

Composition dependent performance of alumina-based oxide supported WO3 catalysts for the NH3-SCR reaction and the NSR plus SCR coupled process

Fabien Can, Xavier Courtois, Sebastien Berland, Mickael Seneque, Sebastien

Royer, Daniel Duprez

▶ To cite this version:

Fabien Can, Xavier Courtois, Sebastien Berland, Mickael Seneque, Sebastien Royer, et al.. Composition dependent performance of alumina-based oxide supported WO3 catalysts for the NH3-SCR reaction and the NSR plus SCR coupled process. Catalysis Today, 2015, 257, pp.41-50. 10.1016/j.cattod.2015.03.024. hal-01330404

HAL Id: hal-01330404 https://hal.science/hal-01330404

Submitted on 22 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Catalysis Today 257 (2015) 41–50. DOI: 10.1016/j.cattod.2015.03.024

Composition dependent performance of alumina-based oxide supported WO₃ catalysts for the NH₃-SCR reaction and the NSR+SCR coupled process.

Fabien Can*, Xavier Courtois, Sébastien Berland, Mickael Seneque, Sébastien Royer, Daniel Duprez
Université de Poitiers, CNRS UMR 7285, IC2MP, 4 Rue Michel Brunet, TSA 51106, 86073
Poitiers Cedex 9, France.
Phone: +33 549453997; mail: fabien.can@univ-poitiers.fr

Abstract

Among the specific technologies to reduce NOx from automobile lean exhaust gases, the NOx storage reduction (NSR) and the selective catalytic reduction (SCR) by urea/NH₃ are the two main effective proposed processes. During the short rich excursions of the NSR process, emissions of undesired NH₃ can occur and the combination of the NSR and a NH₃-SCR catalyst has been proposed to improve the global treatment efficiency. With the aim to develop non zeolite SCR catalysts, materials based on modified alumina were prepared by sol-gel method. Necessary acidic and redox properties were expected by incorporation of metal ions such as cerium (for oxygen mobility), zirconium, titanium, and silica (acidic behavior). The influence of each element incorporated in the host alumina and their combination were evaluated in NH₃-SCR before and after 9_{wt}% WO₃ impregnation. Among the 15 synthetized supports, three WO₃ supported catalysts exhibited promising SCR activities were selected (WO₃/Al_{0.2}Ce_{0.4}Ti_{0.4}, $WO_3/Al_{0.2}Ce_{0.16}Zr_{0.32}Ti_{0.32}$ and $WO_3/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32}$ and characterized (N₂ adsorption, XRD analysis, NH₃-SCO reactivity, NH₃ storage capacity, pyridine adsorption monitored by IR spectroscopy, H₂-TPR, OSC) and then associated downstream to a model Pt/Ba/Al₂O₃ NSR catalyst. The use of ammonia emitted from the NSR catalyst during the rich pulses was studied taking into accounts three possibilities: the NH₃-SCR reaction $(NH_3+NOx \rightarrow N_2)$, the NH₃-SCO reaction $(NH_3+O_2 \rightarrow N_2)$ and the unconverted NH₃. Only the NH₃-SCR reaction occurs at 200°C; whereas the three pathways take place at 300 and 400°C. In addition, a lack of strong acidic storage sites results in unconverted ammonia at high temperature.

Keyword: NH₃; SCR; NSR; LNT; WO₃; alumina.

INTRODUCTION

In order to reduce CO_2 emissions, direct-injection lean-burn engines are attractive for car manufacturers due to the lower fuel consumption. However, these engines operate with a large air excess, which makes very difficult the NOx abatement in the post treatment catalytic converters. One possible way to reduce NOx emissions in excess of oxygen is the use of a NOx storage reduction (NSR) catalyst [1]. It works mainly in lean condition. NOx are firstly oxidized on precious metals and then stored on basic compounds, mainly as nitrates. Periodically, the catalyst is submitted to rich conditions for few seconds, so that the stored NOx are reduced into N₂ on the precious metals. Unfortunately, the process can be not fully selective into N₂. In fact, depending on the nature and the concentration of the reductant agent, and the duration of the rich excursion, both N₂O and NH₃ can be observed during the NOx reduction [2-8]. For instance, it is reported that N₂O yields is enhanced by C₃H₆ at 300°C, whereas NH₃ emission is mainly observed when H₂ is used as reductant [9,10].

To the opposite, SCR is a continuous process. It remains described as an attractive way to reduce NOx in excess of O₂, with the use of a large choice of reductants like hydrocarbons (HC) [11-19], ammonia [20-23], urea [24], hydrogen [25], alcohol [26,27], *etc.* While HC-SCR was largely studied in the past decades, the NH₃-SCR is accepted to exhibit the highest potential to reduce NOx emission from Diesel engines. Ammonia reacts with NOx, according to NH₃-SCR reaction pathways described by Eqs 1 to 4. These reactions are usually denoted as "standard" (Eq. 1), "fast" (Eq. 2), "NO₂-SCR" (Eq. 3, 4) reactions [20,28-32]:

$4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$	(Eq. 1)
$4NH_3+2NO+2NO_2 \rightarrow 4N_2+6H_2O$	(Eq. 2)
$4NH_3+3NO_2 \rightarrow 3.5N_2+6H_2O$	(Eq. 3)
$4 \text{ NH}_3 + 2 \text{ NO}_2 + \text{O}_2 \rightarrow 3 \text{ N}_2 + 6 \text{ H}_2\text{O}$	(Eq. 4)

NH₃-SCR catalysts were initially developed for stationary source implementation, for nitric acid production units for instance. V_2O_5 -WO₃/TiO₂ catalysts are usually selected for this application [33,34]. These kinds of formulations are also used since 2003 for heavy duty vehicles exhaust gas treatment to reach Euro IV regulation. The thermal stability of these catalysts can be improved by the introduction of rare earth elements. Casanova *et al.* reported that rare earth addition into a V₂O₅/TiO₂-WO₃-SiO₂ limits of the transformation of the TiO₂ anatase phase (high surface area) into rutile (low surface area) [35,36]. ZrO₂ addition to V₂O₅-WO₃/TiO₂ was also reported to inhibit the shrinking of catalyst surface area and the growth of the TiO₂ crystallites [37]. However, vanadium oxide is not suitable for high temperature application because it may sublime for temperature higher than 650°C [38,39].

As a consequence, V_2O_5 – WO_3 /TiO₂ catalysts are not supposed to be associated with a diesel particulate filter (DPF) or a NSR catalyst which can generate high temperature peaks during the regenerations. Up to date, important efforts focus on the development of new low-temperature SCR vanadium-free catalysts, with good activity, high selectivity and high thermal stability. Researches essentially deal on metal-exchanged zeolites [40-47], or oxide-based materials [48]. Zeolite with narrow pores, such as MOR, FER, BEA, and ZSM-5 appeared suitable for SCR applications when exchanged by Fe or Cu. However, it is reported that metal-exchanged zeolite are rather sensitive to the NO_2/NOx ratio [49-,52].

Then, efforts are made to propose supported transition metal catalysts, such as $Fe_2O_3/WO_3/ZrO_2$ [53] or MnOx–CeO₂ [54], which are reported to be active in standard conditions (Eq. 1). Indeed, the main elements reported in literature for NH₃-SCR catalysts are commonly W, Ce, Ti, Si.

WO₃ was reported to enhance the SCR activity of CeO₂/TiO₂ catalysts [55] due to interaction between Ce and W, leading to (i) high dispersion of CeO₂ and WO₃ and to (ii) Ce⁺³ species formation. More recently, Shan *et al.* [56] also reported the high efficiency in NH₃-SCR of mixed oxides composed of the same elements (W-Ce-Ti). In addition to high CeO₂ and WO₃ dispersion, they suggested that tungsten species enhance the low temperature activity by promoting NO oxidation into NO₂, thus improving the "fast SCR" reaction (Eq. 2). Small CeO₂ crystallites were also proposed to be responsible of the high NH₃-SCR activity of cerium– tungsten mixed oxide [57]. Tungsten species was also reported by Chen *et al.* to improve the high temperature N₂ selectivity by supplying large NH₃ adsorption capacity of and inhibiting the NH₃ oxidation into N₂O or NOx [58].

With the aim to develop non zeolite and thermally stable SCR catalysts able to be associated with a NSR catalyst, vanadium free materials are expected. Catalyst formulation have to take into account that both redox properties and acidity are supposed to intervene in the NH₃-SCR reaction. The redox properties are suggested to control the reactivity at low temperature, while acidity is expected to play a role in the SCR reaction at high temperature [59].

