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A BOUNDARY THIN OBSTACLE PROBLEM FOR A WAVE EQUATION 

BY JONG UHN KIM 

Department of Mathematics 

Virginia Polytechnic Institute & State University 

Blacksburg, VA 24061 

0. Introduction. 

In this paper we shall discuss a hyperbolic variational inequality associated with the following 

initial-boundary value problem: 

a2u 
at2 -Au= fin n X (0, T), 

u(z,O) = uo(x), a,u(x,O) = u1(x) inn, 

u = 0 on f1 X (O,T), 

u(x,t) 2:: 4>(z) on f2 x (O,T), 

au 
av;:::: O, 

au 
(u- 4>)av = 0 on f2 x (O,T). 

Here n is a bounded open subset of Rn, n ;:::: 2, with smooth boundary an E 

(0-1) 

(0-2) 

(0-3) 

(0-4) 

(0-5) 

C2. We assume 

that rl and r2 are disjoint, nonempty open subsets of an such that an = rl u r2 = rl u r2 and 

ar1 = ar2 E C2. The above functions J(x,t),uo(x),u1 (x) and 4>(z) are given, and f., denotes the 

outward normal derivative on an. We assume that 4> $ 0 and Uo ;:::: 4> on f 2 • We can put the above 

problem in the form of a variational iUP.quality: find u(x,t) which satisfies (0-2), (0-3), (0-4) and 

a2 u 
< at2 , w - u > +a( u, w - u) ;:::: < J, w - u > (0-6) 
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for every wE G, for all t E (0, T). Here we use the notation: 

< u,w >=in uwdx, 

a(u,w) =in V'u · V'wdx, 

G ={wE H1(!!): w = 0 on r1 and w 2: ¢on r2}. 

If a solution u of this new problem is sufficiently smooth, one can show that u also satisfies (0-1) 

and (0-5) so that u is a solution of the original problem (0-1) through (0-5). The corresponding 

stationary variational inequality: find u E G which satisfies 

a(u,w- u) 2:< J,w- u >,for all wE G, (0-7) 

is called the boundary thin obstacle problem (or the Signorini problem), and its mathematical 

theory has been well-established: see [6] and references therein. However, to the author's knowledge, 

nothing has been known about the solution of (0-1) through (0-5). The purpose of this paper is to 

establish the existence of a (weak) solution of (0-1) through (0-5). This problem is an example of 

a hyperbolic variational inequality where a constraint is imposed on the unknown function rather 

than on the time derivative of the unknown function. Hyperbolic variational inequalities have been 

extensively investigated in the case where a constraint is imposed on the time derivative of the 

unknown function; see [3] and (11] among others. On the other hand, when a constraint is imposed 

on the unknown function, existence theorems seem to be known mainly for special problems of 

space dimension one; see [1], [2], [5], [8], [12], [13] and (14]. In the case of several space dimensions, 

(10] and this paper seem to be the only known works. [10] resolved the above problem by microlocal 

techniques when n is a half-space; but the same method does not extend to a general domain, as 

is explained in [10]. 

In this paper, the basic procedure to prove the existence of a solution consists of a penalty 

method [11], a multiplier technique (9] and compensated compactness [4]. Finally, we note that the 

questions of uniqueness and energy conservation for solutions of our problem are still open. 

1. Notation and Preliminaries. 

a tP ( a9 au) a,= &;·a"= &tl' V'g = &xl , ... , &xn . 

When E is an open subset of RN, N ;::: 1, D'(E) denotes the space of distributions over E and 

CIJ'(E) = {w E cm(E) : supp w is a compact subset of E}. We assume that &i! E C 2 and 

&r1 = &r2 E C2 • For m=nonnegative integer, 
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m ( a ) "' ( a ) "n H (!1) ={wE L
2
(l1): ax, . . . axn wE L2 (!1),0::; a 1 + ... +an::; m}, 

H0 (!1) =the completion of CQ"(l1) in Hm(!t), 

H-m(n) = the dual of HQ'(lt), 

Hf
1 
(!1) ={wE H 1(!1): w = 0 on r!}. 

For s=nonnegative real, H'(l1) is defined by interpolation and H-'(l1)=the dual of HJ(lt). We 

denote by <, > the duality pairing between H-"(!1) and H"(n), 0 ::; a ::; ~· Then, for g E 

L 2(!1), hE H"(n), 0::; a::; t, we have < g, h >= fn ghdx. 

