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Abstract

With the ever-increasing sophistication of codes, thefieation of the implementation of advanced theoretical for-
malisms becomes critical. In particular, cross compartsetveen dierent codes provides a strong hint in favor of
the correctness of the implementations, and a measure ¢htpefully small) possible numericalférences. We
lead a rigorous and careful study of the quantities thatréntihe calculation of the zero-point motion renormaliza-
tion of the direct band gap of diamond due to electron-pharaupling, starting from the total energy, and going
through the computation of phonon frequencies and elegitmmon matrix elements. We rely on two independent
implementations : Quantum Espressd&/ambo and ABINIT. We provide the order of magnitude of the euical
discrepancies between the codes, that are present forffeeedi quantities: less than f0Hartree per atom on the
total energy (-5.722 Hat), less than 0.07 cthon thel’, L, X phonon frequencies (555 to 1330 T less than 0.5%
on the square of the electron-phonon matrix elements aadias 4 meV on the zero-point motion renormalization of
each eigenenergies (44 to 264 meV). Within our approximatithe DFT converged direct band gap renormalization
in diamond due to the electron-phonon coupling is -0.409red(ction of the band gap).

Keywords: Density functional perturbation theory, Electron-phoronpling, Temperature dependence,
Verification, Allen-Heine-Cardona theory, Zero-point meotrenormalization, Diamond

1. Introduction In particular, the first-principle computation of elec-
tronic properties, quasiparticles band structures and op-
tical spectra of crystalline solids has reached an un-
precedented level of sophistication. Many-ba@yw
calculations|[3], dynamical-mean-field theoty [4] and
Bethe-Salpeter [5] calculations, that includes excitonic
verification of implementations is of utmost importance effects, sometimes claim to agree with exp_erlmental
data at the level of 0.1-0.2 eV. However, the influence

if one wants to deliver reliable new results or compare : L : o
them to existing ones. This concern has been the subiec of lattice vibrations on electronic properties is usually
9 ) ) tneglected because it is assumed to lead only to minor

Ef Itr;gizfﬁd g;tggt_:_o; SI'IrJ r]?r;?nch;%(efaorrst’hzsvg:;naiis;?dcorrections, on the order of a few tens of meV. Actually,
y etup ’. as reviewed in Refl[6], for materials that contain light
and verification of electronic structure codes [1], and the i . : . :
I _ atoms like diamond, the inclusion of the influence of
organization of several related activities under the aus-

ices of the “Centre Euronéen de Calcul Atomiaue et lattice vibration is non-negligible, since the renormal-
IF\)/IoIécuIaire" (CECAM) [,)]p q ization is larger than the claimed accuracy of quasipar-

ticle methods.

First-principles electronic-structure codes develop
and evolve : they adapt to increasing computational
capabilities and also include new formalisms, approx-
imations, and numerical methods. In addition to the
validation of new formalisms and approximations, the

Email addressisamuel . ponce@uclouvain.be (S. Ponce) For the case of diamond, the closing of the electronic
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gap has been measured experimentally @¢dint tem-

motion dfects on the electronic structure in the above-

peratures, and an Einstein oscillator fit has been used tomentioned Ref.| [16], while the YAMB®QE imple-

extrapolate the data at zero Kelvin [7], giving a value of
0.37 eV for the renormalization of the indirect band-gap
due to the zero-point motion renormalization (ZPR) of

mentation has been used, independently, in Ref. [20-
23]. Unfortunately, we did not have access to the code
used by Giustinet al.[10].

atoms. The temperature dependence of the direct band- We found only small numerical discrepancies be-

gap of diamond was also studied experimentally [8].

The direct band-gap renormalization has been stud-

ied from first-principles approaches. Ramirez obtained
0.7 eV using path-integral Monte Carlo simulations
[9] and more recently Giustinet al. [10] obtained

a value of 0.615 eV using the Allen-Heine-Cardona
(AHC) [11, [12] theory, with the Local Density Ap-
proximation (LDA) [13, 14] of Density Functional The-
ory (DFT) [15], a basis of plane waves, and norm-
conserving pseudopotentials [15].

However, the first-principle computation of such
guantity is particularly delicate, because it is the out-
come of several layers of consecutive first-principle cal-
culations : computation of the total energy (and asso-
ciated relaxation of cell geometry), computation of the

tween the ABINIT and QEYAMBO results: less than
10-°Ha/at on the total energy, 0.07 crhon the phonon
frequencies, 0.005 on the electron-phonon matrix ele-
ments squared (relativeftirence), and less than 4 meV
on the ZPR. Given our choice of formalism, and asso-
ciated approximations, the numerically converged value
for the renormalization of the direct band gap in dia-
mond due to electron-phonon coupling in the AHC for-
malism is -0.409 eV (reduction of the band gap), from
both implementations. Changing the pseudopotential
can lead to larger flierences, in any case not larger than
50 meV.