In a previous work, WO₃/Ce_xZr_{1-x}O₂ materials were evaluated with this aim [23]. A remarkable increase of the global DeNOx efficiency were obtained involving a NSR (Pt/Ba/Al₂O₃) + SCR (WO₃/Ce_xZr_{1-x}O₂) configuration because the *in situ* produced ammonia on the NSR catalyst can thereafter reacts with un-stored NOx on the SCR catalyst. However, the NH₃ reactivity on the SCR material strongly depends on its formulation and the temperature. Indeed, SCR and SCO reactions, as well as ammonia slip, compete together. For instance, at 300°C, although the WO₃/Ce_{0.2}Zr_{0.8}O₂ sample presented the higher DeNOx efficiency in coupled system, an ammonia slip of about 10% was still observed, whereas the WO₃/Ce_{0.4}Zr_{0.6}O₂ catalyst released

only 3 % of the *in situ* produced NH₃. Then, it clearly appears that WO₃-based oxides SCR catalyst formulation can be improved to combine both a high SCR reactivity and a low NH₃ slip for a coupled NSR+SCR system. Taking into account these results and the literature data reported above, modified alumina were prepared and evaluated in this study. Acidic and redox properties were expected by incorporation of metal ions such as cerium (for oxygen mobility), zirconium, titanium, and silica (acidic behavior). Particularly, a high degree of protonic acidity (Brønsted acid sites) is reported for mixed alumina-silica materials compared with the single oxides [60]. Moreover, the isomorphous substitution of Al^{3+} by Si^{4+} in tetrahedral lattice position alters the tetrahedrally coordinated Al³⁺ versus octahedral coordinated Al³⁺ ratio of the material and affects the coordinative unsaturated sites (CUS). WO₃ was selected as active phase for the NH₃-SCR reaction because of its acidic and redox behaviors. The chosen WO₃ loading (9%) was based on previous works using ceria-zirconia supports [23]. Indeed, on $Ce_xZr_{1-x}O_2$ supports, the optimum loading for the NH₃-SCR reaction was found between 8.6 and 10 % [61,62]. In this work, all the prepared samples were evaluated in NH₃-SCR reaction before and after WO₃ impregnation. In addition to textural measurements, the more interesting samples were also characterized in terms of acidic and redox properties as well as for the selective catalytic oxidation of ammonia (NH₃-SCO). Finally, their association downstream a Pt/Ba/Al₂O₃ catalyst in a NSR+SCR coupled process was examined, with a special attention to the use of the *in situ* produced ammonia.

1. EXPERIMENTAL PART

1.1. Catalysts preparation

The mixed oxides for SCR experiments were synthetized using the sol-gel method based on the protocol developed by Pinnavaia *et al.* [63,64,65].

First, the P123 triblock copolymer was dissolved in butanol at 36°C. Then, the aluminum precursor (aluminum sec-butoxide), and if any, the silicium one (TetraEthyl Ortho Silicate - TEOS), is added at 15°C under continuous stirring. After one hour, titania isopropoxide (diluted in butanol) and/or cerium nitrate (diluted in water) and/or zirconium oxinitrate (diluted in water) were added in order to obtain final molar ratio of 1.0 Al^{3+} : 0.2 P123 : 15.5 butanol : 3.75 H₂O. After stirring for 4h, the obtained gel is matured for 40 h at 60°C in an autoclave. The resulting gel is filtered and washed with butanol, and finally calcined at 600 °C under dry air (heating rate: 1°C min⁻¹).

The resulting material are named $A_aB_bC_cD_d$ where the capital letters correspond to the element and the subscript ones indicate the atomic ratio.

On these supports, 9 wt% WO₃ were added by impregnation of the corresponding amount of ammonium metatungstate. This addition was carried out at 60°C under continuous agitation. After drying at 80°C, the resulting powder was placed in an oven for a night. Finally, the solid was calcined under wet air (10 % H₂O) during 4 h at 700°C.

A 1%Pt-10%BaO/Al₂O₃ catalyst (161 m²g⁻¹) was used as NSR model catalyst. Preparation method and main characteristics are depicted in a previous work [23]. First, barium was deposited on the alumina powder by precipitation of barium salt (Ba(NO₃)₂) and platinum was secondly impregnated with a Pt(NH₃)₂(NO₂)₂ aqueous solution. The catalyst was finally stabilized at 700°C for 4 h under a mixture containing 10 % O₂, 10 % H₂O in N₂.

1.2. Characterization technics and catalytic tests

All the characterization technics used in this study are detailed in a previous work [23]. Only the main data are reported here.

1.2.1. Textural characterizations

Nitrogen adsorption-desorption isotherms were recorded at -196° C, using a Tristar 3000 Micromeritics apparatus, after outgassing under vacuum for 8 h at 250°C.

1.1.2. Structural analysis

X-ray powder diffraction was performed at room temperature (RT) with a Bruker D5005 using a K α Cu radiation (λ =1.54056 Å). The powder was deposited on a silicon monocrystal sample holder. The crystalline phases were identified by comparison with the ICDD database files.

1.2.3. NH₃ storage

The ammonia storage capacities were measured at 200, 300 and 400°C. Before analysis, the sample (60mg) was pretreated in situ for 30 min at 550°C under a 10 % O₂, 10 % H₂O, 10% CO₂ and N₂ gas mixture. A flow containing 500 ppm NH₃, 10 % CO₂, 10 % H₂O and N₂ (total flow rate: 12 L h⁻¹) was injected until ammonia saturation (obtained after approximately 300s). Gas concentrations were recorded with a MKS 2030 Multigas infrared analyzer. The stored quantity of ammonia was calculated taking into account the reactor volume.

1.2.4. Pyridine adsorption followed by infrared spectroscopy

The surface acidity of the materials was evaluated by pyridine adsorption monitored by IR spectroscopy (Nexus Nicolet spectrometer equipped with a DTGS detector; resolution of 4 cm⁻

¹ and 64 scans). The spectra were normalized to a disc of 10 mg/cm². After activation at 450°C, pyridine was adsorbed at RT and desorption was performed up to 450°C, by step of 50°C.

1.2.5. Temperature programmed reduction with hydrogen (H₂-TPR)

Temperature programmed reduction (TPR) experiments were performed under 1 vol.% H₂ in Ar flow, from RT up to 900°C (heating rate: 5°C min⁻¹) on a Micromeritics Autochem 2920 apparatus equipped with a TCD. The sample was firstly calcined *in situ* at 300°C for 30 min under 10 vol.% O₂ in Ar flow and purged at RT under Ar flow for 45 min.

1.2.5. Oxygen storage capacity (OSC)

The OSC was measured at 400°C under atmospheric pressure. The sample was continuously purged with helium. Alternate pulses of pure O_2 and pure CO were injected every 2 min [66]. The oxygen storage capacity (OSC) was calculated from the CO_2 formation during alternate pulses of CO and O_2 .

1.2.7. NH₃-SCR and NH₃-SCO catalytic tests

The selective catalytic reduction (SCR) activity measurements were performed under a gas flow depicted in Table 1 and simulating realistic Diesel engine exhaust conditions.

In an oxidising environment (which is the case of diesel engines), several chemical reactions can occur depending on the NO/NO₂ ratio, as presented in the introduction part. As its name suggests, fast SCR (Eq. 2) is preferable. However, only NO was selected as introduced NOx for the SCR tests since in the NSR+SCR combined system, NO₂ is assumed to be mostly stored on the NSR catalyst. Tests were carried out in a quartz tubular micro-reactor. 60 mg of SCR catalyst was used in each run, and the total flow rate was fixed at 12 L h⁻¹, corresponding to a GHSV of about 160 000 h⁻¹ (GHSV, calculated as the volume of feed gas / volume of catalyst). The compositions of the inlet and outlet gas mixtures were monitored using online MKS Multigas infrared analyzer. The N₂ selectivity was calculated assuming that no other N-compounds than NO, NO₂, N₂O and NH₃ are formed. The catalytic activity for NH₃-SCR of NO is expressed by the following equation:

 $X_{NO} (\%) = ([NO]_{inlet} - [NO]_{outlet})/[NO]_{inlet} \times 100 \quad (Eq. 5)$

The selective catalytic oxidation (SCO) experiments were carried out using similar protocol as previously depicted for SCR test, except that NO was replaced by the same flow of N_2 (Table 1).

Catalytic tests	Gas	NH ₃	NO	H ₂	O ₂	CO ₂	H ₂ O	N ₂	
NSR	Rich		-	3 %	-	10 %	10 %	Dalaraa	
	Lean		500 ppm	-	10 %	10 %	10 %	Balance	
NH ₃ -SCR		500 ppm	500 ppm	-	10 %	10 %	10 %	Balance	
NH ₃ -SCO		500 ppm	-	-	10 %	10 %	10 %	Balance	

Table 1. Catalytic test conditions. Rich and lean gas compositions used for the NOx conversion test in alternate cycles (60s lean / 3s rich); NH₃-SCR and NH₃-SCO gas mixtures. Lean mixture was also used for the NOx storage measurements. Total flow rate: 12 L h^{-1} .

