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A BOUNDARY THIN OBSTACLE PROBLEM FOR A WAVE EQUATION

In this paper we shall discuss a hyperbolic variational inequality associated with the following initial-boundary value problem:

Here n is a bounded open subset of Rn, n ;:::: 2, with smooth boundary an E (0-1) (0-2) (0-3) (0-4) (0-5) C2. We assume that rl and r2 are disjoint, nonempty open subsets of an such that an = rl u r2 = rl u r2 and ar1 = ar2 E C 2 . The above functions J(x,t),uo(x),u1 (x) and 4>(z) are given, and f., denotes the outward normal derivative on an. We assume that 4> $ 0 and Uo ;:::: 4> on f 2 • We can put the above problem in the form of a variational iUP.quality: find u(x,t) which satisfies (0-2), (0-3), (0-4) and a 2 u < at 2 , w -u > +a( u, w -u) ;:::: < J, w -u > (0-6) for every wE G, for all t E (0, T).

< u,w >=in uwdx, a(u,w) =in V'u • V'wdx, G ={wE H 1 (!!): w = 0 on r1 and w 2: ¢on r2}.

If a solution u of this new problem is sufficiently smooth, one can show that u also satisfies (0-1) and (0-5) so that u is a solution of the original problem (0-1) through (0-5). The corresponding stationary variational inequality: find u E G which satisfies a(u,w-u) 2:< J,w-u >,for all wE G, (0-7)

is called the boundary thin obstacle problem (or the Signorini problem), and its mathematical theory has been well-established: see [START_REF] Friedman | Variational principles and free-boundary problems[END_REF] and references therein. However, to the author's knowledge, nothing has been known about the solution of (0-1) through (0-5). The purpose of this paper is to establish the existence of a (weak) solution of (0-1) through (0-5). This problem is an example of a hyperbolic variational inequality where a constraint is imposed on the unknown function rather than on the time derivative of the unknown function. Hyperbolic variational inequalities have been extensively investigated in the case where a constraint is imposed on the time derivative of the unknown function; see [START_REF] Brezis | Problemes Unilateraux[END_REF] and [START_REF] Lions | Quelques methodes de resolution des problemes aux limites non lineaires[END_REF] among others. On the other hand, when a constraint is imposed on the unknown function, existence theorems seem to be known mainly for special problems of space dimension one; see [START_REF] Amerio | Unilateral problems for the vibrating string equation[END_REF], [START_REF] Bamberger | New results on the vibrating string with an obstacle[END_REF], [START_REF] Do | On the dynamic deformation of a bar against an obstacle[END_REF], [START_REF] Kim | A one-dimensional dynamic contact problem in linear viscoelasticity[END_REF], [START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints[END_REF], [START_REF] Schatzman | Un probleme hyperbolique du 2eme ordre avec contrainte unilaterale: La corde vibrante avec obstacle ponctuel[END_REF] and [START_REF] Schatzman | The penalty method for the vibrating string with an obstacle[END_REF]. In the case of several space dimensions, [START_REF] Lebeau | A wave problem in a half-space with a unilateral constraint at the boundary[END_REF] and this paper seem to be the only known works. [START_REF] Lebeau | A wave problem in a half-space with a unilateral constraint at the boundary[END_REF] resolved the above problem by microlocal techniques when n is a half-space; but the same method does not extend to a general domain, as is explained in [START_REF] Lebeau | A wave problem in a half-space with a unilateral constraint at the boundary[END_REF].

In this paper, the basic procedure to prove the existence of a solution consists of a penalty method [START_REF] Lions | Quelques methodes de resolution des problemes aux limites non lineaires[END_REF], a multiplier technique [START_REF] Lasiecka | Nonhomogeneous boundary value problems for second order hyperbolic operators[END_REF] and compensated compactness [START_REF] Dacorogna | Weak continuity and weak lower semicontinuity of nonlinear functionals[END_REF]. Finally, we note that the questions of uniqueness and energy conservation for solutions of our problem are still open. For s=nonnegative real, H'(l1) is defined by interpolation and H-'(l1)=the dual of HJ(lt). We denote by <, > the duality pairing between H-"(!1) and H"(n), 0 ::; a ::; ~• Then, for g E L 2 (!1), hE H"(n), 0::; a::; t, we have < g, h >= fn ghdx.