The structure of the article is as follows. In section 2,
we discuss the mathematical theory used in this work.
In section 3, we give details about the material stud-

phonon frequencies and eigenvectors, computation ofied as well as computational parameters and approxi-

the electron-phonon (EP) coupling, and finally, com-
putation of the zero-point motionffect. Not only the
choice of a mathematical formalism, with associated
approximations (like the above-mentioned Monte Carlo
versus DFT possibility), might deliver filerent values,
but the implementation of one well-defined mathemati-
cal formalism, with given approximations, needs to be
carefully verified.
At variance with the 0.615 eV result of Giustired

al. [1Q], calculations made by us lead to a smaller value,
on the order of 0.4 eV, on the basis of the implementa-
tion partly described in Ref. [16]. However, the mathe-
matical formalism and numerical approximations were,
to our understanding, equivalent to that of Ref.l [10].

This raised the question on whether the accumulation of

layers of calculations could yield numerical errors that

are as large as 0.2 eV, or whether there might be a prob-

lem in the implementations.

In this work, we present a rigorous and careful study
of all the quantities that enters into the calculation of
the ZPR of the direct band gap of diamond due to
EP coupling, on the basis of twoftBrent implementa-

tions, and provide the values of the numerical discrepan-

cies. We work within the AHC formalism with exactly

mations. In section 4, we review the results and discuss
their impact. We draw the conclusions in section 5.

2. Theory and methods

2.1. Ground-state and phonons

The decomposition of the total energyfdrs between
ABINIT and QE, such that a comparison of energy com-
ponents needs to be done with care. The expression for
the total ground-state energy per unit cell of a periodic
insulator at zero Kelvin, within DFT is [15, 24]:

1 occ L
Etotal = N_k Z Z (nk |T + VpSpl nk>
k n

+ EHxc + Eew + Epsp-core

(1)

wheren is the band numbek, the wavevectoink) rep-
resents a Kohn-Sham orbital, the kinetic energy op-
erator,\A/psp the operator corresponding to the external
potential of the electronic system (composed by a lo-
cal and a non-local part when the implementation is
based on the pseudopotential concept)ntsemmation

is over the occupied bands and theummation over a

the same numerical approximations, as implemented discretization of the Brillouin zonekyy. is the Hartree

in ABINIT [L7], on one side, and in Yambo_[18] on
top of Quantum Espresso (QE) [19], on the other side.

These implementations have been done completely in-

dependently by two dlierent groups. The ABINIT im-

and exchange-correlation energy functional of the elec-
tronic density (expressed per unit celty,, is the Ewald
energy per unit cell (periodic positively charged parti-
cles placed in a negatively charged homogeneous back-

plementation has been used earlier to study zero-pointground), and finallyEpsp-coreis the pseudo-core energy
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per unit cell. It is also possible to define a one-electron the absorption of a phonon with crystalline momentum
contribution per unit cell as: g belonging to the phonon branah
The second-order electron-phonon matrix element is:
occ
EOne el — nk T + Vps nk + Epsp core (2)
N Z Z l D| > Aq/lq r_ Z fu(q/us)fﬁ(q A |S)

i i . nnk , 1/2
See the appendix for more details concerning the % 2Ms(wqrwq.r)

Ewald energy, the pseudocore energy and the one- zv(s)f
electron contribution. <nk ﬁ nk -—q- q’>. (8)
The phonon frequencies and eigenvectors can be ob- ¥

tained from Density Functional Perturbation Theory
(DFPT) following Refs. [[24-28]. WitrCs, s5(q) be-
ing the interatomic force constant matrix in reciprocal
space, the phonon frequencieg: and eigendisplace-
mentsé, (gA4|s) are linked by the dynamical equation

The AHC theory [[12] allows one to calculate
the temperature-dependent change in the electronic
eigenenergies, as well as their zero-point renormaliza-
tion, as the sum of a Fanh [29,/30] and a Debye-Waller
(DW) self-energy term. These two terms can be de-
duced from the more general many-body formalism [23]

> Casp(@és(als) = Mswl &o(ally,  (3) S
sB

Wheres Iapels the atom in _the cell (at_positiorg z_ind SFAN(i T) = = Z
with atomic massVlg) anda is a Cartesian coordinate. nk 77N

1 |2
. L . a4 gl
Using the orthonormalisation relation

d
gnrYk

X

(2nqu(T) + 1) 1@~ Fmca —107)
Sea= ) Ms,(ALI9E.(aAls), (4) o (iw - kg —107)2 — w2,
3 (1 - 2fwiq(T))

the eigenfrequencies can also be expressed as + W= — | 9
) (iw — evk—q —10%) - Wy
Wl =2 £@U9Cass@éads).  (5)
= 'SP and
2.2. Electron-phonon coupling and zero-point motion EDW(T) = ZA‘“ qA(anl(T) + 1), (10)

renormalisation
The computation of thab initio temperature depen-
dence implies the calculation of the electron-phonon in-
teraction. Following Ref. [23] the first-order electron-
phonon matrix elements can be computed thanks to
DFPT as

where ng;(T) is the Bose-Einstein distribution func-
tion for the phonon modeg( ) at temperaturd’, and
fvk—q(T) is the electronic occupation.

