 « _
[ 19y < B g o
M g

Thus
n—2
Rigp.1)(fi) < 2m2en—2 = 20275

In conclusion, we have
n—2
pk(pe; 1) < e

Pe iz (2 wn nc2 | a
1k J)zﬂk(p,l)][pv <2 ( e2 +ez ).
<]CMP6'U9 R YA | M,

Letting ¢ tends to zero we get the result.

and

(77): The proof is similar to the previous one. For e sufficiently small, we may assume
that there exist k + 1 mutually disjoint balls B(z;,&?) inside a ball B(x,€) and consider
any function o. € Ry such that o. = &° inside B(xg,¢). For each i < k + 1, let f; be the
function which vanishes outside B(x;,2¢?), equals 1 in B(z;,€%), and f;(x) = 2—%d,(z, x;)
in B(z;,2¢?)\ B(z;,e%). As before,

Lo ]
M B(x;,e2)

1
/ IV filPoev, < —4/ o.v, < e|B(x;,2e%)] < 2w, e
M €% JB(x;,2e2)

and

Thus

V fi|?
i(1.0,) < max VIO gnia,

i<kl [y, fRug

(73): For sufficiently small ¢, let B(z;,4¢), ¢ < k+ 1, be k + 1 mutually disjoint balls of
radius 4 in M. As before, we can assume that, Vrr < 4e, 1w, r™ < |B(z;,7)| < 2w,r™. We
define p. to be equal to sin on each of the balls B(z;, ) and equal to " in the complement
of Uj< B(x;,2¢). For every i < k+ 1, the function f; defined to be equal to 1 on B(z;, 2¢)
and f;(x) = 2— 5=dy(x, ;) in the annulus B(x;,4¢)\ B(x;, 2¢) and zero in the complement
of B(x;,4¢) satisfies

1
/ oo, > / f2peda = —
M B(zi.e) €
On the other hand, Vp > 0,
1
| s, = V£, = 7| Bz, 42)] < 220 L eHI=2,
M B(as 4¢)\B(z; ,2¢) de

Thus

|
=
3
o
vV
|
&
3

AV Z'2O' v
ti(pe, p£) < max Mleg < 92 (prln=2,
= fM fivg

Regarding fM peVg, it is clear that it is bounded both from above and from below by
positive constants that are independent of ¢, which enables us to conclude. U
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3.2. Cheeger-type inequality. Theorem 3.1 tells us that it is necessary to involve other
quantities than the total mass in order to get lower bounds for the eigenvalues. Our next
theorem gives a lower estimate which is modeled on Cheeger’s inequality, with suitably
defined isoperimetric constants, as was done by Jammes for Steklov eigenvalues [27].

Let (M, g) be a compact Riemannian manifold, possibly with boundary. The classical
Cheeger constant is defined by

D\ OM D\ OM
W)= g 1OPNOMlg e 1ODAOM],
|D|g<3|M|g ‘D‘g DcMm m1n{|D|g, ‘M‘g - ‘D‘g}

Given two positive densities p and o on M, we introduce the following Cheeger-type
constant:

o~ e 12D\0M,

plo<iive Dl
with |D|, (resp. |0D\ OM]|,) is the n-volume of D (resp. the (n —1)-volume of 0D\ OM)
with respect to the measure induced by ov,.
Theorem 3.2. One has
hoo(M)h, o (M).

o |

Ml(pv ) Z

Proof. The proof follows the same general outline as the original proof by Cheeger (see
[8] and [5]). We give here a complete proof in the case where M is a closed manifold.
The proof in the case 9M # () can be done analogously. Let f be a Morse function such
that the o-volume of its positive nodal domain Q. (f) = {f > 0} is less or equal to half
the o-volume of M. For every t € (0,sup f) excepting a finite number of values, the set
f7Ht) is a regular hypersurface of M. We denote by v} the measure induced on f~(t)
by vy, and set P,(t) = [, 1 v, The level sets of f are denoted (t) = {f > ¢} and we

set V,(t fQ(t avg and V fﬂ AR Using the co-area formula one gets

+o0o
/ |V flov, = / P,(t)dt.
Q4+ (f) 0

On the other hand, the same co-area formula gives

—+o00
t) :/ ds/
t f-1
VI(t) = —/ Lyt
(1) i IV
Now

/Q+ , fpvg = /Wdt/ o IVfI /ﬂo dt/ " IVfI —/OJrooth’(t)dt

which gives after integration by parts

+oo
/ frvg = / Vo(t)dt.
Q1(f) 0

Thus
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+o0
/ fov, :/ V,(t)dt.
Q4 (f) 0
Since P, (t) > hyo(M)V,(t) and P,(t) > h, ,(M)V,(t) we deduce

[ 9tz s {heaa) [ oy ) [ g}
Q1 (f) Q+(f) Q1(f)

Using Cauchy-Schwarz inequality we get

Similarly, one has

2 2
/ IV fPov, > ! > th’U(M)hp’U(M) f9+(f) o fﬂ+(f) Fpug
g = -
Q4 (1) 4 Jo g FPov 4 Jao i FPovg
1

= hyo(M)hy, o (M) / F2pu,. (10)

Now, let m € R be such that [{f > m}|, = [{f < m}|, = 2|M]|, (such an m is called
a median of f for o). Applying (10) to f —m and m — f we get

1
[ 19sPon = haaMha ) [ (7w,
{f>m} {f>m}

and

1
| sPon 2 fhao0hyo00) [ (=P,
{f<m} {r<m}
Summing up we obtain

[ 19500, Jhoa0hua30) [ (7=,

M
Since [, (f —m)?pvg = [,, [Ppvg +m?*|M|, —2m [,, fpv,, we deduce that, for every f
such that [,, fpv, =0,

1
[ 1V5Pos, 2 fhaa(ha(00) [ fov,
M 4 7 M
which, thanks to (3), implies the desired inequality. O

Remark 3.1. In dimension 2, Theorem 3.2 can be restated as follows: If (M,g) is a
compact Riemannian surface, then

1
M (M, g) > 7 Sup hyg g (M)hg o (M) (11)
9'€ld]
where hy g (M) = inf|p) <1iny,, %. Indeed, for any g € [g] there exists a positive

p € C®(M) such that g = pg'. Thus, A\ (M, g) = u‘l’/ (p, 1) and (11) follows from Theorem
3.2. This inequality can be seen as an improvement of Cheeger’s inequality since the
right-hand side is obviously bounded below by h, 4(M)?. Notice that in [6], Buser gives an
example of a family of metrics on the 2-torus such that the Cheeger constant goes to zero
while the first eigenvalue is bounded below. The advantage of (11) is that its right hand
side does not go to zero for Buser’s example.
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A natural question is to investigate a possible reverse inequality of Buser’s type (see
[6, 32]). The following theorem provides a negative answer to this question.