As above, the bilinear form a(, ) is defined by a(g, h)= j 0 'lg • 'lhdx and

G ={wE Hf 1 (n): w <:</>on r2},
where </>(x) E C 1 (f!) and </>(x)::; 0 on r 2 .

Next we define the distance function d by d(x)=dist(x,an) and set

v 5 = { x E IT : d( x) < a}.
Let So be a positive number such that 1/So bounds the principal curvatures of an. Since n is bounded and an E C 2 , it is known that d(x) E C 2 (V 00 ); see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]. We also set

Us= {x En: d(x) <a}, S0 = {x En: d(x) = S}.
Then, Ss is a C 2 -surface for 0 ::; S < So. We shall use the following lemmas later.

LEMMA 1.1. There is a function h(x) E C 1 (f!)n such that h(x)=the outward unit normal vector at

x on Ss ifd(x) = S::; 6o/2 and h(x) = 0 ifd(x) <: 6o.

PROOF: For each x E 50,0::; 6 <So, there is a unique point y(x) E an such that dist(x,y(x)) = 6 and the outward normal vector at y(x) on an is also outward normal at X on S5. Furthermore,

y(x) E C 1 (Vs 0 ).
Next we denote by v(y) the outward unit normal vector at yon an. Then, v(y)

is a C 1 function of y. Let us choose a function p(t) E C 1 (R) such that p(t) = 1 fort ::; 6o/2 and p(t) = 0 fort> ~60 . We then set h(x) = v(y(x))p(d(x)
), which achieves our goal.

The next lemma is known and stated without proof.

LEMMA 1.2. Let g E L 1 (n). Then, for 0 < 6* < 6o, { gdx = r'* { gdl7sd6 lu 5 • lo ls 5 (1-1)
holds where d!7 5 is the surface element on Ss.

Next we write a well-known consequence of the Div-Curllemma of compensated compactness.

LEMMA 1.3. Let {uk} be a sequence of functions such that

(1-2) (1-3)
where M is a positive constant independent of k and each Uk satisfies

(1-4)
where {gk} is a bounded sequence in L 2 (n X (0, T)), and, ask--+ oo,

(1-5)

Then, as k --+ oo [START_REF] Amerio | Unilateral problems for the vibrating string equation[END_REF][START_REF] Bamberger | New results on the vibrating string with an obstacle[END_REF][START_REF] Brezis | Problemes Unilateraux[END_REF][START_REF] Dacorogna | Weak continuity and weak lower semicontinuity of nonlinear functionals[END_REF][START_REF] Do | On the dynamic deformation of a bar against an obstacle[END_REF][START_REF] Friedman | Variational principles and free-boundary problems[END_REF] in 'D'(n x (0, T)).

i;;,i = 1, . .. ,n, and vk(n+t) -t,,wk(n+l) ~. Then, apply Corollary 4.3 of [START_REF] Dacorogna | Weak continuity and weak lower semicontinuity of nonlinear functionals[END_REF].

Finally, we state LEMMA 1.4. Let {uk} be a sequence of functions such that ask--+ oo,

(1-7)

(1-8)

where -1 ::; a< (3::; 1. Then, we have

Uk--+ u in C([O,T];Hr(n)) (1-9)
for any r < (3.

PROOF: A special case was proved in [START_REF] Kim | A one-dimensional dynamic contact problem in linear viscoelasticity[END_REF]. The same argument can still be employed. Without loss of generality, we may assume a# -!,(3 # -!,because we can take smaller a or (3 if necessary. possibly after a modification on E. Since the embedding Hr2(fl) C Hrt(fl) is compact for every r 1 < r 2 , we can use the Ascoli theorem to arrive at the conclusion.

Let r = ea + (1-8)(3,0 < e < 1,
2. Approximate Problem.

In this section we shall consider an approximate problem with a penalty parameter k > 0. The problem is: find a function uk(z,t) such that

11k(z,0) = Uok(z),8t11k(:t,0) = UJk(:t) (2-2)
< a .. u.,w > +a(u.,w) =< fk,w > + { (k(uk-4>)--~a,u.)wdu

(2-3) 1r 2
holds for all w E H/-1 (!'!), for almost all t E (0, T). Here du is the surface element on 8fl and g-=max(O,-g).

Our strategy consists of three steps.

(Step 1) Establish the existence of solution of (2-1), (2-2) and (2-3).