As above, the bilinear form a(, ) is defined by a(g, h)= j0 'lg · 'lhdx and 

G ={wE Hf1(n): w <:</>on r2}, 

where </>(x) E C 1 (f!) and </>(x)::; 0 on r 2 . 

Next we define the distance function d by d(x)=dist(x,an) and set 

v5 = { x E IT : d( x) < a}. 

Let So be a positive number such that 1/So bounds the principal curvatures of an. Since n is 

bounded and an E C 2, it is known that d(x) E C 2(V00 ); see [7]. We also set 

Us= {x En: d(x) <a}, 

S0 = {x En: d(x) = S}. 

Then, Ss is a C2-surface for 0 ::; S < So. We shall use the following lemmas later. 

LEMMA 1.1. There is a function h(x) E C 1 (f!)n such that h(x)=the outward unit normal vector at 

x on Ss ifd(x) = S::; 6o/2 and h(x) = 0 ifd(x) <: 6o. 

PROOF: For each x E 50,0::; 6 <So, there is a unique point y(x) E an such that dist(x,y(x)) = 6 

and the outward normal vector at y(x) on an is also outward normal at X on S5. Furthermore, 

y(x) E C 1(Vs
0

). Next we denote by v(y) the outward unit normal vector at yon an. Then, v(y) 

is a C1 function of y. Let us choose a function p(t) E C 1(R) such that p(t) = 1 fort ::; 6o/2 and 

p(t) = 0 fort> ~60 . We then set h(x) = v(y(x))p(d(x)), which achieves our goal. 

The next lemma is known and stated without proof. 

LEMMA 1.2. Let g E L1 (n). Then, for 0 < 6* < 6o, 

{ gdx = r'* { gdl7sd6 
lu5• lo ls5 

(1-1) 

holds where d!75 is the surface element on Ss. 
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Next we write a well-known consequence of the Div-Curllemma of compensated compactness. 

LEMMA 1.3. Let {uk} be a sequence of functions such that 

(1-2) 

(1-3) 

where M is a positive constant independent of k and each Uk satisfies 

(1-4) 

where {gk} is a bounded sequence in L2(n X (0, T)), and, ask--+ oo, 

(1-5) 

Then, as k --+ oo 

(1-6) 

in 'D'(n x (0, T)). 

i;;,i = 1, . .. ,n, and vk(n+t) -t,,wk(n+l) ~. Then, apply 

Corollary 4.3 of [4]. 

Finally, we state 

LEMMA 1.4. Let {uk} be a sequence of functions such that ask--+ oo, 

(1-7) 

(1-8) 

where -1 ::; a< (3::; 1. Then, we have 

Uk--+ u in C([O,T];Hr(n)) (1-9) 

for any r < (3. 

PROOF: A special case was proved in (8]. The same argument can still be employed. Without loss 

of generality, we may assume a# -!,(3 # -!,because we can take smaller a or (3 if necessary. 

Let r = ea + (1- 8)(3,0 < e < 1, r # -!, !· There is E c (O,T] such that meas(E) = 0 and for all 

t1,t2 E (O,T] \ E, t1 < t2, 
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llu•(t2)- uk(tt)liw(n) ::; 

::; M91iu•(t2)- u•(tt)ll~"(n)lfu•(t2)- u•(tt)1111(n)' 

1
1
2 9 9/2 ::; M9( li8tuk(t)IIH"(n)dt) ::; M9(t2- tt) , 

It 
(1-10) 

holds for all k and 0 < 9 < 1 such that 9a + (1- 9),8 ~ ~,-!,where M9 denotes positive constants 

independent oft1,t2 and k. Consequently, each uk belongs toC([O,Tj;Hr(fl)) for every a< r < ,B 

possibly after a modification on E. Since the embedding Hr2(fl) C Hrt(fl) is compact for every 

r 1 < r 2, we can use the Ascoli theorem to arrive at the conclusion. 

2. Approximate Problem. 

In this section we shall consider an approximate problem with a penalty parameter k > 0. The 

problem is: find a function uk(z,t) such that 

11k(z,0) = Uok(z),8t11k(:t,0) = UJk(:t) (2-2) 

< a .. u.,w > +a(u.,w) =< fk,w > + { (k(uk- 4>)-- ~a,u.)wdu (2-3) 1r2 

holds for all w E H/-
1 
(!'!), for almost all t E (0, T). Here du is the surface element on 8fl and 

g-=max(O,-g). 