Theorem 3.3. Let (M, g) be a compact Riemannian manifold, possibly with boundary.
(i) There exists a family of positive densities o., € > 0, on M with fM ovy = 1 and
such that hy 5. (M)h,. o (M) goes to zero with € while py(1,0.) stays bounded below by a
constant C'" which does not depend on c.

(ii) There exists a family of positive densities p., € > 0, on M with fM pvg = 1 and
such that h,_1(M) goes to zero with € while j11(p-, 1) stays bounded below by a constant
C which does not depend on ¢.

Proof. We start by proving the result for the unit ball B C R™ and then explain how
to deduce it for any compact Riemannian manifold. For every r € (0,1) we denote by
B(r) the ball of radius r centered at the origin and by A, the annulus B™ \ B(r). In the
sequel, whenever we integrate over a Euclidean set, the integration is implicitely made
with respect to the standard Lebesgue’s measure.

Proof of (i): For every ¢ € (0, %) we define a smooth nonincreasing radial density o. on B"
such that 0. = <, with a € (0,1) (e.g. a = 3) inside B"(¢) and 0. = b. in B™\ B(2¢),
where b, is chosen so that an 0. = Wy, the volume of B™. We then have

/ 0. = wpe" 178 and / 0 = wy(1 —2"e™)b..
B(E) AQE

Since [g, 0. = wy, and b, < 0. <e 7% on B(2¢) \ B(e), we have
W™ b (1 — ™) < wy < W2 by (1 — 27€™),
that is 1 on n—1-a 1 n—1-a
Toee <bh < < (12)
1 —2nen 1—em
Now, the Cheeger constant h,_,_(B") satisfies
0B(2¢)|,. _ |0B(2e)|,.  nbow,(2e)"*
. |B(e)

On the other hand, for ro = ()" we have |B(r)
sufficiently small, so that

< np2tlee,

ho.o.(B") <
€9 E( ) |B<28)

o. wngnflfa

oo < wy (eI 4 1b.) < tw, when € is

|0B(ro)|s. nwnrg’1b€ < i

b (B") < -
v B S TR T g

Hence, the product hy, (B")h,. -.(B") tends to zero as ¢ — 0. Regarding the first
positive eigenvalue p1(1, 0.), if f is a corresponding eigenfunction, then [ 5o/ =0 and
f n|vf|205 an|Vf|2
:ul(lv g ) ==& > b
) Jpe 2 e I

with b, > £ for sufficiently small € according to (12).

> b-AMi(B", gp)

Now, given a Riemannian manifold (M, g), we fix a point xy and choose § > 0 so that
the geodesic ball B(zg,d) is 2-quasi-isometric to the Euclidean ball of radius 6. In the
Riemannian manifold (M, ;¢), the ball B(zg,1) is 2-quasi-isometric to the Euclidean
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ball B™. We define 0. in B(xg, 1) as the pull back of the function o. constructed above,
and extend it by b, in M \ B(xg,1). Because of (12), we easily see that f, o.v, stays
bounded independently from . We can also check that h;, (M) and h,_ , (M) have
the same behavior as before and that (since 0. > b. > 1) the eigenvalue /,L‘TQQ (1,0.) is
bounded from below by %)\I(M ,072g) which is a positive constant C' independent of .

Thus, ({(1,02) = 8 7(1,0:) > €&
Proof of (ii): As before we define the density p. € L>(B"), ¢ € (0, 3), by

1 .
o ta if ¢ - B(g)
pe = { b= =20 fp e B\ B(e) (13)

1—en

so that | gn Pedr = w, and b. < 1. The corresponding Cheeger constant satisfies

|0B(e)]  nwye™!
= BE), et

= ne.

h

which goes to zero as ¢ — 0.

To prove that the first positive Neumann eigenvalue p(pe, 1) is uniformly bounded
below we will first prove that the first Dirichlet eigenvalue \;(p.) satisfies

1
A(pe) > ZXK (14)
where A\* is the first Dirichlet eigenvalue of the Laplacian on B™. Indeed, let f be a

positive eigenfunction associated to A;(p:). Such a function is necessarily a nonincreasing
radial function and it satisfies (with b. < 1)

oo V114 L1 VP i IVS1+ [ 1P
fB(a) [pet [ Poe — el fB(e) P

For convenience we assume that f(e) = 1.

Ai(ps) = (15)

If we denote by v(A.) the first eigenvalue of the mixed eigenvalue problem on the
annulus A., with Dirichlet conditions on the outer boundary and Neumann conditions on
the inner boundary, then it is well known that v(A.) converges to A* as ¢ — 0 (see[1]).
Thus, using the min-max, we will have for sufficiently small ¢,

[z peox] e (16)
Ae Ae

£

On the other hand, since f — 1 vanishes along 0B(e), its Rayleigh quotient is bounded
below by &A%, the first Dirichlet eigenvalue of B(e). Thus

1 1
VI > =\ —1)2> =\ 22 17
/B(e)‘ = g? /B(a)<f Sz g? < B(a)f /B(a) f) an

/B(z—:) I= (wne" /B(z—:) fQ) E

with
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Thus, if w,e" < 7 fB(e) /2, then (17) yields

[owirz gy [ pe e [ p
B(e) 2 B(e) B(e)

which, combined with (16) and (15), implies (14).
Assume now that w,c" > % i) B f2 and let us prove the following:

n(n—2) _1_gq .

\V4 2 > 1((551 a - fB(a f2 ifn=>3 18

| f| 71 a 2 if =9 ( )
8el—aln(1/e) “ln(l/z—:) fB(a f irn =

which would imply for sufficiently small

1
IR s (19)

enabling us to deduce (14) from (15) and (16). Indeed, since f(¢) = 1 and f(1) =
one has f; f" = —1. Therefore, applying the Cauchy-Schwarz inequality to the product
= (frrm0/2) p=(=D/2 e get

e ([ ()

e rn—1

with . ) ) L

1 _ n—2 (5%2 B 1) < g2 ?f nz=3 (20)