1.2.8. NOx storage reduction test (cycled conditions)

NOx storage reduction experiments were performed using NSR catalyst alone (NSR tests, 60mg of Pt-Ba/Al + 120 mg of inert SiC), or in association with a SCR material downstream (NSR+SCR combined system, 60 mg of Pt-Ba/Al + 120 mg of SCR catalyst). Before measurements, the catalytic bed was treated *in situ* at 450°C under 3 % H₂, 10 % H₂O, 10 % CO₂ and N₂ for 15 min. The sample was then cooled down to reaction temperature (200, 300 and 400°C) under the same mixture. NOx conversions were measured in cycling conditions by alternatively switching between lean and rich gas mixtures described in Table 1 using electrovalves. The lean and rich periods were 60s and 3s, respectively. Note that only the stored NOx during the lean periods can be reduced using this procedure since there is no reductant in the lean mixture and no NOx in the rich one. Most gases (NO, NO₂, N₂O, NH₃, CO, CO₂,...) were analyzed using a Multigas FTIR detector (MKS 2030), except H₂ which was analyzed by mass spectrometry. NOx conversion is calculated using Eq.5. Results are also expressed as NH₃ yield which corresponds to the percentage of introduced NOx which is converted into ammonia.

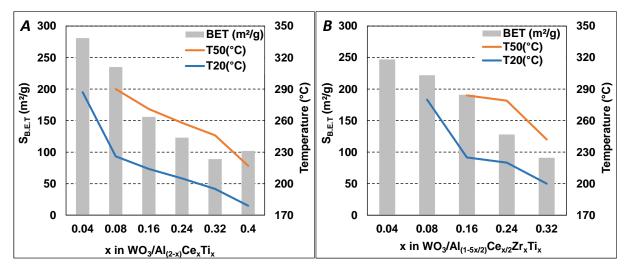
2. RESULTS AND DISCUSSION

2.1. Investigation on dopant effect in NH₃-SCR reaction-Formulation screening

In this first part of the study, the catalytic behavior and the textural properties of the different studied samples are summarized, starting from the simple alumina (Al) which was thereafter modified by different elements: Al-Ce, Al-Ce-Zr, Al-Ce-Ti, Al-Ce-Zr-Ti and finally Al-Si-Ce-Zr-Ti. All prepared samples were evaluated before and after WO₃ impregnation. The influence of the formulation is summarized in Table 2 where the temperatures for NOx conversion of 20, 50 and 80% are reported, as well as BET surface area and mean pore diameters. Additional information, like light-off profiles, are supplied in the Supplementary Information (SI) file.

Formulation	Catalysts	S _{BET} (m²/g)	d _{ВЛН} (nm)	T ₂₀ (°C)	T ₅₀ (°C)	T ₉₀ (°C)
A 1	Al ₂ O ₃	442	7.2	/	/	/
Al	WO ₃ /Al ₂ O ₃	293	4.2	/	/	/
	Al _{0.96} Ce _{0.04}	453	5.8			
Al Al _(1-x) Ce _x Al _(1-2x) Ce _x Zr _x Al _(1-2x) Ce _x Ti _x Al _(1-2x) Ce _x Ti _x Al _(1-x) Ce _x Zr _x Ti _x Al _(1-x) Ce _x Zr _x Ti _x	WO ₃ /Al _{0.96} Ce _{0.04}	260	4.2	236		
$A1(\dots)C_2$	$Al_{0.92}Ce_{0.04}Zr_{0.04}$	319	5.2			
Al $Al_{(1-x)}Ce_x$ $Al_{(1-2x)}Ce_xZr_x$ $Al_{(1-2x)}Ce_xTi_x$ $Al_{(1-2x)}Ce_xTi_x$ $Al_{(1-2x)}Ce_xTi_x$ $Al_{(1-2x)}Ce_xTi_x$	$WO_3/Al_{0.92}Ce_{0.04}Zr_{0.04}$	302	4.8	313		
	Al _{0.92} Ce _{0.04} Ti _{0.04}	310	5.6			
	WO ₃ /Al _{0.92} Ce _{0.04} Ti _{0.04}	281	4.8	287		
_	$Al_{0.84}Ce_{0.08}Ti_{0.08}$	251	6.1	395		
	WO ₃ /Al _{0.84} Ce _{0.08} Ti _{0.08}	235	5.7	226	290	
Al(1-2x)CexTix —	Al _{0.68} Ce _{0.16} Ti _{0.16}	175	5.4			
	WO ₃ /Al _{0.68} Ce _{0.16} Ti _{0.16}	156	5.7	214	271	
	Al _{0.52} Ce _{0.24} Ti _{0.24}	130	7.3	313		
	WO ₃ /Al _{0.52} Ce _{0.24} Ti _{0.24}	123	6.6	205	258	
	Al _{0.36} Ce _{0.32} Ti _{0.32}	105	7.6	257		
	WO ₃ /Al _{0.36} Ce _{0.32} Ti _{0.32}	89	6.9	195	246	
_	Al _{0.2} Ce _{0.4} Ti _{0.4}	130	10.3	200	261	
	WO ₃ /Al _{0.2} Ce _{0.4} Ti _{0.4}	102	10.8	179	217	262
	$Al_{0.88}Ce_{0.04}Zr_{0.04}Ti_{0.04}$	291	5.1			
$AI_{(1-x)}Ce_xZr_xII_x$	$WO_3/Al_{0.88}Ce_{0.04}Zr_{0.04}Ti_{0.04}$	247	4.6	270		
	$Al_{0.80}Ce_{0.04}Zr_{0.08}Ti_{0.08}$	252	4.5			
	$WO_3/Al_{0.80}Ce_{0.04}Zr_{0.08}Ti_{0.08}$	225	4.6	280		
Al _(1-5x/2) Ce _{x/2} Zr _x Ti _x —	$Al_{0.6}Ce_{0.08}Zr_{0.16}Ti_{0.16}$	203	6.1	335		
	$WO_3/Al_{0.6}Ce_{0.08}Zr_{0.16}Ti_{0.16}$	191	6.6	225	284	
	$Al_{0.4}Ce_{0.12}Zr_{0.24}Ti_{0.24}$	163	6.5	270		
	WO ₃ /Al _{0.4} Ce _{0.12} Zr _{0.24} Ti _{0.24}	128	6.8	220	279	
	$Al_{0.2}Ce_{016}Zr_{0.32}Ti_{0.32}$	121	7.4	220	300	
	WO ₃ /Al _{0.2} Ce ₀₁₆ Zr _{0.32} Ti _{0.32}	91	7.5	200	242	296
	$Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32}$	169	5.7	220	260	310
$Al_aS_bCe_cZr_dTi_f$	$WO_3/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32}$	125	6.4	215	260	310

Table 2. Textural characterization and NOx SCR behavior of the studied formulation.


Alumina, as well as WO₃/Al₂O₃, do not exhibit any SCR activity. Only a slight ammonia oxidation into NOx is observed, from 300°C with alumina alone, and 350°C with WO₃/Al₂O₃. Cerium addition to alumina, which was reported to stabilize the alumina structure for low loading [67], allows some N₂ formation from 250°C, but it is attributed to ammonia oxidation (maximum conversion of 40 % at 500°C) and not to NOx reduction because the NOx outlet concentration is not significantly lowered. On the contrary, with the corresponding sample impregnated with WO₃, the NOx conversion starts from 150°C, but it is limited to 30% in the 250-420°C temperature range. It thereafter decreases due to ammonia oxidation by O₂. In fact, ammonia is fully converted from 420° C.

Based on these previous results, Al_2O_3 -CeO₂ based formulation was completed by addition of Zr ($Al_{0.92}Ce_{0.04}Zr_{0.04}$) or Ti ($Al_{(1-2x)}Ce_xTi_x$ with $0.04 \le x \le 0.4$).

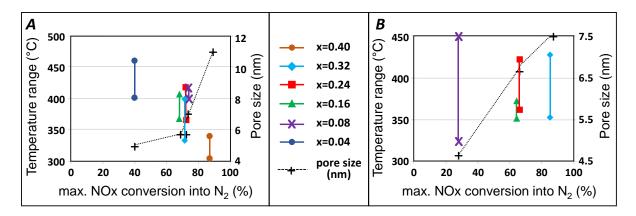
Firstly, Zr incorporation in $Al_{0.92}Ce_{0.04}Zr_{0.04}$ leads mainly to a limitation of the ammonia oxidation, but still without DeNOx activity. For the WO₃ containing samples, it also leads to a decrease in the DeNOx efficiency at low temperature. The temperature for 20% NOx reduction (T20) increases from 236°C for WO₃/Al_{0.96}Ce_{0.04} to 313°C with Zr incorporation (WO₃/Al_{0.92}Ce_{0.04}Zr_{0.04}) (Table 2), probably due to a lower NO₂ formation rate (standard SCR *versus* fast SCR). However, according to a limitation of the ammonia oxidation by O₂ with Zr incorporation, a better use of ammonia is observed at high temperature. The NOx conversion increases with temperature until 40 % in the 420-500°C temperature range (light-off profiles are reported in the SI file).