Our strategy consists of three steps. 

(Step 1) Establish the existence of solution of (2-1), (2-2) and (2-3). 

(Step 2) Obtain a priori estimates independent of k > 0. 

(Step 3) Pass k -+ oo to arrive at a solution of the original problem. 

In this section, the first two steps will be carried out. 

2.1 Existence of solution 

Throughout this subsection, we shall suppress the subscript k. 

PROPOSITION 2.1. Let u0,u1 E Clf(!'l),/ E C1([0,T];L2(fl)) and 4> E C1(fi) with 4>::; 0 on r2. 

Then there is a solution of (2-1), (2-2) and (2-3). 

PRooF: We set u = v + tto + tu1. Then, 

and (2-3) is equivalent to 

v(z,O) = 0,81v(z,O) = 0, 

< a,,v,w > +a(v,w) =< J,w > 

+ < ~(u0 + tut),w > +k { (v- 4>)-wdu 1r2 

_.!_ f (81v)wdu, 
k lr2 

(2-4) 

(2-5) 
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for all w E Ht (n), for almost all t E (0, T). We sb.a!l employ the Galer kin approximation proce-
... I 

dure. Let { w;}~1 be a basis for Ht
1 
(n) where each w; E C 00 (U) n H/\ (n). Let us set 

m 

Vm = L am;(t)w;(x) 
i=l 

where each am;(t) is determined from 

and 

am;(O) = cim;(O) = 0, 

< 8tt'Vm,Wj > +a(vm,Wj) =< /,Wj > 

+ < Ll.(uo + tut),w; > +k { (vm- ¢)-w;du 1r2 

- ~ { (8ovm)w;du, j = 1, ... , m. 1r2 

(2-6) 

(2-7) 

(2-8) 

For each m, there is a unique set of functions am;(t) E C 2([0,T]),j = 1, ... , m, which satisfy (2-7) 

and (2-8). We next obtain estimates independent of m. Let us substitute 81vm for w; in (2-8): 

1 d 2 1 d 
2dt'JI&,vmJIL2(0) + 2dta(vm,Vm) 

+ ~k~ll(vm- <Pn~2cr2 ) 

Note that Vm - ¢ E C1([0, T] X fi) and hence, ( Vm - ¢)- is Lipschitz continuous and 

It follows from (2-7) and (2-9) that 

ll&,vm IIL2(n) :::; M, for all t E [0, T] 

ll(vm- ¢)-IIL2(r2) $ M, for all t E [O,T] 

1T ll8tvmll~2(r2 )dt:::; M, 

(2-9) 

(2-10) 

(2-11) 

(2-12) 

(2-13) 

where M denotes positive constants independent of m. Next we differentiate (2-8) with respect to 

t and substitute 8ttVm for w;: 
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which yields 

=< 8tf,8ttVm > + < ~Ut,8ttVm > 

+ k { 8t{(vm- 4>)-}8ttVmd<T lr2 

- ~ { (8ttVm) 2d<T, lr2 

1 d 2 1 d 
2;ttll8ttvmiiL2(n) + 2dta(8tVm,8tVm) 

=:; 118tfiiL2(0) ll8ttVm IIL2(0) + ll~utiiL2(0) ll8ttVm IIL2(0) 

+ ~k3 ll8t{(vm- 4>nll~2(r2)- ~ll8ttvmll~2(r2r 
We consider (2-8) at t = 0 and substitute 8ttvm(O) for Wj: 

We have used the fact that vm(O) = 81vm(O) = 0. Now (2-16) implies 

(2-14) 

(2-15) 

(2-16) 

(2-17) 

M being a positive constant independent of m. Combining (2-13), (2-15) and (2-17), we derive 

(2-18) 

(2-19) 

where M denotes positive constants independent of m. By means of (2-11), (2-18) and (2-19), we 

can extract a subsequence still denoted by { Vm} such that 

(2-20) 

(2-21) 

(2-22) 

for some function v. By virtue of Lemma 1.4, we have 

(vm- (W _, (v- 4>)- in C([O, T]; L2(8fl.)). (2-23) 

We then make use of (2-20) through (2-23) to derive (2-4) and (2-5) through a standard procedure. 