. ol In(1/¢) ifn=2
Therefore,
n(n — 2)w,e" 2 ifn>3
vrpz{ = 1)
Ae In(1/¢) -

which gives (18) since w,e" > & fB(a) 12

Let us check now that the first positive Neumann eigenvalue is also uniformly bounded
from below. Indeed, let f be a Neumann eigenfunction with Af = —puq(pe, 1)pef. If f
is radial, then p1(p.,1) > Ai(p.) > $A* (there exists 7o < 1 with f(ry) = 0 so that f
is a Dirichlet eigenfunction on the ball B(rg)). If f is not radial, then, up to averaging
(or assuming that f is orthogonal to radial functions), one can assume w.l.o.g. that
Jon-1y, 1 [0 = 0 for every r < 1. Thus, [ 1 \V0f|2d9 >t [, ” f df, where V°f is

the tangentlal part of V f. Hence,

2 ! n—1 2 o ! n—1 (i)Q
/Bn|Vf| —/0 r dr/Sn_l(r) IV f|7d0 > (n 1)/0 r dr/sn—l(r) . e
_ Y’
_(n—l)/n (;) > (n—1) anQp€

L everywhere. Thus, in this case, j;(p.,1) > n — 1. Finally

since p.(r) < 5
1
p1(pe, 1) > min(n — 1, Z)\*)

As before, this construction can be implemented in any Riemannian manifold (M, g),
using a quasi-isometry argument, Proposition 2.2 and Corollary 2.1. U
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A relevant problem is to know if a Buser’s type inequality can be obtained in this
context under assumptions on the volume of balls with respect to o and p.

4. BOUNDING THE EIGENVALUES FROM ABOVE

4.1. Unboundedness of eigenvalues if only one parameter among g, p, o is fixed.
Let (M, go) be a compact Riemannian manifold, possibly with boundary. Our first obser-
vation in this section is that the eigenvalues uj(p, o) are not bounded from above when
one quantity among g € [go], p € Ro, 0 € Ry is fixed and the two others are varying (here
Ro={pcC®(M) :¢>0andf,dvy =1}).

Let us first recall that the authors and Savo have proved in [12] that on any compact
Riemannian manifold (M, go) there exists a sequence of densities p; € Ry such that
11’ (pj, pj) tends to +oo with j. In particular,

sup 1 (p,o) > sup pi(p, p) = +o0 (22)
far Proo=1fpr ovg9=1 far Prgp=1
A natural subsequent question is: Can one construct examples of g € [go] and p € Ry
(resp. o € Ry) so that ui(p,1) (resp. uf(1,0)) is as large as desired ?

Proposition 4.1. Let (M, go) be a compact Riemannian manifold, possibly with boundary.
Then

sup  pi(p,1) = +o0 (23)
9€[go], PERo
and
sup  pi(1,0) = +o0. (24)
9€lg0],0€R0

Proof. To prove (23), the idea is to deform both the metric and the density so that p.v,.
becomes everywhere small. Indeed, let V' be an open set of M with V], > &|M|,. For
every € € (0,1), we consider a continuous density p. such that p. =con V, e < p. <2
everywhere on M, and fM Py, = 1. Define g. = ¢Zgo with

n __ |M|90 1

(bs - 1
fM pa Ugo pe

so that |M|,, = [, ¢Lvg, = | M4, (here n denotes the dimension of M). Now, we observe
that

1 » » 1 1
E|M|QO > /Mpe Vgo > /Vpe Ugo = g|v‘go > 1—08|M|90'

Thus,
. _ 10e
or <
pe
and, since p. < 2,
LN
ST 2
Now, for any smooth function u on M one has (with § < ¢7 < %)

fM |vu|21’gs o fM |vu|2¢?_21)go > 1 fM |Vu|2vgo

fM u?pevy, fM upPlvg, 2" 10en fM u?vg,




16 BRUNO COLBOIS AND AHMAD EL SOUFI

Therefore |
(pe,1) > ——pui’(1,1
1 (pes 1) =t (1,1)
which tends to infinity as € goes to zero.

To prove (24) we first observe that, for any positive density o, one has, Vu € C*(M),

Riogor.o) () = Ry o5 5y(u)
Thus,

MZQO(L U) - Mio(gga U%)

According to [12], there exists on M a sequence o; of positive densities such that [, crf Vg, =
[M],, and (o

; ,crf ) tends to infinity with j. We set g; = 0,90 € [go]. Holder inequality
implies that

n % 1—2
[ i < ( / a;vgo) ML =M,
M M

Setting o = 7 7 ¢ Ry we get
M 93Y90
9j / 1 0590 9590 go( -3 5
py (L03) = 77—, " (Loj) 2 " (1, 05) = pi’ (07, 07)
a1 75090
which proves that i’ (1, 0%) tends to infinity with j. O

4.2. Upper bounds for ux(p,1) and p(1,0). Let (M, g) be a compact Riemannian
manifold of dimension n > 2, possibly with boundary. According to the result by Has-
sannezhad [23] one has, when M is a closed manifold,

M, ) < |Ml|i (4 + B,V (19)?) (25)

where A, and B,, are two constants which only depend on n, and V([g]) is a conformally
invariant geometric quantity defined as follows:

V(lg]) = inf{|M],4, : go is conformal to g and Ricy, > —(n —1)go}

where Ricg, is the Ricci curvature of go. Now for every positive p such that fM pvg = 1,
we have V([png]) = V(lg)), [M] 2 = [M], and M(M, prg) = p(p,p"=). Hence, the
inequality (25) implies that for every positive p such that fM pvg =1,

W0 < —— (AkF + BV([)?). (26)
M1

This estimate is in contrast to what happens for the Witten Laplacian where we have
Supr pug=1 ug(pa p) = +00 (See [12])
Our aim in this section is to discuss the boundedness of i} (p, o) in the two remaining

important cases: pj(p,1) and pj(1,0). In [12, Theorem 2.1] it has been shown that the
use of the GNY (Grigor’yan-Netrusov-Yau) method [22] leads to the following estimate

W(p. 1) F g < Cllo) (ﬁ) 1)
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where C([g]) is a constant which only depends on the conformal class of the metric g.

This approach fails in the dual situation where o is varying while p is fixed. Indeed, the
GNY method leads to an upper bound of ;f(1, ) in terms of the L% -norm of & (instead
of the L'-norm). However, using the techniques developed by Colbois and Maerten in
[13], it is possible to obtain an inequality of the form

][ avy (28)
M

where C(M, g) is a geometric constant which does not depend on ¢ (unlike (27), this
method of proof does not allow to obtain a conformally invariant constant instead of

In what follows, we will establish inequalities of the type (26) for ui(p, 1) and (1, o).

AN

p1.0) < o) (e )

Theorem 4.1. Let M be a bounded open domain possibly with boundary of class Cl of a
complete Riemannian manifold (M, §o) of dimension n > 2 (with M = M if OM = 0)).
Assume that Riczg, > —(n — 1)go and let go = Go|am. For every metric g conformal to go
and every density p with f,, pvy =1, one has

2 2
ip.1) < —— (Auk? + Bo|MIj,) (29)

|M|g
where A, and B, are two constants which depend only on the dimension n.