The ZPR of the traditional AHC theory [12] is re-
covered by using the following approximations for the
Fan termw ~ gy (the on-the-mass-shell (OMS) limit),

al  _ oM ~1/2g0" Tsy [Enk—e_] > wqa (the adiabatic limit) and by consider-
e Z( ai) ing only the real part of the self energy:
<nk

2
4 (2nga(T) + 1
- . . SAC(T) = SRV + = 3 S| CiT) 1
whereVs is the self-consistent mean potential felt by nk Ng 4 Enk — Envk—q ’
n’q

the electrons (which depends on the atomic positions): (11)

6\750f
0Rs,

nk — q>§a(q/lls), (6)

. . A From a practical point of view, the DW term is very
Vsct = Vpsp+ Viixe- (7) difficult to calculate, as one needs access to the sec-
The first-order electron-phonon matrix element, ond derivative of the self-consistent potential (that is
ggﬁk, that will be referred to as the “GKK” matrix el-  not provided by a DFPT calculation of phonons). Mak-
ement, describes the probability amplitude for an elec- ing use of the translational invariance (if all atoms are
tron to be scattered froktok — g, with the emissionor  displaced by the same amount in the same direction,

3



all physical quantities should be conserved) [12], one 3.1. Ground-state and phonons

can rewrite the DW term as a sum of a diagonal con-  The calculation of structural properties in this work

tribution and a non-diagonal one. The diagonal Debye- is based on DFT [15, 32, 33] using the LDA [13] 14]. A

Waller (DDW) contribution is the product of first-order norm-conserving pseudopotential|[34] accounts for the

electron-phonon matrix that is easy to calculate [16]:  core-valence interaction and a plane-wave basis set is
then used to expand the electronic wavefunctions. The
pseudopotential was generated usingfth£98PP code

EOW(T) = _1 Z Z wx [35] with a 1.5 atomic unit cut4 radius for pseudiza-
N ql ss.aB Mswqs tion. The valence electrons of Carbon, treated ex-
1 Nsei| , | OVser plicitly in the ab initio calculations, are generated for
Z P [<nk R | " k> <n k IR nk> the 282p?3d° configuration. Quite importantly for the
frn Sk T ok R se R v comparison between codes, the same pseudopotential
OVscf| , o1 | OVscf file was used by ABINIT and QE. Moreover this pseu-
" <nk ORg " k> <n K ORsq nk>]. (12) dopotential is the same as the one used in Ref. [10]. We

refer to this pseudopotential as our “reference” pseu-
dopotential.

Careful convergence checks (error below 0.5 mHa per
atom on the total energy) leads to the use of a 6X6x6
centered Monkhorst-Pack k-point sampling! [36] of the
Brillouin zone and an energy cutfamf 30 Hartree for
the truncation of the plane wave basis set. The lattice
parameter of 6.652 Bohr was obtained by structural re-
laxation of the diamond system.

Additional tests were performed to assess the in-

. . . i fluence of the pseudopotential choice. In addi-
smoothed by introducing a small imaginary component. . . R . .
tion to our “reference” pseudopotential, we consid-

Finally, following Sternheimer [31], one can largel . . .
Y g St [31], gely ered five other ones. We will refer to the first one
speed up the calculation of the sum over states appear- ) . .
S as 06-C.LDA.fhi also generated using thihi98PP
ing in the Fan and DDW terms. In that case, they are : . ) T

: . _ : code. It is a Troullier-Martins pseudopotential with the
rewritten in terms of a sum limited to an active space

(spanning the occupied state with a few extra bands overPerdew(ANgng [37] parametnzquon Qf LDA, an atpm|c
the valence band maximum) : cut-off radius of 1.0247 atomic unit and a maximum

angular channel of = 3. The second one is the
6c.pspnc Troullier-Martin [34] pseudopotential with

The non-diagonal contribution comes from the mod-
ification of the screening due to atomic motion. By op-
position with the case of small molecules|[16], the ef-
fect of the non-diagonal Debye-Waller term is expected
to be small in extended system, thanks to the screening
of the periodic lattice. Neglecting it corresponds to the
rigid-ion approximation.