Remark 2.2. The purpose of the term t81uk in (2·3) is to obtain approximate solutions which 

are regular enough to justify manipulations in using a multiplier technique in the next subsection. 

The utility of that term is seen in (2· 15). 

2 2 A priori estimates independent of 1;. 

We still suppress the subscript k and let u(z,t) be a solution constructed i.n Proposition 2.1 

for a fixed k > Q. We can substitute 8,u for w in (2·3): 

for almost all t E (0, T). We now derive from (2·24) 

lluiiHt (O) !> M, for all t E (O,T) 
rt 

ll(u- ¢niL1(r,) $ M/Vk, for all t E [O,Tj, 

LT 118.ull~2 (r,)dt $ Mk, 

(2·24) 

(2·25) 

(2·26) 

(2·27) 

(2-28) 

where M denotes positive constants which are independent of k, &nd depend only on the number 

L such tbt lluoiiHJ(O) + l!ut iiL2(0) + 11/IIL2(0x (O,T)) $ L. 

Next we shall adapt a multiplier technique to derive some uniform estimates in a neighborhood 

of 81!. Let us set 

fl6 = {:t E fl: dist(z,80) > 6} 

for 0 < 6 !> 6o. Obviously, 8fl5 = S5, which was defined in Section 1. We need to observe tha.t 

solution u of (2·1), (2-2) and (2·3) has sufficient regularity to justify manipulations in using a 

multiplier technique. First of all, (2·3) implies tha.t 

8uu - 6u = f (2·29) 

holds in 'l>'(O x (0, T)). By virtue of (2·1) and the assumption that f E C1((0,TJ; L2(0)), we infer 

that 

(2-30) 

ln fact, (2·29) holds in L00(0, T; L'(fl)). Now (2·30) Implies 

8 (2-31) 



for eacll 6 > 0. Because of the mixed bounda.ry condition on {Jfl, one cannot claim that u E 

L00(0,T; H 2(f!)). We also note that (2-1) implies 

(2-32) 

possibly aft er a modification on a set of measure zero in t. 

We now proceed to obtain the estimates. Using the function h(z) constructed in Lemma 1. 1, 

we multiply both sides of (Z-29) by (h.· V)u ·and Integrate over fls x (0, T ), O < 6 $ 6of2: 

{ I (8.,u)((h. V)u)dzdt 
io in6 

= I (81u(T ))((h · V)u(T))dz- I u,((h · V)ua)dz 1n6 1o6 

- IT I (o,u)((h . V)8,u)dzdt = 
lo 1n6 

(applying the divergence theorem to the last integral) 

IT I ( -~u)((h · V )u)dzdt 
lo in6 

=- { hs (:~r dcsdt+ { fos vu·V{(h· ~)u}drdt 
= - IT I (au) 2 dqsdt + t IT I ou 8h; !!.dzdt 

io iss 811 i,j:l io ins 8z; 8z; oz; 

- f I ~(V. h)IVul,dzdt + ~ f I !Vui2dt1sdt, lo in6 io is6 

(2-33) 

(2-34) 

where f. is the unit outward normal derivative on Ss, i.e., fv = h · V on Ss. Combining (2-33) 

and (2-34), we get 

where 

C(6) =- IT I f((h. V)u)dzdt 
io in6 

+ obvious terms in (2-33) and (2-34). 

(2-35) 

(2-36) 

9 



Recalling (2-25) and (2·26), it is evident that 

IC(8)J $ M, for all 0 < 6 $ 6o/2, (2-37) 

where M is a positive constant which is independent of k and depends only on the number L such 

that 

UuoiiHJ(O) + Uut iiL2(0) + II/ IIL2(0x(O.T)) $ L. 

We next choose any p(s) E C(R) such that for all s, 0 S lp(s) l $ 1, and set t,!>(x) = p(dist(x, 8!1)). 

Then , 1{1( z) i s a continuous function and is constant on each S6, 0 < 6 $ 60 • Hence, it follows from 

(2-35) that 

(using Lemma 1.2) 

(2-38) 

for each 0 < 6• $ 6o/2, where 0(6") i_s a number such that 

10(6")1 $ M 6", (2·39) 

where M is the same positive number as in (2·37). (2·38) will be used in the next section. 