In the particular case where (M, g) is a compact manifold without boundary, we can

apply Theorem 4.1 with M = M and get immediately the following estimate which
extends (25):

i) < —— (A% + BV (o)) (30)

On the other hand, if § is a metric on M and if ricy is a positive number such that
Ric; > —(n — 1)ricy g, then the metric gy = ricog satisfies Ricg, > —(n — 1)go and
M|, = rico/ |M|,, where g = §|a and go = Go|a. Thus, we get

Corollary 4.1. Let M be a bounded open domain possibly with boundary of class Ct of

a complete Riemannian manifold (M, §) of dimension n > 2 (with M = M if 9M = )
and let g = g|yr. For every density p with fM pvg =1, one has

n

k :
wi(p, 1) < A, (\M\ ) + By, ricy (31)
g

where ricg > 0 is such that Ricg > —(n — 1)ricy §. In particular, Yk > \M\gm’cog,

2

E \ 7
58 <, ( ) 32
0.1 <G (37 (32)
with C, = A,, + B,,.
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Inequalities (30) and (31) are conceptually much stronger than (27), especially since
they lead to a Kroger type inequality (32) for every k exceeding an explicit geometric
threshold, independent of p (it is well known that if the Ricci curvature is not nonnegative,
then an inequality like (32) cannot hold for every k, see [13, Remark 1.2(iii)]).

Theorem 4.2. Let M be a bounded open domain possibly with boundary of class Cl of
a complete Riemannian manifold (M, §) of dimension n > 2 (with M = M if OM = ()
and let g = g|pr. For every positive density o on M with fM ovy = 1 one has

k n
| M,

where ricy > 0 is such that Ric; > —(n—1)ricy g and where A,, and B,, are two constants

which depend only on n. In particular, Vk > \M\gm’cog,

Lo\
g
’ | Mg
with C, = A,, + B,,.

Proof of Theorem 4.1. We consider the metric measured space (M, dy, v) where dj is the
restriction to M of the Riemannian distance on (M, go), and v = pv,. Since Ricy, >
—(n — 1)go, the space (M, dy, v) satisfies a (2, N; 1)—covering property for some fixed N
(see [23]). Therefore, we can apply Theorem 2.1 of [23] and find a family of 3(k + 1)
pairs of sets (Fj,G;) of M with F; C G}, such that the G;’s are mutually disjoint and

v(F;) > %, with ¢ = ¢(n) is a constant which depends only on n. Moreover, each
pair (Fj, G;) satisfies one of the following properties:
- F; is an annulus A of the form A = {r < dy(z,a) < R}, and G; = 24 = {

do(x,a) < 2R}, with outer radius 2R less than 1,
- Fyisanopenset V.C M and G; = V™ ={z € M ; do(z,V) < ro}, with ro = 155

Let us start with the case where Fj is an annulus A = A(a,r, R) = {r < do(z,a) < R}

and G = 2A. To such an annulus we associate the function u, supported in 24 = {7 <
do(x,a) < 2R} and such that

r
5 <

2do(z,a) — 1 if £ <do(r,a)<r
ua(z) =4 1 ifzeA (35)
2 — %do(z,a)  if R<dy(z,a) <2R

Since u 4 is supported in 2A we get, using Holder’s inequality and the conformal invariance
of [V9uy|™vy,

2

2 1—2
/ |V9u,4|21)g:/ |V9uA|2vg < (/ |V9u,4|"vg) (/ vg)
M 24 24 24
2
n " 1-2
_ (/A|v90u,4| vgo) 241577,
2
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Since

% if £ <dp(w,a) <r

|V9u,| =<0 if r <dp(z,a) <R

}—1% if R <dy(z,a) <2R

we get
[ v, < (2) 1Bl + () 15 2R, < 24T
where
B(z,t
F(go) — sup | (tn )‘go
xeM,te(0,1)

(here B(x,t) stands for the ball of radius ¢ centered at z in (M, dy)). Notice that since

Ricg, > —(n—1)go, the constant I'(go) is bounded above by a constant that depends only
on n (Bishop-Gromov inequality). Hence,

/M V940, < C(n)|24]L

where C(n) > 2"'T'(go). On the other hand, we have

2 _ v(M)
/MUAPUg = /AP% =v(4) = 2kt 1)
Thus
Jar IVoual?o, _ [24] "
Rigpny(ua) = = < A, (k+1)
e Sy o, v(M)

for some constant A,,.

Now, in the second situation, where F} is an open set V and G; = V', we introduce
the function uy defined to be equal to 1 inside V', 0 outside V™ and proportional to the
do-distance to the outer boundary in V™ \ V. We have, since uy = 1in V and |V%uy | is
equal to % almost everywhere in V"™ \ V and vanishes in V' and in M \ V",

v(M
/ u%/pvgz/pvg:’/(v)zg(i)
M 1% c

(k+1)
and
2 2
n " T 1*% n " T 1*%
/ |V9uv|2vg < (/ |V9uy| vg) Vol = (/ |VPuy| vgo) [Vol,
M Vo Vro
L& % L 1_%
_ Vlglve)
< o2
Thus

2 1—2
[V7lgo|V™lg
v(M)

where B, = f—z is a constant which depends only on n.
0

R(g,p,l) (uv) S Bn

(k+1)
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In conclusion, to each pair (F}, G;) We associate a test function wu; supported in G; and

o s - Galio Gl
:itltsfylng either R, ,1)(u;) < A, | I (k +1) or Ry ,n(u;) < B, 0(7(]{3 + 1),
at is

IIN IGme%
Ry, < A9y 1y 4 g, 0TI gy,

Now, observe that since ngg(k+1) Gilgo < [Mlgy and 3° 55411y [Gjilg < |M]g, there exist

at least k + 1 sets among G, . .., Gy satisfying both |Gy, < ‘]I‘ﬂgf and |G|, < %‘f.

This leads to a subspace of £4-1 disjointly supported functions u; whose Rayleigh quotients
are such that

1-2 2 L2
el ot
Rigp1)(u;) < An¢(k} +1) + Bnm

k41
/(M) oon) Y
M, M,
<A, ———(k+ 1) + B, | M |
v(M) (M)
with v( =/ 1 PVg = |M|g. The desired inequality then immediately follows thanks to
(1). O

Proof of Theorem 4.2. First, observe that it suffices to prove the theorem when ricy = 1
(i.e. Ricg > —(n —1)g). Indeed, the Riemannian metric gy = ricog satisfies Ricg, >
—(n —1)go and |M|,, = (rico)™?|M|,, with gy = Go| M. Hence, the inequality

2

k n
g0
M@@g&(——)+&
’ | Mg,

implies

. . Eo\* BN
pi(1,0) = ricopd (1, 0) < ricy <An (m) + Bn> = A, (m) + Bjric.