Overall, similar behaviors were observed with Ti or Zr addition in Al-Ce solid. However, a small NOx reduction is observed with $Al_{0.92}Ce_{0.04}Ti_{0.04}$ compared with $Al_{0.92}Ce_{0.04}Zr_{0.04}$, and $WO_3/Al_{0.92}Ce_{0.04}Ti_{0.04}$ is a little more active in NOx reduction than $WO_3/Al_{0.92}Ce_{0.04}Zr_{0.04}$, with a T20 of 287°C (Table 2). Taking into account these observations, further materials were evaluated increasing the Ce-Ti ratio, keeping an equal atomic loading for Ce and Ti.

Before WO₃ impregnation, data reported in Table 2 clearly indicate that the increase of the Ce-Ti atomic loading in Al(1-2x)Ce_xTi_x ($0.04 \le x \le 0.4$) leads to a significant improvement of the SCR activity;, with a decrease of the onset temperature. In addition to T20 and T50 reported in Table 2, the maximum NOx conversion varies from 6 % to 65 % for x=0.04 and x=0.4, respectively. As already observed with the previously presented samples, WO₃ impregnation strongly improves the SCR activity, and a continuous decrease of T20 and T50 is observed increasing the Ce-Ti loading (Figure 1A). The maximum NOx conversion is limited for $0.08 \le x \le 0.032$ at approximately 70 % (globally in the 350-400 temperature range), and it is improved to 87 % (observed in the 300-340°C temperature range) for x=0.4. In parallel, textural analysis of these samples show a decrease of the BET surface area (Table 2), indicating that the improvement of the SCR activity is not related to the available surface, but probably to an increase of the active sites number and density. Indeed, the SCR reaction needs both acidic sites for NH₃ adsorption and redox sites for reaction. In the studied materials, both types of sites may be different and the proximity of these sites should also impact the activity. However, the maximum NOx conversion also appears to vary with the mean pore diameter (Figure 2A). The relationship between DeNOx efficiency and pore size diameter is not well established in the literature. Nevertheless, in a binary-oxides system, Qu *et al.* [68] have observed that an appropriate pore diameter promotes the dispersion of some amorphous oxide as well as rational ratio of Ce^{4+}/Ce^{3+} .

Figure 1. Specific surface area, and catalytic behaviour (temperature for 20% (T20) and 50% (T50) of NOx conversion), depending of x atomic ratio in (A): $WO_3/Al_{(2-x)}Ce_xTi_x$ and (B): $WO_3/Al_{(1-5x/2)}Ce_{x/2}Zr_xTi_x$ catalysts.

Finally, the increase of the Ce-Ti loading allows a great improvement of the NOx conversion at low temperature but, for all these samples, the NOx conversion decreases at high temperature (from 300 to 400°C depending of the formulation) due to competition between the $NH_3 + NOx$ reaction (SCR) and the $NH_3 + O_2$ reaction (SCO). Taking into account that previously studied Zr containing sample ($WO_3/Al_{0.92}Ce_{0.04}Zr_{0.04}$) exhibited limited NH_3 oxidation behavior, new formulations with Ce, Zr and Ti were evaluated.


Firstly, a formulation with equal atomic ratio for the three metals was synthetized: $(WO_3)/Al_{0.88}Ce_{0.04}Zr_{0.04}Ti_{0.04}$ (Table 2). Unfortunately, the NOx SCR activity of this formulation remains low, even after WO₃ impregnation. The NOx conversion reaches a maximum of 24 % at 300°C, it drops near zero in the 350-450°C temperature range, and the

outlet NOx concentration exceeds the inlet value for higher temperatures, with detection of NO₂. Ammonia is fully converted at 500°C. In fact, this WO₃/Al_{0.88}Ce_{0.04}Zr_{0.04}Ti_{0.04} catalyst exhibits mainly oxidation behavior, even better than WO₃/Al_{0.92}Ce_{0.04}Ti_{0.04} and WO₃/Al_{0.92}Ce_{0.04}Zr_{0.04}. No synergetic effect is observed. As Ce is supposed to be the main contributor for the oxidation properties, new solids were prepared with a two times lower relative cerium loading, respecting the formulation (WO₃)/Al_(1-5x/2)Ce_{x/2}Zr_xTi_x with 0.04 $\leq x \leq 0.32$.

Before WO₃ addition, the catalytic activity is very low for x=0.04 and 0.08, as for the NOx reduction (maximal NOx conversion of 6 %), as for ammonia conversion (20% at 500°C). The DeNOx efficiency gradually increases for $0.16 \le x \le 0.32$, with maximum NOx conversions between 24 % and 57 % around 400°C. For higher temperatures, the ammonia conversion still increases, but it never reaches 100 % at 500°C (maximum of 80 % for Al_{0.2}Ce_{0.16}Zr_{0.32}Ti_{0.32}). Compared with Al_(1-2x)Ce_xTi_x formulations, these materials exhibit lower oxidation behavior, which is also put in evidence in regard of NO₂ outlet concentration at 500°C: 35 ppm were recorded at 500°C for Al_{0.2}Ce_{0.16}Zr_{0.32}Ti_{0.32}, whereas 85 ppm NO₂ were detected for Al_{0.2}Ce_{0.4}Ti_{0.4}.

Again, WO₃ addition leads to a large enhancement of the DeNOx efficiency. Temperatures for 20 % and 50 % of NOx conversion decrease with x in WO₃/Al_(1-5x/2)Ce_{x/2}Zr_xTi_x, from 280°C to 200°C for T20, and from 284 to 242°C for T50. Note that half NOx conversion is not reached for x=0.08. These data are specifically reported in Figure 1B, as the continuous decrease of the specific surface areas with x, from 247 to 91 m²g⁻¹, indicating again that the catalytic activity improvement is attributable to an increase of the active sites number with x, but not to the specific surface area. In addition, the maximum NOx conversion also increase with x. It is limited at 26 % for x=0.08 and reaches 85 % for x=0.32, globally in the 350-400°C temperature range (Figure 2B). It fact, it appears in this figure that this maximum NOx conversion also varies with the mean pore diameter of the sample, as previously observed with WO₃/Al_(1-2x)Ce_xTi_x samples.

Finally, $WO_3/Al_{0.2}Ce_{0.16}Zr_{0.32}Ti_{0.32}$ exhibits a high NOx conversion (85 %) in a relatively large temperature range (350-425°C). Moreover, the ammonia oxidation at high temperature is rather limited and ammonia tends to be fully converted only at 500°C, compared to 450°C for $WO_3/Al_{0.2}Ce_{0.4}Ti_{0.4}$. Comparison of these two samples shows that the NOx concentration exhibits only a small increase at high temperature for $WO_3/Al_{0.2}Ce_{0.16}Zr_{0.32}Ti_{0.32}$ (+ 50 ppm between the lower NOx value and the concentration at 500°C) whereas a difference of 150 ppm is observed with $WO_3/Al_{0.2}Ce_{0.4}Ti_{0.4}$. As a conclusion, ammonia appears less reactive over Al-Ce-Zr-Ti samples than over Al-Ce-Ti materials.

Figure 2. Relation between the maximum NOx conversion (and its temperature range) and the mean pore diameter of (A): $WO_3/Al_{(1-2x)}Ce_xTi_x$ and (B) $WO_3/Al_{(1-5x/2)}Ce_{x/2}Zr_xTi_x$ catalysts.

With the aim to improve the ammonia reactivity without enhancement of the redox behavior to prevent the reactivity toward oxygen, a supplementary element, Si, was introduced in the more interesting Al-Ce-Zr-Ti composition, respecting the following formulation: $(WO_3)/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32}$. Silica addition was expected to increase the acidity of the solid. The resulting solids exhibit specific surface areas of 169 and 125 m²g⁻¹ before and after WO₃ impregnation, respectively (Table 2).

Interestingly, results reported in Table 2 indicates that this formulation is highly active in NOx reduction, even before WO₃ addition. Indeed, both NOx conversions curves are close until 80% NOx conversion. However, tungsten addition allows a higher maximal NOx conversion, at 88% in the 350-390°C temperature range, versus 83 % in the 330-350°C temperature range without WO₃. Unfortunately, for both formulations, NOx conversion is significantly deteriorated at high temperature. At 500°C, it reaches only 50 and 60 % for $Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32}$ and $WO_3/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32}$, respectively.