(

Step 2) Obtain a priori estimates independent of k > 0.

(Step 3) Pass k -+ oo to arrive at a solution of the original problem.

In this section, the first two steps will be carried out.

Existence of solution

Throughout this subsection, we shall suppress the subscript k.

PROPOSITION 2.1. Let u 0 ,u 1 E Clf(!'l),/ E C 1 ([0,T];L 2 (fl))
and 4> E C 1 (fi) with 4>::; 0 on r2.

Then there is a solution of (2-1), (2-2) and (2-3).

PRooF: We set u = v + tto + tu1. Then, and (2-3) is equivalent to 

v(z,O) = 0,81v(z,O) = 0, < a,,v,w > +a(v,w) =< J,w > + < ~(u 0 + tut),w > +k { (v-4>)-wdu 1r 2 _.!_ f (8 1 v)wdu, k lr 2 (2-4) (2-
=:; 118tfiiL2(0) ll8ttVm IIL2(0) + ll~utiiL2(0) ll8ttVm IIL2(0) + ~k3 ll8t{(vm-4>nll~2(r 2 )-~ll8ttvmll~2(r 2 r
We consider (2-8) at t = 0 and substitute 8ttvm(O) for Wj:

We have used the fact that vm(O) = 81vm(O) = 0. Now (2-16) implies (2-23)

We then make use of (2-20) through (2-23) to derive (2-4) and (2-5) through a standard procedure.

Remark 2.2. The purpose of the term t81uk in (2•3) is to obtain approximate solutions which are regular enough to justify manipulations in using a multiplier technique in the next subsection.

The utility of that term is seen in (2• 15).

2 2 A priori estimates independent of 1;.

We still suppress the subscript k and let u(z,t) be a solution constructed i. n Proposition 2.1 for a fixed k > Q. We can substitute 8,u for w in (2•3):

for almost all t E (0, T). We now derive from (2•24)

lluiiHt (O) !> M, for all t E (O,T) rt ll(u-¢niL1(r,) $ M/Vk, for all t E [O,Tj, LT 1 18.ull~2(r,)dt $ Mk, (2•24) (2• 25) (2• 26) (2•27) (2-28) 
where M denotes positive constants which are independent of k, &nd depend only on the number

L such tbt lluoiiHJ(O) + l!ut iiL2(0) + 11/IIL2(0x (O,T)) $ L .
Next we shall adapt a multiplier technique to derive some uniform estimates in a neighborhood of 81!. Let us set fl6 = {:t E fl: dist(z,80) > 6} for 0 < 6 !> 6o. Obviously, 8fl5 = S5, which was defined in Section 1. We need to observe tha.t solution u of (2•1), (2-2) and (2•3) has sufficient regularity to justify manipulations in using a multiplier technique. First of all, (2•3) implies tha.t 8uu -6u = f L 00 (0,T; H 2 (f!)). We also note that (2-1) implies possibly aft er a modification on a set of measure zero in t.

We now proceed to obtain the estimates. Using the function h(z) constructed in Lemma 1. 1, we multiply both sides of (Z-29) by (h.• V)u • and Integrate over fls x (0, T ), O < 6 $ 6of2:

{ I (8.,u)((h. V)u)dzdt io in 6 = I (81u(T ))((h • V)u(T))dz-I u,((h • V)ua)dz 1n 6 1o 6 -IT I (o,u)((h . V )8,u)dzdt = lo 1n 6
(applying the divergence theorem to the last integral) ;:>: 1T < j, W-u > dt, [START_REF] Brezis | Problemes Unilateraux[END_REF][START_REF] Dacorogna | Weak continuity and weak lower semicontinuity of nonlinear functionals[END_REF] for every w such that w E L 00 (0, T; Hf-1 (fl)), 8 1 w E L""(O, T; L 2 (fl)), w(t) E G, for almost all t E (O,T).

IT I ( -~u)((h • V )u)
We shall justify this definition. Suppose that u is a solution according to the above definition.

By taking w = u ± ~,~ E Cg'(fl x (O,T)), in [START_REF] Brezis | Problemes Unilateraux[END_REF][START_REF] Dacorogna | Weak continuity and weak lower semicontinuity of nonlinear functionals[END_REF], we find that (0-1) is satisfied in 7J'(n x (O,T)).