Therefore, assume that ric) = 1 and consider the metric measured space (M, d,v,) where
d is the restriction to M of the Riemannian distance of (M,§). The proof relies on
the method developed by Colbois and Maerten [13] as presented in Lemma 2.1 of [11].
Applying Bishop-Gromov Theorem, we deduce that there exist two constants, C,, and
N,,, depending only on n, such that, V& € M and Vr < 1,

o |B(z,r)|, < Cpr”

e B(x,4r) can be covered by N,, balls of radius r
where B(x,r) stands for the ball in M of radius r with respect to the distance d.

Let ko be the smallest integer such that 2(ko + 1) > 4|C]\f k]/?' For every k > ko we define

T by
| Mg
8C, N2(k+1) —

no__
Ty =

which means that, Vo € M,
| M,

B < =
| ("L‘7Tk)|9 — Cnrk —= 8Nn2(k’+].)
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Thus, we can apply Lemma 2.1 of [11] and deduce the existence of 2(k + 1) measurable

subsets Ay, ..., Aygqr) of M such that, Vi < 2(k + 1), |4y > Mé'il and, for i # j,
d(A;, A;) > 3ry,. To each set A; we associate the function f; supported in A% ={reM:
d(z,A;) < ri} and defined to be equal to 1 inside A; and proportional to the distance
to the outer boundary in A7\ A;. The length of the gradient |[V9f;| is then equal to i

almost everywhere in A;k \ A, and vanishes elsewhere, so that we get

fA;k V9 £ v - r,%? fA;k Ty - 4N, fA;k Tl
fA;k szvg B | Ajlg - o M,

which gives, after replacing r, by its explicit value,

R(g,l,o)(f] - (/{j + 1)

fATk O"Ug
Rigao)(J5) < An =L (k4 1)1,

for some constant A,. Now, since » j<2(k+1) f ATk OV <[ 1 Oy, there exist at least k + 1

Juo

k+1
supported functions f; whose Raylelgh quotients are such that

sets among the A;’s such that [ aAr OV < . This leads to a subspace of k+1-disjointly

ov 5
Rig1,0)(fj) < An Ju (k4 1)m.

Consequently, we have thanks to (1), for all k > ko,

2
2 k+1\~
(k:+1)n:An( )
| M,

\ \_/
m

pl(l,0) < A4

2 2
ko +1)" L\

1(1,0) < pd.(1,0) < A, <A lien)

#i(1,0) < i, (1,0) < (|M|g> B (MN%)

Denoting by B, the latter constant we obtain, for every k > 0,

k; n
g
ui(l,0) < A, (—) + B,.
k |M|,

5. EXTREMAL EIGENVALUES

Let (M,g) be a compact Riemannian manifold of dimension n > 2, possibly with
boundary. In [9], we introduced the following conformally invariant quantities that we
named “conformal eigenvalues”: For every k € N, A{(M, [g]) is defined as the supremum
of \x(M,g') when ¢’ runs over all metrics of unit volume which are conformal to g (or,
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2
equivalently, A7 (M, [g]) = sup A\x(M, ¢')|M|;, when g runs over all metrics conformal to
g). Thus, we can write

2 n=2
MNo(M,[g]) = sup XNe(M,prg) = sup pi(p,p = ).

fM pug=1 fMpngI

We investigated in [9] some of the properties of the conformal eigenvalues such as the
existence of a universal lower bound, and proved that

Xe(M, [g]) > AL(S™, [ga]) > no kb (36)

where a,, = (n + 1)w,, 41 is the volume of the standard sphere. Moreover, we proved that
the gap between two consecutive conformal eigenvalues satisfies the following estimate:

(M, [9])2 = Mi(M, [g)% = n2a,. (37)

Actually, these properties were established in the context of closed manifolds. However,
they remain valid in the context of bounded domains, under Neumann boundary condi-
tions, without the need to change anything to the proofs. In this regard, we can point
out the following curious phenomenon that all bounded Euclidean domains have the same
conformal spectrum.

Proposition 5.1. For every bounded domain Q C R"™ with C*-boundary one has

A (€2, [gsl) = AL(B", [gz])

where gg 1s the Euclidean metric.

For k = 1 we have X{(Q, [gr]) = nas (see Corollary 6.1 below).

Proof. Let us first observe that if €2 is a proper subset of €, then A{.(£2, [gr]) < AL(€Y, [9r]).
Indeed, given a metric g = fgg conformal to gg on €2, we extend it to 2’ in a metric ¢’
conformal to gg. For every € > 0, we multiply ¢’ by the function f. which is equal to 1
on  and equal to £ on '\ Q and apply Theorem 2.1. In dimension n > 3, this theorem
tells us that \g (€Y, f.¢') converges to A\i(€2, g). Since the volume of (€, f.g’) converges
to the volume of (€, g), we deduce that Ay (Q,¢)|Q[Y" < A (Y, lge]). In dimension
2, we obtain that Ag (€Y, f.¢') converges to the k-th eigenvalue of the quadratic form
Jo [Vul?v, + fQ,\Q |V H(u)|*v,. This quadratic form is clearly larger than the Dirichlet

energy [, |[Vul?vy on Q so that its k-th eigenvalue is bounded below by A.(€2, g). Again,
this implies that A\g(€2, g) < A(Y, [9g])-

Now, since () is open and bounded, there exist two positive radii r; and ry so that
Bn('f’1> C Q C Bn('f’g)

where B"(ry) and B™(rs) are two concentric Euclidean balls. Using the observation above
we get

A (B™(r1), [9e]) < A (2, [gz]) < AL(B"(r2), [9e])-

Since the balls B"(ry) and B"(r2) are homothetic to the unit ball B", one necessarily has
Xs(B™(r1), [gr]) = A5.(B™(re2), [gr]) = A5.(B™, [gr]) which enables us to conclude. O
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As a consequence of the upper bounds given in the previous section, it is natural to
introduce the following extremal eigenvalues:

p.(M, g) = sup Mi(p,l)zsupui(p,l)][pvg
P M

far PVg=1
9(1
WrM,g) = sup pd(1,0) = sup Lel?)
far ovg=1 o fM 04

A natural question is whether properties such as (36) and (37) may occur for p} (M, g)
and ;" (M, g). Observe that these quantities are not invariant under metric scaling since

pe(M,r?g) = r2pi (M, g) and (M, r%g) = r=*u" (M, g).
Hence, we will assume that the volume of the manifold is fixed.