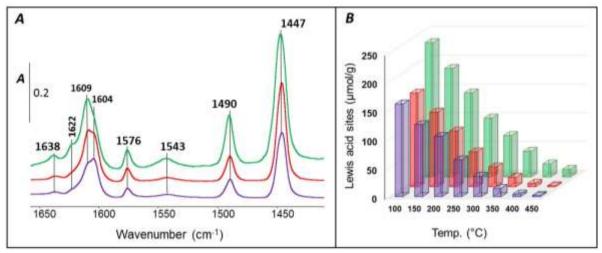
Considering all the studied samples, in addition to the SCR activity at low temperature, it appears that the maximum NOx conversion strongly varies with the formulation. It generally depends on the reactivity of ammonia at high temperature, with the competition between the reaction with NOx or its oxidation, probably by O_2 (into N_2 or NOx, both leading to a lack of ammonia to reduce NOx).

Taking into accounts these results, three formulations exhibiting the more interesting SCR behaviors were selected for further characterizations and catalytic test in a NSR+SCR coupled process: WO₃/Al_{0.2}Ce_{0.4}Ti_{0.4}, WO₃/Al_{0.2}Ce₀₁₆Zr_{0.32}Ti_{0.32} and WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32}. Their respective T50 are 217, 242 and 260°C, and no N₂O was detected during the SCR tests. The full NOx concentration profiles versus temperature are available in Figure 4B.

2.2. Characterization of the selected catalysts

In this part, the three selected materials (WO₃/Al_{0.2}Ce_{0.4}Ti_{0.4}, WO₃/Al_{0.2}Ce₀₁₆Zr_{0.32}Ti_{0.32} and WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32}) were characterized by means of XRD analysis, NH₃ storage capacity, pyridine adsorption, H₂-TPR, OSC and NH₃-SCO experiments.

2.2.1. XRD analysis


XRD patterns of three selected samples are reported in the supplementary file (Figure SI.1). Solids appear rather amorphous, which was expected taking into account the material composition and the obtained specific surface areas. More precisely, only CeO₂ oxide is detected in WO₃/Al_{0.2}Ce_{0.4}Ti_{0.4}, and only ZrO₂ is detected in WO₃/Al_{0.2}Ce_{0.16}Zr_{0.32}Ti_{0.32}. The particle sizes deduced from the Scherrer equation are approximately 4.5 nm and 7.5 nm, respectively. Diffraction peaks are broader for the WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32} sample, probably indicating the presence of Ce and/or Zr oxides. No particle size is reasonably calculable. Finally, no relationship between the DeNOx activity and the catalyst structure can be easily established.

2.2.2. Acidic properties

Acidic properties were characterized by both ammonia storage capacity measurements (200, 300, 400°C) and pyridine adsorption monitored by FTIR.

As expected, the ammonia storage capacity decreased with increasing temperature (Table 3), showing that the strength of the acidic sites of the studied supports appears rather weak. The NH₃ storage amounts are very close for WO₃/Al_{0.2}Ce_{0.4}Ti_{0.4} and WO₃/Al_{0.2}Ce₀₁₆Zr_{0.32}Ti_{0.32}, demonstrating that Zr incorporation do not enhance amount or strength of acidic sites. To the opposite, Si addition leads to a significant improvement of the amount of acidic sites. The increase is about 40% compared with the other formulations, whatever the temperature.

Nevertheless, these ammonia storage capacity measurements in dynamic condition do not allow to determine the nature of acidic sites (i.e. Lewis or Brønsted). To the opposite, pyridine adsorption monitored by FTIR is a powerful technique largely used to characterize the surface acidity of solids [69]. The IR spectra of samples obtained after pyridine adsorption at RT and evacuation at 150°C are depicted in Figure 3A for the frequency range of ring v_{CCN} vibration (1650-1400 cm⁻¹).

Figure 3. Infrared spectra of pyridine adsorbed at room temperature followed by evacuation at 150°C (A) and Lewis acid sites (µmol/g) amount (B). (-WO₃/Al_{0.2}Ce_{0.4}Ti_{0.4}; -WO₃/Al_{0.2}Ce₀₁₆Zr_{0.32}Ti_{0.32} and -WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32} catalysts).

Characteristic frequencies of pyridine coordinated to Lewis acid sites (LAS) were observed at 1447 cm⁻¹(v_{19b}), 1490 cm⁻¹(v_{19a}), 1576 cm⁻¹(v_{8b}) and at 1604-1622 cm⁻¹(v_{8a}). The position and the multiplicity of the v_{8a} ring vibration of chemisorbed pyridine on Lewis acid sites is related to their nature, their number and their strength. Thus, the occurrence of the v_{8a} mode of v_{CCN} vibrations at three different frequencies (1604, 1609 and 1622 cm⁻¹) on alumina-based oxides indicates the presence of heterogeneous Lewis acid sites having different strengths.

According to Zaki *et al.* [70], the v_{8a} band at 1604 cm⁻¹ is assigned to pyridine coordination on Ti⁴⁺. The band at 1609 cm⁻¹ is consistent with previous work which denotes v_{8a} -absorption at 1610 cm⁻¹ over tungstated ceria-zirconia samples [23], whereas the v_{8a} band at 1622 cm⁻¹ is suggested to be assigned to pyridine coordinated to tetrahedral Al³⁺ (strong LAS) [71]. Note that the amount of strong LAS (v_{8a} at 1622 cm⁻¹) is enhanced in WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32} catalyst. In addition, formation of pyridinium surface species is observed in all samples, characterized by v_{8a} -absorption at 1638 cm⁻¹ in association to v_{19b} -absorption mode at 1543 cm⁻¹.

1			- 11	2				
H ₂ -TPR				OSC	NH ₃ -storage (µmol/g)			
T peak(s) (°C)		s)	total H ₂ cons. (μmol/g)	CO ₂ formed (µmol/g)	200°C	300°C	400°C	
/	726	830 ^{sh}	1129	8	90	24	14	
/	715	/	543	7	94	24	13	
503 ^w	683		392	1	130	34	18	
	7 /	T peak((°C) / 726 / 715	H2-TPR T peak(s) (°C) / 726 830 ^{sh} / 715 /	H2-TPR T peak(s) total H2 (°C) (µmol/g) / 726 830 ^{sh} 1129 / 715 / 543	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H2-TPR OSC NH3-storage (μ) T peak(s) total H2 CO2 200°C 300°C (°C) (μ mol/g) (μ mol/g) 200°C 300°C / 726 830 ^{sh} 1129 8 90 24 / 715 / 543 7 94 24	

Table 3. H₂-TPR and OSC experiments of WO₃ supported catalysts.

w: weak ; sh: shoulder

To conclude, in addition to ammonia storage experiments, the acidic characterization by FTIR reveals that both Lewis and Brønsted acid sites are present over all the studied catalysts. Silicacontaining support develops higher amount of Brønsted acid sites that was assigned to the formation of Si-OH-Al linkages of silanol groups located in close vicinity to an Al atom in tetrahedral environment, as in amorphous silica alumina for instance [72]. The proportion of Brønsted acid sites of WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32} catalysts is about 10% of the total number of acidic sites, against only 5% for Si-free samples. As reported in Figure 3B, the strength and the number of Lewis acid sites is also enhanced with the Si content. WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32} exhibits acid sites strong enough to retain pyridine up to 450°C. Interestingly, in accordance with NH₃ storage capacities, the evolution of LAS in function of the temperature of pyridine evacuation (Figure 3B) is similar for WO₃/Al_{0.2}Ce_{0.4}Ti_{0.4} and WO₃/Al_{0.2}Ce_{0.16}Zr_{0.32}Ti_{0.32} catalysts.

2.2.3 Redox properties

Redox properties were firstly evaluated in terms of reducibility by hydrogen using TPR experiments (Table 3). WO₃-supported catalysts exhibits a mean reduction peak in the 683-726°C temperature range, depending on the material composition. It corresponds to the easily reducible Ce^{IV} reduction into Ce^{III}. WO₃/Al_{0.2}Ce_{0.4}Ti_{0.4} catalyst, which presents the higher Ce loading (x=0.4), also exhibits the higher H₂ consumption (Table 3) compared to WO₃/Al_{0.2}Ce_{0.16}Zr_{0.32}Ti_{0.32} and WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32} samples (x=0.16).

Note that for the WO₃ free host supports, the reduction peak is observed in a lower temperature range (630-705°C). In addition, the total the H₂ consumption is higher compared with the WO₃ containing catalysts, and depends on the catalysts formulation. The H₂ consumption is approximately 7 %, 30 % and 60 % higher for Al_{0,2}Ce_{0,4}Ti_{0,4}, Al_{0,2}Ce_{0,16}Zr_{0,32}Ti_{0,32} and

 $Al_{0,1}Si_{0,1}Ce_{0,16}Zr_{0,32}Ti_{0,32}$ supports, respectively. Taking into account that only Ce^{IV} is supposed to be reducible, this observation clearly highlights that WO₃-Ce interactions strongly depend on the support formulation. It appears that the more the catalyst is acidic, the more the inhibiting effect of WO₃ on the sample reducibility is strong.