(0-3) and (0-4) are satisfied in the sense u(t) E G, for almost all t E (0, T). Now we assume further regularity on u:

(3-5) [START_REF] Brezis | Problemes Unilateraux[END_REF][START_REF] Dacorogna | Weak continuity and weak lower semicontinuity of nonlinear functionals[END_REF][START_REF] Do | On the dynamic deformation of a bar against an obstacle[END_REF][START_REF] Friedman | Variational principles and free-boundary problems[END_REF] for each 6 > 0, where we set Es = {x E fi: dist(x,8r 1 ) :S: 6}.

Recall that 8r 1 = 8r 2 is an (n-2)-dimensional, C 2 -manifold by assumption. Then, (0-1) holds in a stronger sense:

1T < 8,.u,w > dt -1T < Ll.u,w > dt = 1T < j,w > dt (3-7)
holds for every wE L 2 (fl X (O,T)) such that supp w(x,t) n E, is empty, for almost all t, for some 0 > 0.

Next choose any nonnegative function ~(x) E C.\(r 2 ). Then, we can extend ~(x) so that ~(x) E C 1 (f!) and supp ~ n {E 8 U rl} is empty for some 6 > 0. Choose any nonnegative function 77(t) E CJ((O,T)) and take w = u + ~(x)77(t) in [START_REF] Brezis | Problemes Unilateraux[END_REF][START_REF] Dacorogna | Weak continuity and weak lower semicontinuity of nonlinear functionals[END_REF]. By means of integration by parts and the divergence theorem (this procedure is justified by [START_REF] Brezis | Problemes Unilateraux[END_REF][START_REF] Dacorogna | Weak continuity and weak lower semicontinuity of nonlinear functionals[END_REF][START_REF] Do | On the dynamic deformation of a bar against an obstacle[END_REF] and (3-6)), we find 1T < 8,.u,~(x)1)(t) > dt-1T < Ll.~,~(x)77(t) > dt + 1T j 2 (~~) ~(x)77(t)dadt ;:>: 1T < J,e(x)7J(t) > dt. 

  &;•a"= &tl' V'g = &xl , ... , &xn . When E is an open subset of RN, N ;::: 1, D'(E) denotes the space of distributions over E and CIJ'(E) = {w E cm(E) : supp w is a compact subset of E}. We assume that &i! E C 2 and &r1 = &r 2 E C 2 • For m=nonnegative integer, m ( a ) "' ( a ) "n H (!1) ={wE L 2 (l1): ax, . . . axn wE L 2 (!1),0::; a 1 + ... +an::; m}, H 0 (!1) =the completion of CQ"(l1) in Hm(!t), H-m(n) = the dual of HQ'(lt), Hf 1 (!1) ={wE H 1 (!1): w = 0 on r!}.

  r # -!, !• There is E c (O,T] such that meas(E) = 0 and for all t1,t2 E (O,T] \ E, t1 < t2, llu•(t2)-uk(tt)liw(n) ::; ::; M91iu•(t2)-u•(tt)ll~"(n)lfu•(t2)u•(tt)1111(n)' M9( li8tuk(t)IIH"(n)dt) ::; M9(t2tt) , It (1-10) holds for all k and 0 < 9 < 1 such that 9a + (1-9),8 ~ ~,-!,where M9 denotes positive constants independent oft1,t2 and k. Consequently, each uk belongs toC([O,Tj;Hr(fl)) for every a< r < ,B

M 2

 2 being a positive constant independent of m. Combining (2-13), (2-15) and (2-17), we derive (2-18) (2-19) where M denotes positive constants independent of m. By means of (2-11), (2-18) and (2-19), we can extract a subsequence still denoted by { Vm} such that (v. By virtue of Lemma 1.4, we have (vm-(W _, (v-4>)-in C([O, T]; L 2 (8fl.)).