In the particular case of manifolds (M, ¢) of dimension 2 one has for every p, uj(p,1) =
Ak(M, pg). Thus,

L (M, g) =

and we deduce from (36) and (37) that any 2-dimensional Riemannian manifold (M, g)
satisfies

(38)

Sk
(M, g) >
g | M|,
and
(M, g) — (M, g) > 2
/j’k+1 7g Mk 7g - |M|g

The following theorem shows that the 2-dimensional case is in fact exceptional. Indeed,
it turns out that any compact manifold of dimension n > 3 can be deformed in such a
way that (M, g) becomes as small as desired.

Theorem 5.1. Let M be a compact manifold of dimension n > 3. There exists on M a
one-parameter family of metrics g., € > 0, of volume 1 such that

X n=2
Mk(MagE) S Ck&" ™y
where C' is a constant which does not depend on € or k.
Similarly, we have the following result for the supremum with respect to o.

Theorem 5.2. Let M be a compact manifold of dimension n > 2. There exists on M a
one-parameter family of metrics g., € > 0, of volume 1 such that

pp (M, g.) < Ch2*5
where C' is a constant which depends only on n.
The proofs of these theorems rely on the construction below. It is worth noticing
that the one-parameter family of metrics ¢g. we will exhibit can be chosen within a fixed

conformal class. Actually, we start with a Riemannian metric gy on M that we conformally
deform in the neighborhood of a point.

The construction. We start with a metric gy on M and choose a sufficiently small open
set V' C M so that gy is 2-quasi-isometric to a flat metric in V. Since the eigenvalues
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corresponding to two quasi-isometric metrics are “comparable”, we can assume w.l.o.g.
that the metric gq is flat inside V. Therefore, there exists a positive § so that V' contains
a flat (Euclidean) ball of radius 6. After a possible dilation, we can assume that 6 = 1.
We deform this unit Euclidean ball into a long capped cylinder (i.e. an Euclidean cylinder
of radius ¢ closed by a spherical cap). This construction is standard and is explained, for
example, in [20, pp. 3856-57]. We can even do it through a conformal deformation of g,
as explained in [10, pp. 718-719]. Therefore, we obtain a family of Riemannian manifolds
(M, g.) so that M is the union of three parts

M =M,UCUS"

with

- My is an open subset of M and g. does not vary with € on M,

- (C, ge) is isometric to the cylinder [0, 2] x S"* of length £ (with 0 < e < 1),

- Sg is a round hemisphere of radius 1 which closes the end of the cylinder C' and g.|gp
is the round metric (and is independent of ¢).

The only varying parameter in this construction is the length % of the cylinder (C, g.).
Notice that the volume of (M, g.) is not equal to 1, but we will make a suitable scaling
at the end of the proof.

In order to bound the eigenvalues i (p, 1) from above, we will use the GNY method
[22]. To this end, we need a uniform control (w.r.t. €) of the packing constant (see [22,
Definition 3.3 and Theorem 3.5]) and of the volume growth of balls in (M, g.). This will be
done in the following lemmas. For this purpose, we introduce the connected open subset
My C M obtained as the union of My and the part of the cylinder which corresponds to
(0,3do) x S™* C [0, 2] x S™™*, where dj is the diameter of M.

Lemma 5.1 (volume growth of balls). There exist two positive constants Cy and Cs,
independent of €, such that, for every ball B.(z,7) in (M, g.) we have

C’lr" Zf’f’ < 2d0

|B€($,T) g = { Coyr if > 2dy

(39)

Proof. It B.(z,r) N My = 0, then B.(x,r) is isometric to a geodesic ball of radius r
of the capped cylinder and an obvious calculation shows that (39) holds true with two
constants C and Cy independent of ¢ (in fact, we can compare the volume of B.(z,r)
with the volume of (—r,r) x S"°! to get |B.(z,7)|,. < Ar for some positive A). If
B.(xz,7) N My # () and r < 2dg, then B.(z,r) is contained in M,. Hence, there exists a
constant ', depending only on My, such that |B.(z,r) g < Cr". If Bo(x,r) N My # 0
and r > 2dy, then B.(x,r) is contained in the union of a ball B(xg,2dy) C M, centered
at a point xqg € My and a ball of radius 7" < r contained in the cylindrical part. Thus,
|B:(z,7)|,. < C2"dy 4+ Ar < Cyr for some positive Cy which does not depend one. O

Lemma 5.2. There exists a constant N, independent of €, such that any ball of radius
r >0 in (M,g.) can be covered by N balls of radius .

Proof. Let B.(z,r) be a ball of radius r in (M,g.). If B.(x,r) N My = (), then, since
(M \ My, g.) is isometric to the capped cylinder whose Ricci curvature is everywhere
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nonnegative, B.(z,r) can be covered by Ng balls of radius 7, where Ng is the packing

constant of the Euclidean space R™ (Bishop-Gromov theorem).

Assume that B.(z,7) N My # (0. If r < 2dg, then B.(z,r) is contained in M,. Thus,
B.(x,7) can be covered by N(My) balls of radius 5, where N(My) is the the packing
constant of M. If 7 > 2d,, then B.(z, ) is contained in the union of a ball B.(x,2dy) C
My centered at a point xg € My and a ball of radius ' < r contained in the capped
cylinder. Again, B.(z,) can be covered by Ng + N(My) balls of radius 5 O

Proof of Theorem 5.1. Let p be a positive density on M with f,, pv,. = 1. Applying [22,
Theorem 3.5] to the metric measured space (M, d., pv, ), where d. is the Riemannian
distance associated to g., we deduce the existence of k + 1 annuli Ay, ..., Az such that

fAj pUg. > % and 2A1,...2A;1 are mutually disjoint. Here, C should depends on the

packing constant of (M, g.), but since the latter is dominated independently of €, thanks
to Lemma 5.2, we can assume that C' is independent of ¢.

To each annulus of the form A = B.(x, R) \ B:(x,r) we associate a function u, defined
as in (35). We obtain

IQA‘VEUA‘EE’UQE < 7%|B€("L‘7T)|gs + %|BE(1‘72R>|95
f2A u?Ang N fA PUg.