3. Convergence of approximate solutions. 

We assume that uo E H6(l~),u1 E £ 2(!1),/ E L2(!l x (O,T)),¢ E C 1(fi) with¢>$ 0 on r 2 , and 

define a solution of (0· I) t hrough (0.5) .by 

Definition 3.1 A function u(x , t) is a solution of {0-1) through (0·5) if 

u E L""(O,T;H~1 ( !l)}, 8,u E L00(0,T;L2{!1)) n C((O,T);H-112(!l)), (3-1) 

u(:r,O) = uo(x),&,u(x ,O) = Ut(z), . (3-2) 

u(t) E G, for almost all t E (0, T ) (3·3) 

< 81u(T), w(T)- u(T) > - < "" w(O) - 1to > 
10 
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-1T < 81u,81w- 81u > dt + 1T a(u,w- u)dt 

;:>: 1T < j, W- u > dt, (3-4) 

for every w such that w E L00 (0, T; Hf-
1 
(fl)), 81w E L""(O, T; L2(fl)), w(t) E G, for almost all 

t E (O,T). 

We shall justify this definition. Suppose that u is a solution according to the above definition. 

By taking w = u ± ~,~ E Cg'(fl x (O,T)), in (3-4), we find that (0-1) is satisfied in 7J'(n x (O,T)). 

(0-3) and (0-4) are satisfied in the sense u(t) E G, for almost all t E (0, T). Now we assume further 

regularity on u: 

(3-5) 

(3-6) 

for each 6 > 0, where we set 

Es = {x E fi: dist(x,8r1 ) :S: 6}. 

Recall that 8r1 = 8r2 is an (n- 2)-dimensional, C 2-manifold by assumption. Then, (0-1) holds in 

a stronger sense: 

1T < 8,.u,w > dt -1T < Ll.u,w > dt = 1T < j,w > dt (3-7) 

holds for every wE L2(fl X (O,T)) such that supp w(x,t) n E, is empty, for almost all t, for some 

0 > 0. 

Next choose any nonnegative function ~(x) E C.\(r2 ). Then, we can extend ~(x) so that 

~(x) E C1 (f!) and supp ~ n {E8 U rl} is empty for some 6 > 0. Choose any nonnegative function 

77(t) E CJ((O,T)) and take w = u + ~(x)77(t) in (3-4). By means of integration by parts and the 

divergence theorem (this procedure is justified by (3-5) and (3-6)), we find 

1T < 8,.u,~(x)1)(t) > dt- 1T < Ll.~,~(x)77(t) > dt 

+ 1T j
2 

(~~) ~(x)77(t)dadt ;:>: 1T < J,e(x)7J(t) > dt. (3-8) 

It follows from (3-7) and (3-8) that 

(3-9) 

which is true for all nonnegative functions ~(x) E C.l(r2 ) and 7J(I) E C.l((O,T)). Hence we can 

conclude that 
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:~ 2: 0, almost everywhere in fz X (0, T). (3-10) 

It remains to show the second part of (0-5). Let us choose a function {s(x) E C 1(fi) such that 

0 $ {s(x) $ 1, for all x E fi,{0 = 1 on fz \ Es and supp {s n {E5;2 U ft} is empty. We also choose 

any 'l(t) E CJ((O,T)) such that -1 $ 'l(t) $ 1 for all t. Then, we set 

W = U + es(X)'l(t)(u- cP) 

in (3.4). As above, we use integration by parts, the divergence theorem and (3-7) to arrive at 

[ l
2 

{ 5(x)1J(t) (~~) (u- ¢)dudt = 0. (3-ll) 

Here, we have the equality, because -'l(t) can be also chosen in place of 'l(t). Since u- ¢ ;:: 0 

almost everywhere in fz X (O,T) and b > 0 is arbitrary, (3-10) and (3-11) imply 

(:~) (u- ¢) = 0, almost everywhere in f2 x (O,T). (3-12) 

This completes the justification of the above definition of a solution. 

We now proceed to present the maln result. 

THEOREM 3.2. For uo E HJ(fl),ut E L2(fl) and f E L2(fl X (O,T)), there is a solution of (0-1) 

through (0-5 ). 