( 2 •

 2 29) holds in 'l>'(O x (0, T)). By virtue of (2•1) and the assumption that f E C 1 ((0,TJ; L 2 (0)), we infer that (2-30) ln fact, (2•29) holds in L 00 (0, T; L'(fl)). Now (2•30) Implies 8 (2-31) for eacll 6 > 0. Because of the mixed bounda.ry condition on {Jfl, one cannot claim that u E

( 3 - 8 ) 2 :lr 2 lo lr 2 ( 3

 38223 It follows from[START_REF] Brezis | Problemes Unilateraux[END_REF][START_REF] Dacorogna | Weak continuity and weak lower semicontinuity of nonlinear functionals[END_REF][START_REF] Do | On the dynamic deformation of a bar against an obstacle[END_REF][START_REF] Friedman | Variational principles and free-boundary problems[END_REF][START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] and[START_REF] Brezis | Problemes Unilateraux[END_REF][START_REF] Dacorogna | Weak continuity and weak lower semicontinuity of nonlinear functionals[END_REF][START_REF] Do | On the dynamic deformation of a bar against an obstacle[END_REF][START_REF] Friedman | Variational principles and free-boundary problems[END_REF][START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF][START_REF] Kim | A one-dimensional dynamic contact problem in linear viscoelasticity[END_REF] that[START_REF] Brezis | Problemes Unilateraux[END_REF][START_REF] Dacorogna | Weak continuity and weak lower semicontinuity of nonlinear functionals[END_REF][START_REF] Do | On the dynamic deformation of a bar against an obstacle[END_REF][START_REF] Friedman | Variational principles and free-boundary problems[END_REF][START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF][START_REF] Kim | A one-dimensional dynamic contact problem in linear viscoelasticity[END_REF][START_REF] Lasiecka | Nonhomogeneous boundary value problems for second order hyperbolic operators[END_REF] which is true for all nonnegative functions ~(x) E C.l(r2 ) and 7J(I) E C.l((O,T)). Hence we can conclude that we obtain (3-18) By virtue of (2-25) and (2-26), we can extract a subsequence still denoted by { uk} such that as k ...... oo, Uk ...... u weak+ in L 00 (0, T; Ht 1 (f!)), Since each Uk satisfies (2-29), we infer from (3-15) and (3-19) that Hence, by Lemma 1.4, we find that uk ...... u in C([O,T];H!(n)), so that < 8 1 uk(T),w(T)-uk(T) >-->< 8tu(T),w(T)-u(T) > as k ...... oo, for each w. In the meantime, we notice that ~~ {T f (8tuk)wdudtj lo lr ::;; ~( {T f (8 1 uddudt)!( {T f w 2 dudt)!, lo using (2-28)), :::;; M( fT f w 2 dudt)!j,fk--> 0, lo lr 2 as k--> oo, for each w. Next we shall show that (

IC(8)J $ M, for all 0 < 6 $ 6o/2, where M is a positive constant which is independent of k and depends only on the number L such tha t UuoiiHJ(O) + Uut iiL2(0) + II/ II L2(0x(O.T)) $ L.

We next choose any p(s) E C(R) such that for all s, 0 S lp(s) l $ 1, and set t,!>(x) = p(dist(x, 8!1)).

Then , 1{1( z) i s a continuous function and is constant on each S6, 0 < 6 $ 6 0 • Hence, it follows from (2-35) that (using Lemma 1.2) for each 0 < 6• $ 6o/2, where 0(6") i_ s a number such that 10(6")1 $ M 6", (2•39) where M is the same positive number as in (2•37). (2•38) will be used in the next section.

Convergence of approximate solutions.

We assume that uo E H6(l~), u1 E £ 2 (!1),/ E L 2 (!l x (O,T)),¢ E C 1 (fi) with¢>$ 0 on r 2 , and define a solution of (0• I) t hrough (0.5) .by < 81u(T), w(T)-u(T) > -< "" w(O) -1to > :~ 2: 0, almost everywhere in fz X (0, T). [START_REF] Brezis | Problemes Unilateraux[END_REF][START_REF] Dacorogna | Weak continuity and weak lower semicontinuity of nonlinear functionals[END_REF][START_REF] Do | On the dynamic deformation of a bar against an obstacle[END_REF][START_REF] Friedman | Variational principles and free-boundary problems[END_REF][START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF][START_REF] Kim | A one-dimensional dynamic contact problem in linear viscoelasticity[END_REF][START_REF] Lasiecka | Nonhomogeneous boundary value problems for second order hyperbolic operators[END_REF][START_REF] Lebeau | A wave problem in a half-space with a unilateral constraint at the boundary[END_REF] It remains to show the second part of (0-5). Let us choose a function {s(x) E C 1 (fi) such that 0 $ {s(x) $ 1, for all x E fi,{0 = 1 on fz \ Es and supp {s n {E 5 ; 2 U ft} is empty. We also choose any 'l(t) E CJ((O,T)) such that -1 $ 'l(t) $ 1 for all t. Then, we set

in (3.4). As above, we use integration by parts, the divergence theorem and (3-7) to arrive at