Using Lemma 5.1 we get for every r > 0,

R(gs,p,l)(uA) =

1 Cyr2 < Cydg™®  if r < 2d
T_2|Be(xar)|gs S { % S 20720 if r Z 2d0 (40)

Therefore, there exists a constant C’ which depends on C}, Cy and dy (but independent
of €), such that

C/
Japve.
Consequently, the k + 1 annuli Ay, ..., Ax 1 provide k + 1 disjointly supported functions

o o CC'k
satisfying R, ,1)(ua;) < o oo < fir,.- Thus,

Ry p) (ua) <

Mk( )<C”

In order to obtain a family of metrics of volume 1 we set g, = ——g.. Hence, for any

| M gZ
p such that f,, pvy = f,, pv,. =1, we have

k

W (p, 1) = | MY (p, 1) < C"

But [M],, > |C|, > ™. Thus

pp(M, gl) < Che' .
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Proof of Theorem 5.2. Let (M, g.) be as in the construction above and let ¢ be such that
[y 0. = |M],.. The cylindrical part (C, g.) of (M, gg) can be decomposed into 2(k + 1)

small cylinders C; ~ | (kil)g, Q(f;: ] x S"1 j=0,...,2k+ 1, of length 5 (k+1) At least
(k + 1) cylinders among Cy, ..., Cor11 have a measure with respect to o which is less or
equal to % To each such Cj we associate a function f with support in C; and which
is defined in Cj, through the obvious identification between C; and [0, ST +1 | x S,
follows: V(t, 2) € [0, 2(k+1 | x "t~ Oy,
. 1
ft,z) =11 ?f 64 1)e <t< 6k 1) (41)
—6(k+ et +3  if g <t < 57

We have
:  nwy
/ f Yoe = /[ ]xsn—1 f vE = G(k’ + 1)6

6(k+1)s’6(k+1)s
where v is the standard product measure. On the other hand, the norm of the gradient
of f is supported in C; and is dominated by 6(k + 1)e. Thus,
M
[ o, < @+ 02 [ ov, < (60 DR ~ 360+ D2,
Cj

and the Rayleigh quotient of f satisfies

Rg.1.0)(f) <

Consequently, the k& + 1 chosen cylinders provide k£ + 1 disjointly supported functions
satisfying the last inequality, which yields

Wi (1,0) < C|M], (k + 1)%°

216(k + 1)%e
nwy,

with C' = 216 ~. Setting g = —L5g., we get
I n

I
9z w0 371t 2
i (1,0) = [Mlg.pi(1,0) < Ce’[Mlg. " (k +1)
with | M|, = | Mo, + |C|,. + tnw, < 4 for some constant A. Thus
pi (M, gl) < C'& 7 (k4 1),
O

Remark 5.1. The same type of construction used in the proof of Theorems 5.1 and 5.2
allows us to prove the existence of a family of bounded domains Q2. C R™ of volume 1 such
that i (Qe, gr) (resp. ;" (Qe, g)) goes to zero with €. This is to be compared with the
result of Proposition 5.1.

We end this section with the following proposition in which we show how to produce
examples of manifolds (M, g.) of fixed volume for which the ratio 52 8\\4433 (resp. %)
tends to infinity as ¢ — 0.
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Proposition 5.2. Let M be a compact manifold and let A be a positive constant.
(i) There exists a family of metrics g. of volume 1 on M and a constant A > 0 such that
Ve € (0,1), \M(M,g.) < e while (M, g.) > A.

(ii) There ezists a family of metrics g. of volume 1 on M and a constant A > 0 such
that, Ve € (0,1), \{(M, g.) — 0 while pui*(M,g.) > A.

Proof. (i) Let us start with a Riemannian metric g of volume one on M such that an
open set V' of M is isometric to the Euclidean ball of volume % By a standard argument
(Cheeger Dumbbell construction), one can deform the metric g outside V' in a metric

g- of volume 1 such that \(M,g.) < e. Applying Corollary 2.2 with My, = V| we get
wi(M,g.) > V] (V,g.) = 3 (V. g). Since (V. g) = (2wn ) M\ (B™, g), where B™ is
the unit Euclidean ball, we get the desired inequality with A = %(2&1”)%)\1(8", 9E)-

(ii) Let g be a Riemannian metric on M such that an open subset V' of M is isometric
to the capped cylinder C' = (—2,2) x S"~! closed by a spherical cap. We will deform the
metric ¢ inside V' so that (M, g.) looks like a Cheeger dumbbell (thus A\, (M, g.) — 0 as
e — 0) and associate to g. a family of densities such that pi*(1,0.) > A > 0. Indeed, the
metric on the cylinder C' = (—2,2) x S""! is given in coordinates (¢, z) € (—2,2) x S*!
by ge(t, x) = dt® + 752<t>g8"—1 with 7.(—t) = 7:(t) and

5 if t € [0, 3]
() ={ e1) iftelll (42)
1 ift €1,2)
We do not change the metric g outside V. We endow (M, g.) with the density o. given
by o.(t,z) = W on the cylinder C' and extended by 1 outside C.

It is well known that \j(M,g.) — 0 as ¢ — 0. Let us study u{*(1,0.). One has for
every f € C®(M)

2
[ v ttow = [ ViR a9 oo e
M M\C ) §n—1

n

2
:/ ‘Vf‘;vg—i-/ dt/ |V€f‘§EUSn—1
M\C -2 sn—1

where vgn-1 denotes the volume form on the sphere S*~'. Now, observe that |V*f|2 can
be estimated as follows:

af\” . af\’
il = () oty = () w1901 = v

ot ot
where Vi f is the tangential part of the gradient of f w.r.t. S*~!. Therefore,

2
/ V2 vy, > / VP, + / dt / VP = / V£ o,
M M\C 2 n—1 M

On the other hand (since v.(¢)* < 1)

/M P20y, < /M Fu,.
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In conclusion, for every f € C°°(M), one has

Rige1,0)(f) = Bigrn)(f)-
It follows, thanks to the min-max principle, that
M?E(la UE) Z )\1<M7 g)
The last point is to suitably rescale g. and o.. For this purpose, just observe that

fM 0.V = | M|y and %|M|g < M|, < |M]|,. 0

6. EXAMPLES

In this section we describe situations in which we can compute or give explicit estimates
for the first extremal eigenvalues. Let (M, g) be a compact Riemannian manifold of
dimension n > 2, possibly with a nonempty boundary.

Proposition 6.1. Assume that there exists a conformal map ¢ from (M, g) to the standard
n-dimensional sphere S™. Then,

X5 (M, g) = nov, s (43)
and ,
1M, g) < n( % ) (44)
R = M,

where «, is the volume of the unit Euclidean n-sphere. Moreover, if n = 2, then the
equaliy holds in (44).