From a numerical point of view, the term with an
energy denominator in Eq_{IL1) is omitted when the
difference of eigenenergies is smaller than®16r is

k) (k| % Ink) Sk a 1.4851 atomic unit cutfb radius and a maximum
_Z s = P. _> angular channel of = 1. The third one is the
wzn Enk — &k IR, 06-C.GGA.fhi Troullier-Martin pseudopotential with
k) (k| V) Ink) the GGA PerdeVBu_rke’E_rnzerhof [_38] parametri_zation

_ Z Ry , (13) and a 1.0247 atomic unit cuﬁdadlus_. The maximum

ot Enk — Emk angular channel used is= 3 for this pseudopoten-

n#n tial. The required cut4 energy for the truncation of

with P, the projector over the states whose eigenen- the basis set for those three pseudopotential was also 30
ergies is above the active space threshold and thereforeHartree. The fourth one is théx .4 .hgh Hartwigsen-
orthogonal to the active space. The result of such a pro- Goedecker-Hutter pseudopotential [39] with a 1.2284
jection is an outcome of a phonon DFPT calculation, atomic unit cut-@& radius and a maximum angular chan-
and, as such it is available at no additional cost. More nel of | = 1. An energy cut-fi of 60 Ha was re-

informations about this last derivation can be found in quired for this pseudopotential. The last one is the
Ref. [16]. C.pz-vbc.UPF VonBarth-Car pseudopotential with a

maximum angular channel of1 and an energy cutfb
of 45 Ha and 1.5 atomic unit cutforadius. The lat-
tice parameter of the five additional pseudopotential af-
The ABINIT, QE and Yambo software applications ter structural relaxation were 6.648, 6.694, 6.729, 6.675
are described in Refs. [17419], respectively. and 6.663 Bohr, respectively. All the calculations with

3. Material and calculation



these pseudopotential were also done with the 6x6x6 the frequency of acoustic modedaare small, but non-
unshifted Monkhorst-Pack k-point grid. negligible : 3.335 cm' for ABINIT, and 8.832 cm*
for QE. Such a variation between codes is however suf-
3.2. Electron-phonon coupling and zero-point motion ficient to lead to significant éierences in the absolute
renormalisation value of the Fan and DDW terms computed separately,
In order to converge the ZPR below 1 meV, in aSWe shall see later. Concerning the electronic proper-
the original AHC formulation, around 300 unoccupied ties, the nine lower eigenenergies, relative to the top of
bands needs to be explicitly included in the summation the valence band atare compared_ for the two codes in
present in the Fan and DDW terms for diamond. In con- Table[2. One can see that there is less than 0.0003 eV

trast, only 12 bands were needed to describe the activedifférences between the two codes.
space when the Sternheimer re-writing is used.

To avoid high symmetry points that might slow down
the convergence study (some EP matrix elements might
be zero by symmetry and are not representative of the
discretization of an integral) we computed the ZPR cor-
rection on a random g-wavevector grid, as described in
Ref. [23]. The rate of convergence of homogeneous
wavevector grid will also be discussed. The statisti-

ABINIT 7.3.2

Kinetic energy 8.450310501
One-electron energy -

Hartree energy 0.943336981

XC energy -3.567609861 -3.567609935

Ewald energy -12.955782342 -12.955782345
Psp-core energy 0.581222385 -
Loc. psp. energy -5.093200787 -
NL psp. energy 0.197606844 -

QE4.05

4.135925595
0.943337120

. X X . Total energy -11.444116277  -11.444129565
cal analy_S|s to converge th_e res_ults is expla!ned in _the Phonon freq. af = I'1 3.335 (3) 8.832 (3)
next section. The Sternheimer implementation, which q=T2  1330.408 (x3) 1330.428 (x3)
speeds up significantly the calculation, is only present with ASR imposed 0.000 (x3) 0.000 (x3)

in the ABINIT software. Therefore we did the statisti-

1330.403 (x3)

1330.400 (x3)

: _ g=Ls  555.305 (x2) 555.319 (x2)

cal analysis only with ABINIT. gq=Ly 1076.250 1076.268
g=L1 1235.429 (x2) 1235.440 (x2)

g=Lly 1273.840 1273.860
4. Resultsand Discussion g=Xz  795.900 (x2) 795.964 (x2)
q=X; 1098.461 (x2) 1098.489 (x2)
4.1. Ground-state and phonons q=Xs 1224570 (x2)  1224.590 (x2)

We started by comparing DFT ground-state total en- Table 1: Comparison of selected quantities related to thergt state
ergies between ABINIT and QE using the same “ref- and to phonon calculations, for diamond, with a 6x6x6 unetik-
erence” norm-conserving pseudopotential and the Samepoir?t grid and a kinetic energy ctffcnf'30 Hartree for the plan'e wave