Here, we have the equality, because -'l(t) can be also chosen in place of 'l(t). Since u-¢ ;:: 0 almost everywhere in fz X (O,T) and b > 0 is arbitrary, (3-10) and [START_REF] Brezis | Problemes Unilateraux[END_REF][START_REF] Dacorogna | Weak continuity and weak lower semicontinuity of nonlinear functionals[END_REF][START_REF] Do | On the dynamic deformation of a bar against an obstacle[END_REF][START_REF] Friedman | Variational principles and free-boundary problems[END_REF][START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF][START_REF] Kim | A one-dimensional dynamic contact problem in linear viscoelasticity[END_REF][START_REF] Lasiecka | Nonhomogeneous boundary value problems for second order hyperbolic operators[END_REF][START_REF] Lebeau | A wave problem in a half-space with a unilateral constraint at the boundary[END_REF][START_REF] Lions | Quelques methodes de resolution des problemes aux limites non lineaires[END_REF] imply

This completes the justification of the above definition of a solution.

We now proceed to present the maln result. fk --+ fin L 2 (fl X (0, T)).

(3-15) Using these, for each k, let Uk be a solution constructed in Proposition 2.1. Then, each Uk satisfies [START_REF] Brezis | Problemes Unilateraux[END_REF][START_REF] Dacorogna | Weak continuity and weak lower semicontinuity of nonlinear functionals[END_REF][START_REF] Do | On the dynamic deformation of a bar against an obstacle[END_REF][START_REF] Friedman | Variational principles and free-boundary problems[END_REF][START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF][START_REF] Kim | A one-dimensional dynamic contact problem in linear viscoelasticity[END_REF][START_REF] Lasiecka | Nonhomogeneous boundary value problems for second order hyperbolic operators[END_REF][START_REF] Lebeau | A wave problem in a half-space with a unilateral constraint at the boundary[END_REF][START_REF] Lions | Quelques methodes de resolution des problemes aux limites non lineaires[END_REF][START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints[END_REF][START_REF] Schatzman | Un probleme hyperbolique du 2eme ordre avec contrainte unilaterale: La corde vibrante avec obstacle ponctuel[END_REF][START_REF] Schatzman | The penalty method for the vibrating string with an obstacle[END_REF](15)(16) for every w(x, t) such that wE L""(O,T; Hf-1 (fl)),& 1 w E L 00 (0,T; L 2 (fl)) and w(t) E G, for almost all t E (0, T). Using integration by parts and

It is convenient to introduce the notation: We then set tP6(x) = P6(dist(x,&fl)). Fix any 0 < o:::; 6of2. According to (3-28), as k -> oo. Furthermore, with the aid of (2-38), we notice that where we can estimate Ot(6) by using the number Min (2-37), and (3-13), [START_REF] Brezis | Problemes Unilateraux[END_REF][START_REF] Dacorogna | Weak continuity and weak lower semicontinuity of nonlinear functionals[END_REF][START_REF] Do | On the dynamic deformation of a bar against an obstacle[END_REF][START_REF] Friedman | Variational principles and free-boundary problems[END_REF][START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF][START_REF] Kim | A one-dimensional dynamic contact problem in linear viscoelasticity[END_REF][START_REF] Lasiecka | Nonhomogeneous boundary value problems for second order hyperbolic operators[END_REF][START_REF] Lebeau | A wave problem in a half-space with a unilateral constraint at the boundary[END_REF][START_REF] Lions | Quelques methodes de resolution des problemes aux limites non lineaires[END_REF][START_REF] Schatzman | A hyperbolic problem of second order with unilateral constraints[END_REF][START_REF] Schatzman | Un probleme hyperbolique du 2eme ordre avec contrainte unilaterale: La corde vibrante avec obstacle ponctuel[END_REF][START_REF] Schatzman | The penalty method for the vibrating string with an obstacle[END_REF] and (3-15), IOt(6)1:::; Mo, for all k.

(3-32) Meanwhile we also have for each k, since Bk is nonnegative and integrable, and 0:::; tP6(x):::; 1, for all x. Since A-BE L""(O,T; L 1 (fl)), it is apparent that