Notice that when (M, g) is the standard sphere S", then the equaliy holds in (44) (see
Corollary 6.3 below).

Proof of Propositon 6.1. Let us first prove (44). Let p be a density on M with fM pvg = 1.
Given any nonconstant map ¢ = (¢1,- -+, ¢ne1) : (M, g) — S™, a standard argument tells
us that there exists a conformal diffeomorphism v € Con f(S™) such that 1) = yo¢ satisfies
fM Yipvg=0,7=1...,n+1 (see for instance [21, Proposition 4.1.5]). Thus, Vj < n+1,

1(p:1 /@Dpvg /|V@/}jl21)g

(see (3)) and, summing up w.r.t. j,

2
n " 1_%
Nl(ﬂal)/ P Vg S/ ‘dw‘QUg < </ |d1b| Ug) ‘M‘g
M M M

Since ¢ = 7 o ¢ is a conformal map, [, |di|"v, is nothing but n2 times the volume
of (M) C S™ with respect to the standard metric g5 of S (indeed, ¥*g, = %|d¢|2g).

Therefore,
2 _2 Qi %
11(p, 1)][ pvg < nf(M)|g.[Mlg" <n ( )
M

which proves (44).
Using the same arguments we can prove the inequality A{(M, g) < noy,«. The reverse
inequality follows from [9, Theorem A]. O
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It is well known that the Euclidean space R™ and the hyperbolic space H™ are confor-
mally equivalent to open parts of the sphere S™. This leads to the following corollary.

Corollary 6.1. Let 2 be a bounded domain of the Fuclidean space R™, the hyperbolic
space H™ or the sphere S™, endowed with the induced metric g;. One has

)‘i(Qa gs) = nan%

and

Moreover, the following equality holds in dimension 2: (2, g5) = X;(Q, g5)|Q| " = %.

Remark 6.1. Let D be the unit disc in R? and let p, = Mftﬂ)g. Then
pi(D, gp) = lim (L 1) = 8,
t—00 fD prdx

Indeed, the map ¢4(z) = m(%z,tﬂﬂ? — 1) identifies (D, (t2|z++1)2-gE) with a spherical
cap Cy in S* whose radius goes to m as t — oo. Hence, pi”(pi,1) [, prdx = 111(Cy)|Cy|
which converges to 8 ast — oo.

Proposition 6.2. Assume that there exists a map ¢ : (M,g) — SP from (M, g) to the
standard p-dimensional sphere SP satisfying both fM v, = 0 and |do|* < A for some
positive constant A. Then

pi(M, g) < A (45)

Proof. One has, for every j < p+1,

Ml(laa)/ ¢?U9§/ IV 51%ov,
M M

and, summing up w.r.t. j,

p(1,0)| M|, < / |do|*ov, < A/ oy,
M M
which implies (45). O

If (M,g) be a compact homogeneous Riemannian manifold, and if ¢;,...,¢, is an
L?-orthonormal basis of the first eigenspace of the Laplacian, then both Zi<p ¢? and
|do|? = > i<y |d¢;|? are constant on M. This enables us to apply Proposition 6.2 and get
the following

Corollary 6.2. Let (M, g) be a compact homogeneous Riemannian manifold. Then
(M, g) = pa (M, g)

In other words, on a compact homogeneous Riemannian manifold, y;(1, o) is maximized
when o is constant.
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Example 6.1. In [19], it is proved that if T' = Ze, + Zey C R? is a lattice such that
le1| = |ea|, then the corresponding flat metric g. on the torus T? satisfies u$(T?, g,.) =
M (T?, g.)| T2y, . A higher dimensional version of this result was also established in [18].
Since a flat Torus is a 2-dimensional homogeneous Riemannian manifold, we have the
following equalities

X5 (T g,)| T2 = p3(T2, g) = 17*(T2, g,) = (T, g,).
Neverthless, whereas we always have p3*(T?, g..) = pui(T?, g..), it follows from [9, Theorem

A] that when the length ratio |es|/le1| of the vectors e; and eq is sufficiently far from 1,
then 113(T2, g,.) = A{(T%, g,)| T, > M(T?, g,).

Recall that a map ¢ = (¢1,---,¢p41) : (M,g) — SP is harmonic if and only if its
components ¢y, - -, ¢p41 satisty

ANy = —ldel*¢;, j=1--,p+1.
The stress-energy tensor of a map ¢ is a symmetric covariant 2-tensor defined for every
tangent vectorfield X on M by: Sy(X, X) = 3|d¢|*| X |2 — |d¢(X)[*. In [15, Theorem 3.1]
it is proved that if the stress-energy tensor of a harmonic map ¢ is nonnegative, then, for
every conformal diffeomorphism ~ of the sphere S” one has

/M d(y 0 8) 0, < /M do o,

Moreover, the strict inequality holds if « is not an isometry and if Sy is positive definite
at some point. Observe that if ¢ : (M,g) — SP is a conformal map or a horizontally
conformal map, then Sy is nonnegative (see [15]).

Proposition 6.3. Assume that there exists a harmonic map ¢ : (M, g) — SP with non-
negative stress-energy tensor. Then,

Wi(M, g) < ]{M do |, (46)

Proof. Let p be a positive density on M. As before, we know that there exists v € Conf(S")
such that ¢ = v o ¢ satisfies [, 1;pvy, =0, j=1...,n+ 1. Thus

mle.) [ vt < [ 90,
M M

and, summing up w.r.t. j,

(o, 1) /M Py < /M d(y 0 &)Pu, < /M ddPo,

which implies (46). O
A particular case of Proposition 6.3 is when there exists a harmonic map ¢ : (M, g) — SP
which is homothetic. In this case, Sy = “=2|d¢|*g and |d¢|? is constant and coincides

with an eigenvalue A.(M,g) for some k > 1. For example, if (M,g) is a compact
isotropy irreducible homogeneous space (e.g. a compact rank-one symmetric space) and
if ¢1,...,¢, is an L*-orthonormal basis of the first eigenspace of the Laplacian, then

o= (%) (¢1,...,¢,) is a harmonic map from (M, g) to S? which is homothetic and

NI



SPECTRUM OF THE LAPLACIAN WITH WEIGHTS 31

satisfies |dp|* = A1 (M, g). Proposition 6.3 then implies that pj(M,g) = A\ (M, g). On the
other hand, the second author and Ilias [17] proved that in this situation we also have

X (M, g) = M (M,g)|M|g. Consequently, we have the following

Corollary 6.3. Let (M, g) be a compact isotropy irreducible homogeneous space. Then

[1]
2]

MM, 9)|M|g™ = i (M, g) = pi* (M, g) = M (M, g).
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