. . . basis set. The same norm-conserving LDA pseudopotentizded.
numerical parameters (plane wave kinetic engrgy dut-o The lattice parameter is 6.652 Bohr. All the energies areartride,
and wavevector sampling). The total energy in ABINIT  are expressed per cell (two atoms per cell) and the phonqoéreies

and QE is decomposed infiiirent terms detailed in  areincn™.
Egs. [1) and[{2). The comparison between the terms
and the total energy is given in the upper panel of Ta-
ble[. The agreement is excellent: one gets a discrep- Sym. Band _ eigenergies in ADInt _eigenergies in OF
ancy on the order of 18 Ha/atom between the total ) 1 21.7959 21.7957
energies computed using the two codes. The disagree- T,y 2-3-4 0.0000 0.0000
ment is even smaller for selected contributions : on the ?15 5'5'; li-gggg li-gggg
7 . . 2 . .
order of 10/ Ha/atom for the exchange-correlation and r 9 10.4714 10.4716

Hartree contributions, and aboutPHg/atom for the
Ewald energy. We did not try to track down the origin  taple 2: Comparison between Abinit and QE of the nine lower
of the total energy discrepancy, the agreement being be-eigenenergies in eV, relative to the top of the valence bafid a
yond practical needs.

Table[1 also shows the agreement between the two
codes on the phonon frequencies at some high sym-
metry points obtained from the DFPT Eq] (5). The 4.2. Electron-.ph(_)non coupling and zero-point motion
agreement is also rather good, with less than 0.07*:cm renormalisation
differences after imposition of the acoustic sum rule We now move forward and compare the GKK
(ASR) atI'. The imposition of the ASR is discussed electron-phonon matrix elements given in Eg. (6). This
e.g. in Ref.[[40]. Without the imposition of the ASR, quantity is actually subject to an arbitrary dependence
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on the phase factors of the wavefunctions, and cannot
be compared directly between codes. We have there-
fore compared the square norm of the GKK (the GKK
times its complex conjugate). Such a quantity, termed
“GKK2" is relevant in the present context, since the
square of GKK is used to build the ZPR, see Kq. (9).

When wavefunctions are degenerate, we also sum therr ' band
n oanas

inside the degenerate space, to remove any arbitrari- Awvalue
ness. Moreover, to decrease the number of handled data . 0.00032
we sum the GKK2 over the six phonon modes, giving 0.00028
SGKK2. ’
A measure of the relative fierence between the 0.00024
two codes for SGKK2, for dierent high symmetry g- 20r
wavevectors is displayed in Fig. 1 and Hig. 2. We plot, j0.00020
for each pair of electronic state (or degenerate state) the 15} 10.00016
difference of the SGKK2 divided by their sum :
100 10.00012
_|SGKK2(ABINIT) — SGKK2(QE) (14) 10.00008
" |[SGKK2(ABINIT) + SGKK2(QE)|" 5 .
10.00004
The absolute values of SGKK2 are reported in Ta- 0 ‘ ‘ ! : ‘ 0.00000
ble[3 for the two codes. 0 5 10 15 20 25 30 :
nbands
Band  Soft. 1 2-3-4 5-6-7 8 9 (a) A between SGKKgr for 30x30 bands
. A8 0 ,
QE 0 Tgolz)ands Avalue
AB | 1.530449| 5.803074 ,
234 oE | 1.530401| 5.803088 0.0040
AB | 0.493950| 0.292491| 4.495984
567 O | 0493932 0.292472 | 4.496296 250¢ 0.0035
AB 0 4635255 | 2.430641] 0
8 Qe 0 4.635284 | 2.430665| 0 200l 0.0030
g AB 0 1.565383| 4.002821| 0 | O 10,0025
QE 0 1.565460 | 4.002843| 0 | 0 U2
_ N 1507 10.0020
Table 3: Comparison between Abinit (AB) and Quantum Esjress
(QE) of absolute value of the SGKK2, lat= T andq = T'in 1078 a.u. 10.0015
(1 a.u.= 4.78599 10'2J/kg). Matrix elements with values lower than 100}
1071 Ha have been put to 0. 10.0010
50t
10.0005
One can see that the relativeffdrences are in all ‘ : ‘ ; : L 0.0000
three cases lower than 0.005 for all matrix elementson 0 50 100 150 200 250 b300d )
noanas

the 300x300 matrix bands.
Finally, we have compared the ZPR computed with
ABINIT and Yambo using the GKKs of QE inthe AHC _ o
ffamework of Eq. ). The energy denominator was FE1 Y (Cet oine) Feve trerces e SO0 btveer,
smoothened by introducing a small imaginary compo- pands.
nent of 100 meV, following Ref| [10, 41].
We have first compared the two codes without the
Sternheimer rewriting and then, in the case of ABINIT,
we have used the Sternheimer rewriting of Eg. 13 and
we have summed over 300 bands in the case of Yambo.
In Table[4 we show a comparison between ABINIT and
YAMBO for different number of g-wavevectors. The 47

6
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g-wavevector case corresponds to a homogeneous, non-
shifted 10x10x10 grid, folded in the irreducible part of
the Brillouin zone. For the 1000 and 2000 g-wavevector
cases, the wavevectors are randomly generated once and
then used in both codes. In the last two columns of
Table[4, we can see that the disparity between the two
codes on the ZPR is lower than 4 meV.