PROOF: Choose sequences {uok}, {ulk} in C(i"(fl) and fk in C 1([0,T]; L2(fl)) such that ask--+ oo, 

Uok --+ u0 in HJ(fl), (3-13) 

(3-14) 

fk --+ fin L 2(fl X (0, T)). (3-15) 

Using these, for each k, let Uk be a solution constructed in Proposition 2.1. Then, each Uk satisfies 

(3-16) 

for every w(x, t) such that wE L""(O,T; Hf-
1 

(fl)),&1w E L00 (0,T; L2 (fl)) and w(t) E G, for almost 

all t E (0, T). Using integration by parts and 

(3-17) 
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we obtain 

(3-18) 

By virtue of (2-25) and (2-26), we can extract a subsequence still denoted by { uk} such that as 

k ...... oo, 

Uk ...... u weak+ in L00 (0, T; Ht
1 
(f!)), 

Since each Uk satisfies (2-29), we infer from (3-15) and (3-19) that 

Hence, by Lemma 1.4, we find that 

uk ...... u in C([O,T];H!(n)), 

so that 

< 81uk(T),w(T)- uk(T) >-->< 8tu(T),w(T)- u(T) > 

as k ...... oo, for each w. In the meantime, we notice that 

~~ {T f (8tuk)wdudtj 
lo lr2 

:::;; ~( {T f (81uddudt)!( {T f w2dudt)!, 
lo lr2 lo lr2 

(using (2-28)), 

:::;; M( fT f w2dudt)!j,fk--> 0, 
lo lr2 

as k--> oo, for each w. Next we shall show that 

(3-19) 

(3-20) 

(3-21) 

(3-22) 

(3-23) 

(3-24) 

(3-25) 
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It is convenient to introduce the notation: 

Ak = t(&,ud- t1Vukl 2 + ((h · V')uk)2
, 

Bk = ((h · V')uk)2
, 

A= t(&,u)2- ~IV'ul 2 + ((h · V')u)2
, 

B = ((h · V')u)2 • 

First of all, by Lemma 1.3, ask-> oo, 

Ak- Bk-> A-Bin 'D'(fl x (O,T)). 

Since the sequence {Ak- Bk} is bounded in L""(O, T; L1 (fl)), we observe that ask-> oo, 

(3·27) 

(3-28) 

for each ,P(x) E C0 (fl). Let us define a function P6(s) E C(R) such that P6(s) is nondecreasing in 

sand 

( ) 
_ { 0 for all s:::; 6/2 

p6 8 
- 1 for all s 2:: 6. (3-29) 

We then set tP6(x) = P6(dist(x,&fl)). Fix any 0 < o:::; 6of2. According to (3-28), 

(3-30) 

as k -> oo. Furthermore, with the aid of (2-38), we notice that 

where we can estimate Ot(6) by using the number Min (2-37), and (3-13), (3-14) and (3-15), 

IOt(6)1:::; Mo, for all k. (3-32) 

Meanwhile we also have 

(3-33) 

for each k, since Bk is nonnegative and integrable, and 0:::; tP6(x):::; 1, for all x. Since A-BE 

L""(O,T; L1(fl)), it is apparent that 

{T { (1- l/>6(x))(A- B)dxdt = {T { (1- l/>6(x))(A- B)dxdt 
lo ln lo lu6 

= 02(6)-> 0 as 6-> 0. (3-34) 

Choose any E > 0. Then, by (3-32) and (3-34), there is 0 < 6(E):::; 60 /2 such that 

(3-35) 
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for all 0 < b:::; b(€) and all k. Using (3·30) and (3-34), we have for each 0 < b:::; bo/2, 

1T in (A- B)dxdt = 1T in 1/!s(x)(A- B)dxdt + 02(b) 

In particular, for 0 < b :5 b(E), we use (3-31), (3-33) and (3-35) to arrive at 

{T {(A- B)dxdt ~ -€ + lim sup {T { (Ak - Bk)dxdt. 
Jo Jn k--+oo Jo Jn 

Since € is arbitrary, it follows that 

{T {(A- B)dxdt ~ lim sup 1T { (Ak- Bk)dxdt, Jo Jn k--+oo o fo 

(3-36) 

(3.37) 

(3-38) 

which shows (3-26). Combining (3-18), (3-19), (3-20), (3-24), (3-25) and (3-26), we conclude that 

(3-4) is satisfied. Finally, (3.23) implies 

(3-39) 

But, each Uk satisfies (2-27) and thus 

u ~ 4>, almost everywhere in r 2 , for each t, (3-40) 

from which (3-3) follows. Now the proof of Theorem 3.2 is complete. 
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