Secondly, redox properties were evaluated in terms of oxygen storage capacity (OSC) measured at 400°C. Results concerning the CO oxidation into CO₂ are reported in Table 3. The CO₂ formation over WO₃-supported catalysts is ranked between 1 μ mol g⁻¹ to 8 μ mol g⁻¹ depending on the support formulation. In absence of tungsten oxide, the OSC is significantly higher. Al_{0,2}Ce_{0,4}Ti_{0,4} and Al_{0,2}Ce_{0,16}Zr_{0,32}Ti_{0,32} supports exhibit close OSC values, with 29 μ mol_{CO2} g⁻¹ and 33 μ mol co₂ g⁻¹, respectively. Al_{0,1}Si_{0,1}Ce_{0,16}Zr_{0,32}Ti_{0,32} presents the lower OSC value, with 11 μ mol g⁻¹. These results are in accordance with those obtained from the TPR experiments: the largest loss of redox properties of WO₃-supported catalysts is denoted for Al_{0,1}Si_{0,1}Ce_{0,16}Zr_{0,32}Ti_{0,32} support, supporting again the impact of the support acidity on the tungsten-cerium interaction.

2.2.4. NH₃-SCO

Results of NH₃ oxidation by O₂ are presented in Figure 4A (gas composition reported in Table 1). To highlight these behaviors, corresponding NH₃-SCR experiments are also depicted in Figure 4B for the three selected materials. It is worth noting that N₂O was not detected during these NH₃-SCO experiments. Moreover, the ammonia oxidation is nearly fully selective into N₂ since NOx (in fact NO) formation reached maxima of only 10-30 ppm at 500°C (dotted line Figure 4A). All the three materials start to oxidize ammonia at approximately 250°C, but SCO activities strongly vary at higher temperatures. The more complex formulation (WO₃/Al_{0.1}Si_{0.1}Ce_{0.4}Ti_{0.4}, exhibits a maximal ammonia conversion of only 40 % at 500°C. These results are in accordance with the NH₃-SCR conversions reported in Figure 4B which evidence a competition between NH₃-SCR and NH₃-SCO in the 350-500°C temperature range (previously discussed in section 2.1.). Indeed, the catalyst which presents the higher NH₃-SCR experiments. In addition, this catalysts exhibits the higher acidic behaviors and the higher W-Ce interactions.

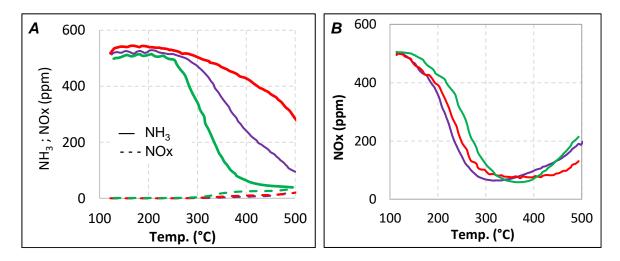
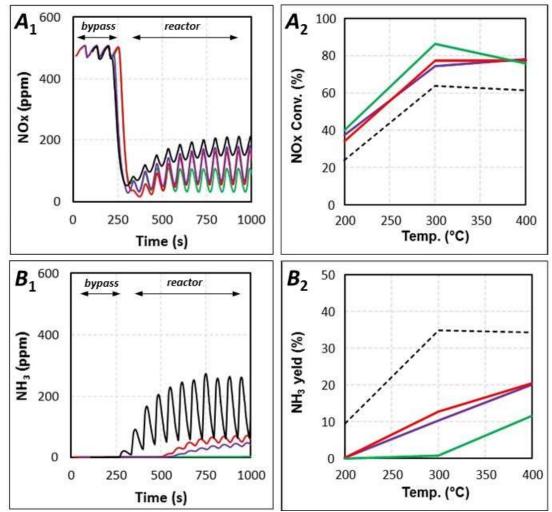



Figure 4. NH₃-SCO (A) and NH₃-SCR (B) versus temperature for $-WO_3/Al_{0.2}Ce_{0.4}Ti_{0.4}$; $-WO_3/Al_{0.2}Ce_{0.16}Zr_{0.32}Ti_{0.32}$ and $-WO_3/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32}$ catalysts.

2.3. NSR + SCR combination system

NOx reduction efficiency was studied in dual NSR+SCR catalytic bed (60 mg of Pt-Ba/Al + 120 mg of SCR catalyst, downstream) in order to increase the global NOx conversion. More precisely, the aim was to use the *in situ* produced NH₃ over the NSR catalyst during the rich pulses of the NSR cycles. NOx reduction in cycled condition was performed at 200, 300, 400°C by switching for 3 s in rich media every 63 s (lean phase), as reported in Table 1. Both NOx conversion and ammonia yield (percentage of introduced NOx which is converted into ammonia) are illustrated in Figure 5, as well as N-compounds profiles recorded during NSR cycles (300°C).

Firstly, for single Pt-Ba/Al, it was previously established that whatever the tested temperature, the NOx conversion is always lower than the NOx storage rate for 60s in NSR process [23]. Then, the reduction step is the limiting step of the cycled process. Maximum NOx conversion is reached at 300°C (64 %, dotted line in Figure 5A₂). In the same time, the introduced hydrogen during the rich pulses is not fully converted (H₂ conversion reaches only between 36 % and 82 % between 200°C and 400°C, respectively). As previously reported in [73], it favors NH₃ emission. It was clearly putted in evidence an ammonia intermediate pathway for the reduction of the stored NOx with H₂. For the single Pt-BaAl catalyst, ammonia yield is then ranking between 10 % and 35 % (dotted line, Figure 5B₂).

Figure 5. Effect of the combination downstream of the SCR catalytic materials in the double bed (NSR + SCR) on NOx (A1) and NH₃ (B1) outlet profiles for NSR cycles experiments at 300° C; NOx conversion (A2) and NH₃ yield (B2) versus temperature.

For the NSR + SCR coupled system, Figure $5A_2$ shows that, whatever the SCR formulation, the DeNOx efficiency is significantly enhanced. The maximum NOx conversion (86 %) is obtained at 300°C with WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32} placed downstream the Pt-BaAl sample, also illustrated by the NOx profiles reported in Figure 5A1. In the same time, the ammonia yield is remarkably decreased. In fact, Figure 5B indicated that the NSR+SCR system is fully selective into N₂ at 200°C whatever the SCR catalyst formulation. For higher temperatures (*i.e.* 300°C and 400°C), ammonia emission still occur, but in a lower extent. In addition, the ammonia release is delayed when the SCR catalyst is placed downstream of the NSR material, as depicted Figure 5B1 for tests at 300°C. It indicates that ammonia is fully stored during the first cycles WO₃/Al_{0.2}Ce_{0.4}Ti_{0.4} for and $WO_3/Al_{0.2}Ce_{0.16}Zr_{0.32}Ti_{0.32}$. With WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32}, which is the more acidic material, ammonia is fully stored and

 $^{(---,} Pt-BaAl+SiC; --Pt-BaAl+WO_3/Al_{0.2}Ce_{0.4}Ti_{0.4}; --Pt-BaAl+WO_3/Al_{0.2}Ce_{016}Zr_{0.32}Ti_{0.32} and --Pt-BaAl+WO_3/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32} catalysts).$

converted at 300° C even after stabilization. Note that no significant supplementary H₂ consumption was observed with the implementation of the SCR samples downstream, indicating that the enhancement in NOx conversion is only correlated to the ammonia conversion. In addition, no N₂O was observed during these tests in cycling condition.

Therefore, the ammonia consumption after addition of a SCR catalyst directly reflects the activity of SCR materials in the double bed association. More precisely, taking into account the gas composition after the NSR catalyst alone, and after the NSR+SCR coupled system, it is possible to evaluate the use of NH₃ on the downstream SCR catalyst.

The amount of NH₃ emitted from the single NSR catalyst is reported in Figure 6A (in gray) and corresponds to 48, 174 and 171 ppm at 200, 300 and 400°C, respectively. The use of the *in situ* produced ammonia on the SCR catalysts was determined taking into accounts three possibilities: the NH₃-SCR reaction (NH₃+NOx \rightarrow N₂), the NH₃-SCO reaction (NH₃+O_{2 \rightarrow}N₂) and the unconverted NH₃. The ammonia converted by the NH₃-SCR reaction was calculated considering that each additional converted NOx is associated with one converted NH₃. Supplementary ammonia conversion is associated with the SCO reaction, considering a fully selective reaction into N₂, as demonstrated in section 2.2.4. Thus, the use of ammonia by the SCR catalyst is reported Figure 6, considering the three previously mentioned reactions (NH₃-SCR, NH₃-SCO and NH₃ released).