Awvalue We have imposed in both codes the phonon frequen-

cies to be 0 for the acoustic modesjat T' (ASR).

One can nevertheless see that the absolute value of the
2507 . 0.0042 Fan (last term in Eq[{11)) and DDW (E{.{(12)) terms
display more variation between both codes than the to-

n' bands
300

0.0048

2007 0-0036 tal ZPR (which is the sum of both terms). The reason
10.0030 for this is that the acoustic modes tends to have a larger
150+ . . relative diference than the optical ones between the two
I 0.0024 codes. Their separate contributions in the Fan and DDW
100t 10.0018 tends to the same value, with opposite sign, when the
limiting behaviour for vanishing wavevector is consid-
ol 10-0012 ered. There is thus a cancellation of error between the
10.0006 Fan and DDW terms, that allows one to obtain a much
better accuracy on the sum of these terms. Indeed, due

050 100 150 200 250 300  -0000 to the presence of the phonon frequency in the denomi-

nbands nator of Egs.[(6) and{12), the acoustic modes will be the
(a) A between SGKKR2, 300x300 bands one that contributes mostly to the Fan and DDW terms.
' bands Aval It can be shown that, due to translational invariance, the
200 ‘ ‘ ‘ ‘ ‘ vatue eigendisplacement vectors of Fan and DDW will tends
0.0048 to cancel out for acoustic modes (especially those close
9250l 0.0042 tq I). As a result, mos.tly the (_)ptical modes_ will con-
] tributes to the ZPR. This explains why the discrepancy
0.0036 is larger on the absolute value of Fan and DDW terms
2001 10.0030 separately, than on the total ZPR between the two codes.
’ Note that the Fan and DDW terms are not observable
150¢ 10.0024 guantities separately. They come from a perturbation
] series, whose sum is an observable.
1001 10.0018
10.0012 4.3. Analysis of the convergence with respect to the
sol 1 number of g-wavevectors
10.0006 We have just provided an analysis of the level of
0 ‘ : ; ‘ : Lo 0000 agregment that one can expect from twiiedient codes
0 50 100 150 200 250 300 that implement the same physics. We now turn our-
n bands selves to a careful convergence study of the ZPR within

(b) A between SGKK2x 300x300 bands the AHC formalism. Since the calculations are heavy

Fioure 2: (Color online) Relative i < of the SGKK2 bet in YAMBO due to the band summations we decided to
e e saoxsos ey Take that convergence study in ABINIT only, with the
bands. Sternheimer rewriting.
We have performed DFPT calculations on 20,000
randomly generated g-wavevectors in the full Brillouin
Zone. We have then performed a statistical analysis
of these results. We have computed the ZPR over
N (N=250, 500, 750, 1000, 2000, 3000, 4000, 5000,
6000, 10000) g-wavevectors taken randomly between
the 20,000 set and we have done such calculation 100



Fan DDW FarDDW
Set of g-wavevectors  Band ABINIT 7.3.2 Yambo 3.4.0 ABINIB2 Yambo 3.4.0 ABINIT 7.3.2 Yambo 3.4.0
SEq/ 300 bands 300 bands SFEQ00 bands 300 bands SFE800 bands 300 bands

a7 1 -120.76116.54 117.30 59.285.23 55.69 -61.93%61.30 -61.65
2-3-4 -981.61-969.44 -978.00 1119.92107.28 1116.53 138.A187.84 138.50
5-6-7 -1332.5p1318.55 -1329.10 1005.2994.69 1002.88 -327.4323.86  -326.20
8 -555.4(-541.89 -543.70 60.420.32 50.76 -494.98191.57  -492.90
9 -33.72-28.50 -28.49 -34.§939.91 -40.24 -68.6168.41 68.73
1000 1 -121.13 -117.70 59.46 55.90 -61.67 -61.79
2-3-4 -983.51 -979.90 1124.21 1120.82 140.70 140.90
5-6-7 -1272.74 -1269.20 1009.01 1006.74 -263.73 -262.50
8 -284.45 -272.80 60.64 50.96 -223.80 -221.80
9 -9.83 -4.55 -35.03 -40.39 -44.85 -44.95
2000 1 -121.20 -117.80 59.45 55.90 -61.75 -61.87
2-3-4 -983.56 -980.00 1124.11 1120.72 140.54 140.70
5-6-7 -1269.55 -1266.00 1008.92 1006.65 -260.63 -259.40
8 -293.01 -281.30 60.64 50.95 -232.37 -230.40
9 -8.83 -3.56 -35.02 -40.39 -43.86 -43.95

Table 4: Comparison of the ZPR forft#irent electronic states Bf for a 6x6x6 unshifted k-point grid with an energy cfiitof 30 Hartree for
the plane wave basis set, using the same norm-conservingds@ddopotential. In the case of YAMBO, 300 bands were @axgliocluded into
the calculation. In the case of ABINIT, the Sternheimer ¢igua(SEQ) was used to limit the computation#iogt (12 active bands were needed).
Moreover, for the set of 47 g-wavevectors, the value obthinghout the Sternheimer equation and with a summation 8@érbands, is also
displayed. The energies are in meV.

times for each N. This gave us, for each N, a set of 100
different ZPR values whose statistical characteristics are
given in figure£B. We can see that the ZPR converge
smoothly towards 409 meV, the mean of the ZPR fo
the 20,000 set.

Since the rate of convergence of the variance of a no
mal distribution goes as/Nq with Ny the number of
random g-wavevectors, the rate of convergence of tt
associated standard deviation goes aqm_q. We can 420
see on FigB that the/ /N, of the continuous line fol-
low neatly the lower 25% and upper 75%.

The drawback of the random g-points methods i agol
that one is forced to test affigiently large set of ran-
dom g-wavevectors. The homogeneous grid approach 360
might be more appealing. The red dots on Eig. 3 col
responds to non shifted homogeneous Monkhorst-Pa
grids closest to the random points number we have ch
Sen tp ana,lyse (e.g. thelastgridisa 70X7OX7,0 unshlfted Figure 3: (Color online) Convergence with respect to the b@m
g-point grid that lead to 8112 g-wavevectors in the irre- of random g-wavevetors included in the ZPR calculation gighe
ducible Brillouin-Zone.). As we can see, the red dots software ABINIT in the static AHC formulation. 100 ZPR calau

are always well inside the 50% windows. tions have been performed for each subset of g-waveveahisgt
o .. Ng g-wavevectors among 20,000 (the total number of computed g-
One can set an upper limit on the convergence rate if wavevectors). The upper and lower bars are the maximal anidai
one does not use an imaginary componentto smooth thevalues in each set. The top and bottom of the boxes represéft 2
function. and 75% of all the data in the set. The middle line is the median
and the blue diamonds are outliers. The red dots comes fram no
In this case, when the flierence of eigenenergies in  shifted homogeneous Monkhorst-Pack grids, for which thalwer of
the denominator of Eq.(11) vanishes, the integrand to be d-wavevectors corresponds to those in the irreducibldoBiit zone
considered over the whole Brillouin zone diverges. This
happens arounH, with a divergence that behaves like

q_12_ Treating separately a small volume aroundset

ZPR in meV
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aside of the regular discretization, one can estimate its 4.4. Pseudopotential choices

contribution by replacing it by the integral over a sphere

with a cut-df radiusq. whose length is inversely pro-

portional to the linear density of g-wavevectors. The  we will now assess the influence of the pseudopo-
contribution of this small sphere is [ Fd°dq so tential choices. Such a study would not be mandatory
that the rate of convergence of these integrals goes asiy the present context of comparison between codes for
Qc o Nc}l/S,.S”ghﬂy worse than in the case of the ran-  the same pseudopotential (the reference pseudopotential
dom sampling. has indeed been used with ABINIT, YAMBO, and also
in the study of Ref..[10]). This comparison will be per-
formed only using the Abinit software. We have tested
all the norm-conserving pseudopotentials available on
the Abinit website as well as two UPF pseudopotentials,
one of which is the reference pseudopotential. In the Ta-
ble[8, we give a comparison of the ZPR usinfefient
pseudopotentials for Carbon. The calculations are made
on an homogeneous 10x10xd4point grid (47g-points

in the IBZ), for a 6x6x6 unshifted k-point grid with the
energy cut-€f reported in Section 3.1 for the plane wave
basis set, and 12 bands were used (with the Sternheimer
equation). The low density g-wavevector grid used in
this study allows for a fair comparison between pseu-
dopotentials, but does not yield converged final results.