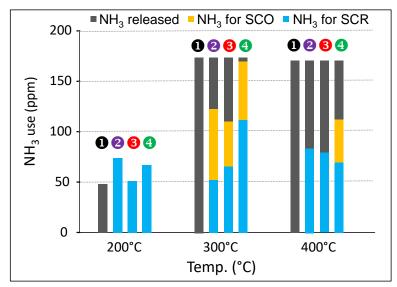


Figure 6. NH₃ use (ppm) in NSR+SCR coupled system ($\mathbf{0}$ — Pt-BaAl+SiC; $\mathbf{2}$ — Pt-BaAl+WO₃/Al_{0.2}Ce_{0.4}Ti_{0.4}; $\mathbf{3}$ — Pt-BaAl+WO₃/Al_{0.2}Ce_{0.16}Zr_{0.32}Ti_{0.32} and $\mathbf{3}$ — Pt-BaAl+WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32} catalysts).

As previously illustred in Figure 5B₂, only the NH₃-SCR reaction occurs at 200°C whatever the considered SCR catalyst. The additional converted NOx are even higher than the amount of the available ammonia emitted from the single NSR catalyst, especially for WO₃/Al_{0.2}Ce_{0.4}Ti_{0.4} (#2 on Figure 6) and WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32} (#3 on Figure 6) catalysts. This supplementary NH₃ production at 200°C can be explained by the formation of isocyanate species during the mixture of the rich and lean fronts where NO, CO₂ and H₂ were present together. Water (10 % vol.) rapidly hydrolyzed these species and supplementary ammonia can be formed and then reduce supplementary NOx [74] at 200°C.

On the opposite, the three pathways (NH₃-SCR, NH₃-SCO and unconverted NH₃) take place at 300 and 400°C, with proportions depending on the SCR catalyst formulation (Figure 6). At 300°C, WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32} exhibits both the lower NH₃ release (4 ppm) and the higher ammonia consumption in NH₃-SCR (112 ppm). The two samples without silica (WO₃/Al_{0.2}Ce_{0.4}Ti_{0.4} and WO₃/Al_{0.2}Ce₀₁₆Zr_{0.32}Ti_{0.32}) present significantly higher unconverted NH₃, with 51 ppm and 63 ppm, respectively. However, it seems that Zr incorporation enhance the NH₃-SCR activity, since 53 ppm and 67 ppm NH₃ are converted for this reaction over WO₃/Al_{0.2}Ce_{0.4}Ti_{0.4} and WO₃/Al_{0.2}Ce₀₁₆Zr_{0.32}Ti_{0.32}Ti_{0.32}, respectively.

At 400°C the oxidation of NH₃ by O₂ (NH₃-SCO) is not observed on WO₃/Al_{0.2}Ce_{0.4}Ti_{0.4} and WO₃/Al_{0.2}Ce₀₁₆Zr_{0.32}Ti_{0.32} catalysts. WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32} is still the sample which presents the lower amount of unconverted NH₃, but the NH₃-SCO reaction represents an ammonia consumption of about 42 ppm on this sample.

In the coupled system, the aim is to use the available reluctant to increase the global DeNOx efficiency and to prevent ammonia slip. Ammonia released is then a major concern. The catalytic behavior of Si-containing solid developed in this study is thereafter compared to results obtained in a previous work with WO₃/Ce-Zr samples [23]. More precisely, the distribution of the use of the *in situ* produced ammonia, i.e. the reaction with NOx (NH₃-SCR), O₂ (NH₃-SCO) or unreacted NH₃, is depicted in Figure 7. Note that the increasing of the DeNOx efficiency in the coupled system (NSR+SCR) is assumed to be directly correlated to the portion of ammonia used in the NH₃-SCR pathway. At 200°C (not shown), NH₃ always reacts exclusively with NOx, whatever the catalyst composition. The higher NOx conversion is reached with WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32} catalysts. For higher temperature, as mentioned above. the three pathways compete. The WO₃/Ce-Zr (20-80)and WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32} materials reach close behaviour in NH₃-SCR. A 300°C (Figure 7A), the Si-containing solid and WO₃/Ce-Zr (20-80) release very low amount of ammonia, but WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32} catalyst exhibits a better SCR/SCO ratio than WO₃/Ce-Zr (2080). Same trend is observed at 400°C (Figure 7B), even if the ammonia release becomes higher for the Si-containing solid compare with WO₃/Ce-Zr (20-80). WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32} is then an interesting solution to enhance the global DeNOx efficiency, even if it could be improved with enhancement in strong acidic sites number.

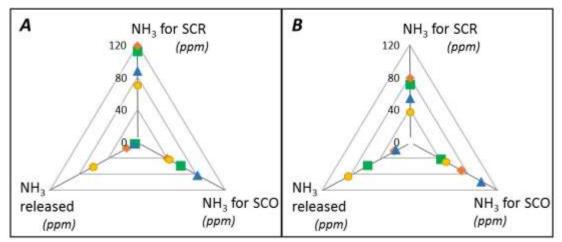


Figure 7. Comparative behaviours of ammonia used (ppm) in NH₃-SCR, NH₃-SCO and NH₃ released for tungstated catalysts in NSR +SCR coupled system at (A): 300°C and (B): 400°C. (■):WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32}; (♦): WO₃/Ce-Zr (20-80); (▲):WO₃/Ce-Zr (40-60); (●):WO₃/Ce-Zr (70-30).

3. CONCLUSION

With the aim to develop active NH₃-SCR materials for the specific NSR+SCR coupled system, alumina-mixed oxides were synthesized by sol-gel route. The incorporation of active supposed dopant (Ce, Zr, Ti, Si) was investigated and the activity of catalysts was determined in NH₃-SCR before and after WO₃ impregnation. The atomic loading ratio of added dopants ($0.04 \le x \le 0.4$) was investigated. Among the thirty prepared materials, three formulations present promising NH₃-SCR behaviors, namely WO₃/Al_{0.2}Ce_{0.4}Ti_{0.4}, WO₃/Al_{0.2}Ce_{0.16}Zr_{0.32}Ti_{0.32} and WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32} catalysts. Acidic properties is enhanced by Si incorporation, which is assumed to favor WO₃ – Ce interaction, leading to a significant loss of the redox properties. The three selected WO₃-supported catalysts are active in NOx reduction by NH₃, and fully selective in N₂. These solids can reduce 50 % of NOx compounds at 217, 242 or 260°C for WO₃/Al_{0.2}Ce_{0.4}Ti_{0.4}, WO₃/Al_{0.2}Ce_{0.16}Zr_{0.32}Ti_{0.32}Ti_{0.32}, respectively, including CO₂ and H₂O in feed gas.

Placed downstream a Pt-Ba/Al model NSR catalyst, results showed an increase of the global NOx conversion in all cases and all temperatures, together with a strong decrease of released

NH₃. However, from 300°C, NH₃-SCR and NH₃-SCO compete. Interestingly, at 400°C, $WO_3/Al_{0.2}Ce_{0.4}Ti_{0.4}$ and $WO_3/Al_{0.2}Ce_{016}Zr_{0.32}Ti_{0.32}$ catalysts are fully selective towards NH₃+NOx reaction pathways. At this temperature, the reaction competition of NH₃ with NOx or O₂ is only present over WO₃/Al_{0.1}Si_{0.1}Ce_{0.16}Zr_{0.32}Ti_{0.32}. Nevertheless, this solids exhibits the lower NH₃ slip, with virtually no ammonia emitted at 300°C at the reactor outlet. Combined with exceptionally increased NOx conversion rate, this formulation offers interesting behaviors even if it could be improved again with enhancement in strong acidic sites number.

REFERENCES:

- [1] T. Kobayashi, T. Yamada, K. Kayano, SAE Technical Papers 970745 (1997) 63.
- [2] L. Masdrag, X. Courtois, F. Can, D. Duprez, Appl. Catal. B. 146 (2014) 12-23
- [3] I. Nova, L. Lietti, L. Castoldi, E. Tronconi and P. Forzatti, J. Catal. 239 (2006), 244–254.
- [4] Z. Liu and J.A. Anderson, J. Catal. 224 (2004) 18-27.
- [5] H. Abdulhamid, E. Fridell, M. Skoglundh, Top. Catal. 30/31 (2004) 161-168.
- [6] L. Castoldi, I. Nova, L. Lietti, P. Forzatti, Catal. Today 96 (2004) 43-52.
- [7] I. Nova, L. Castoldi, L. Lietti, E. Tronconi, P. Forzatti, Catal. Today 75 (2002) 431-437.
- [8] I. Nova, L. Lietti, P. Forzatti, Catal. Today 136 (2008) 128-135.
- [9] N. Le Phuc, X. Courtois, F. Can, S. Berland, S. Royer, P. Marecot, D. Duprez, Catal. Today 176 (2011) 424-428.
- [10] N. Le Phuc, X. Courtois, F. Can, S. Royer, P. Marecot, D. Duprez, Appl. Catal. B 102 (2011) 353–361.
- [11] M. Konsolakis, I.V. Yentekakis, J. Catal. 198 (2001) 142-150.
- [12] J. Shibata, K.I. Shimizu, A. Satsuma, T. Hattori, Appl. Catal. B. 37 (2002) 197-204.
- [13] E.F. Iliopoulou, A.P. Evdou, A.A. Lemonidou, I.A. Vasalos, Appl. Catal. A. 274 (2004) 179-189.
- [14] K. Arve, F. Klingstedt, K. Eränen, J. Wärnä, L.E. Lindfors, D. Yu. Murzin, Chem. Eng. J. 107 (2005) 215-220.
- [15] I. Sobczak, M. Ziolek, M. Nowacka, Micropor. Mesopor. Mat. 78 (2005) 103-116.
- [16] S.C. Chen, S. Kawi, Appl. Catal. B. 45 (2003) 63-76.
- [17] L.F. Cordoba, W.M.H. Sachtler, C.M. De Correa, Appl. Catal. B. 56 (2005) 269-277.
- [18] I.V. Yentekakis, V. Tellou, G. Botzolaki, I.A. Rapakousios, Appl. Catal. B.56 (2005) 229-239.
- [19] T. Maunula, J. Ahola, H. Hamada, Appl. Catal. B. 26 (2000) 173-192.
- [20] M.Koebel,; M. Elsener, O. Kröcher, C. Schär, R. Röthlisberger, F. Jaussi, M. Mangold, Topics Catal. 30/31 (2004) 43-48.
- [21] L. Xu, R.W. McCabe, R.H. Hammerle, Appl. Catal. B. 39 (2002) 51-63.
- [22] J.A. Sullivan, J.A. Doherty, Appl. Catal. B. 55 (2005) 185-194.
- [23] F. Can, S. Berland, S. Royer, X. Courtois, D. Duprez, ACS Catal. 3 (2013) 1120-1132.
- [24] M. Koebel, M. Elsener, M. Kleemann, Catal. Today 59 (2000) 335-345.
- [25] A. Väliheikki, K.C. Petallidou, C.M. Kalamaras, T. Kolli, M. Huuhtanen, T. Maunula,
- R.L. Keiski, A.M. Efstathiou, Appl. Catal. B 156-157 (2014) 72-83
- [26] A. Flura, F. Can, X. Courtois, S. Royer, D. Duprez, Appl. Catal B 126(2012) 275-289.
- [27] F. Can, A. Flura, X. Courtois, S. Royer, G. Blanchard, P. Marecot, D. Duprez, Catal. Today 164 (2011) 474-479.
- [28] L. Lietti, I. Nova, P. Forzatti, J. Catal. 257 (2008) 270-282.

- [29] M. Koebel, G. Madia, M. Elsener, Catal. Today 73 (2002) 239-247.
- [30] I. Nova, C. Ciardelli, E. Tronconi, D. Chatterjee, B. Bandl-Konrad, Catal. Today 114 (2006) 3-12.
- [31] P. Forzatti, L. Lietti, E. Tronconi, in: I.T. Horvath (Ed.), Nitrogen Oxides Removal— Industrial. Encyclopaedia of Catalysis, first ed., Wiley, New York, 2002, and references therein
 [32] A. Kato, S. Matsuda, T. Kamo, F. Nakajima, H. Kuroda, T. Narita, J. Phys. Chem. 85 (1981) 4099-4102.
- [33] H. Bosch, F. Janssen, Catal. Today 2 (1988) 369-532.
- [34] J. Due-Hansen, S.B. Rasmussen, E. Mikolajska, M.A. Banares, P. Ávila, R.Fehrmann, Appl. Catal. B 107 (2011) 340-346.
- [35] M. Casanova, E. Rocchini, A. Trovarelli, K. Schermanz, I. Begsteiger, J. Alloys Compd. 408–412 (2006) 1108-1112.
- [36] M. Casanova, K. Schermanz, J Llorca, A. Trovarelli, Catal. Today 184 (2012) 227-236.
- [37] A. Shi, X. Wang, T. Yu, M. Shen, Appl. Catal. B 106 (2011) 359-369.
- [40] G. Blanchard, S. Rousseau L. Mazri, L. Lizarraga, A. Giroir-Fendler, B. D'Anna, P. Vernoux, European Patent 11708906.0-2113 (2011)
- [41] J. H. Park, H. J. Park, J. H. Baik, I. S. Nam, C. H. Shin, J. H. Lee, B. K. Cho, S. H. Oh, J. Catal. 240 (2006) 47-57.
- [42] J. A. Sullivan, O. Keane, Appl. Catal. B 61 (2005) 244-252.
- [43 K. Krishna, G.B.F. Seijger, C.M. Van den Bleek, H.P.A. Calis, Chem. Commun. (2002) 2030-2031.
- [44] R.Q. Long, R.T Yang, J. Catal. 188 (1999) 332-339.
- [45] A.Z. Ma, W. Grunert, Chem. Commun. (1999) 71-72.
- [46] G. Carja, G. Delahay, C. Signorile, B. Coq, Chem. Commun. (2004) 1404-1405.
- [47] S. Brandenberger, O. Kröcher, A. Tissler, R. Althoff, Catal. Rev. 50 (2008) 492-531.
- [48] J. Li, H. Chang, L. Ma, J. Hao, R.T. Yang, Catal. Today 175 (2011) 147-156.
- [49] M. Koebel, M. Elsener, G. Madia, Ind. Eng. Chem. Res. 40 (2001) 52-59.
- [50] M. Koebel, G. Madia, M. Elsener, Catal. Today 73 (2002) 239-247.
- [51] Y. Yeom, J. Henao, M. Li, W.M.H. Sachtler, E. Weitz, J. Catal. 231 (2005) 181-193.
- [52] C. Ciardellia, I. Nova, E. Tronconi, D. Chatterjee, T. Burkhardt, M. Weibel, Chem. Eng. Sci. 62 (2007) 5001-5006.
- [53] N. Apostolescu, B. Geiger, K. Hizbullah, M.T. Jan, S. Kureti, D. Reichert, F. Schott, W. Weisweiler, Appl. Catal. B. 62 (2006) 104-114.
- [54] G.S. Qi, R.T. Yang, R. Chang, Appl. Catal. B 51 (2004) 93-106.
- [55] L.Chen, J.Li, M. Ge, R. Zhu, Catal. Today 153 (2010) 77–83.
- [56] W. Shan, F. Liu, H. He, X. Shi, C. Zhang, Appl. Catal. B 115-116 (2012) 100-106.
- [57] W. Shan, F. Liu, H. He, X. Shi, C. Zhang, Chem. Commun. 47 (2011) 8046-8048.
- [58] J.P. Chen, R.T. Yang, Appl. Catal. A 80 (1992) 135-148.
- [59] L. Lietti, Appl. Cata. B. 10 (1996) 281-297.
- [60].W Daniell, U Schubert, R Glöckler, A Meyer, K Noweck, H Knözinger, Appl. Catal. A 196 (2000) 247-260
- [61] Y. Li, H. Cheng, Y. Qin, Y. Xie, S. Wang, Chem. Commun. (2008) 1470-1472.
- [62] X. W. Li, M. M. Shen, H. Xi, H. Y. Zhu, F. Gao, K. Yan, D. Lin and C. Yi, J. Phys. Chem. B 109 (2005) 3949-3955.
- [63] S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia, Science 269 (1995) 1242-1244.
- [64] S. A. Bagshaw, T. J. Pinnavaia, Angew. Chem., Int. Ed. Engl. 35 (1996) 1102-1105.
- [65] W. Zhang, T. J. Pinnavaia, Chem. Commun. (1998) 1185-1186.
- [66] S. Kacimi, J. Jr. Barbier, R. Taha, D. Duprez, Catal. Lett. 22 (1993) 343-350.
- [67] W. Zhang, T. J. Pinnavaia, Chem. Commun. (1998) 1185-1186.

- [68] L. Qu, C. Li, G. Zeng, M. Zhang, M. Fu, J. Ma, F. Zhan, D. Luo, Chem. Eng. J. 242 (2014) 76-85
- [69] E.P. Parry, J. Catal. 2 (1963) 371-379.
- [70] M.I. Zaki, M.A. Hasan, F.A. Al-Sagheer, L. Pasupulety, Colloids and Surfaces A. 190 (2001) 261-274.
- [71] C. Morterra, G. Magnacca, Catal. Today 27 (1996) 497-532.
- [72] G. Crepeau, V. Montouillou, A. Vimont, L. Mariey, T. Cseri, F. Mauge, J. Phys.Chem. B 110 (2006) 15172–15185.
- [73] N. Le Phuc, X. Courtois, F. Can, S. Royer, P. Marecot, D. Duprez, Appl. Catal. B. 102 (2011) 362-371.
- [74] E.C. Corbos, M. Haneda, X. Courtois, P. Marecot, D. Duprez, H. Hamada, Catal. Comm. 10 (2008) 137-141.