Moreover, there are also regions distant fropbut
where the eigenenergies of the g-wavevectors are very
close to the one aff (diamond is indeed an indirect
gap semiconductor). On the surfaBée) where the
eigenenergy is exacly equal to tlieeigenenergy, the
denominator also vanishes. In the neighbourhood of the
surface, the divergence is inversely proportional to the
linear diterence between the energylatnd the ac-
tual eigenenergy in its neighbourhood. To estimate the
rate of convergence with respect to the number of g-
wavevectors of the discretized integral, we have to con-
sider the disctretization of an integral in the Brillouin
zone, in a zone of widtl, aroundS(er), in which the
distance with respect to the surface is denotegl agv-
ing a behaviour: S(er) x f_;% ¢da.. Although the
principal value of this integralcvanishes identically, fluc Pseudo  Band Fan DDW FaBDW  ZPR
tuations due to the discretization will not be small, and reforence 2-3-4 -081.61  1119.92  138.30 .-,
hence the convergence is non-monotonic. 67 133256 1005.16 ~ -327.40

o6-c.Lpa.fni  2-3-4 -980.90 1119.42 138.52

. . o 567 -1333.64 100444 -329.20 6773
Nonetheless, in practice, the small imaginary compo- cepsme  2-3-4  -938.85 1074.14  135.28
nent at the denominator is present. One can observe, in 567 -1286.04 953.00 -333.03 16832

Fig. 3, that the fluctuations, in the case of the homoge- os-c-con.m é'g"; 122%;; 1822-;2 ;gg-gg 47712
neous grid, are quite acceptable. The error with respect 77 20000 Jo0ee 13597

. . . c.4.hgl == - . . .
to the g-wavevector sampling might be estimated at 5 5-6-7 -1791.63 1478.25 -313.38 42035

meV, for the set of 20,000 g-wavevectors. cpmwewer  2-3-4  -1027.72  1167.13  139.41

5-6-7 -1303.42 1023.61 -279.81 419.22

After this careful comparison between codes, and this

convergence analysis, we obtain that the ZPR convergesTable 5: Comparison inside Abinit of the ZPR (and its FaDDW
decomposition) for dferent pseudopotentials &t Homogeneous
smoothly towards 409 meV. 10x10x10g-point grid (47g-points in the IBZ), for a 6x6x6 unshifted

. . . k-point grid with the adapted energy cut-or the plane wave basis
This value dlsagrees with the one (0'615 eV) pro- set, 12 bands with were used (with the Sternheimer equatidhg

vided by Ref.[[10]. The latter was actually first con- energies are in meV. Due to the low sampling on the g-waveect
firmed using QEYAMBO, see e.g. Refl[22]. How- these value are not converged one, although the comparetoredn
ever, while performing the cross verification between différent pseudopotentials is meaningful.

ABINIT and QE+YAMBO for the present study, we

found a misuse of the symmetriesIatn the interfac-

ing between QE and YAMBO,feecting only the DDW One can see that although the pseudopotentials are
term. After correction, we obtain the results provided in very different (various exchange-correlation functional,
this work, with the numerical uncertainty being much different angular momentum channel include and dif-
smaller than 0.2 eV. Documentation describing how to ferent atomic cut-fi radius) the spread on the ZPR is
generate data dt with the same standard meaning as only around 50 meV. Fluctuations for the Fan and DDW
data at other k-points appeared in QE version later thanterms, treated separately, are much larger. As empha-
4.0.5 (input variablewogg). Work relying on such data  sized earlier, the decomposition is indeed non-physical,
might have beenféected by this ambiguity. and prone to large numerical uncertainties.



5. Conclusions The external potential originates from sum of atomic
pseudopotentials :

In this work, we have carefully compared all the
quantities entering into the calculation of the ZPR in  Vpsdr,r’) = sz(r -1s—Ri,I" =75 - R)) (15)
the AHC formalism in two dierent softwares: ABINIT Is
and Yambo on top of QE. We show that one can get less
than 10° Ha/atom discrepancy on the total energy, 0.07
cm~! on the phonon frequencies, 0.005 on the electron-
phonon matrix elements squared (relative discrepancy)
and less than 2 meV on the zero-point motion renor- Ve(T, 1) = VOS(1)5(r — 1) + VOosr 17y (16)
malization. We also discuss the absolute value of the
Fan and DDW terms taken separately. We have also For each atom the local part is long ranged, with an
presented the converged result of the band-gap reduc-asymptotic behavioutZs/r. Such behaviour implies a
tion due to electron-phonon renormalization, that is 409 divergence aG = 0in reciprocal space. Divergencies at
meV at 0 Kelvin and discussed its discrepancy with pre- G = 0 also happen in the Hartree energy and the Ewald
viously published result. We have also performed an energy.
analysis of the convergence rategfvavevector sam- A careful treatment of the divergencies lead to their
plings. mutual cancellation, albeit with some finite residual.

Finally we have discussed the impact of the pseu- The residual specifically linked to the long-range be-
dopotential choices and shown that it was relatively haviour of the local pseudopotential is denoted as the
small (around 10% of the total ZPR) thus increasing our psp-core energy:
confidence in the results and methodology.

E = — z v‘°°r+—dr 17
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