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Abstract: 

Introduction: After seminal papers in 2009-2011, the use of textural analysis of 

PET/CT images for quantification of intra-tumour uptake heterogeneity has gained 

interest in the last four years. Results are difficult to compare due to the heterogeneity 

of studies and lack of standardization. There are also numerous challenges to address. 

Objective: The purpose of this review is to provide critical insights into the recent 

development of the use of texture analysis to quantify heterogeneity in PET/CT images, 

identify issues and challenges, as well as offer recommendations for their use in clinical 

research. 

Discussion: Numerous potentially confounding issues have been identified, related to 

the complex workflow for textural features calculations, as well as the dependency of 

features on various factors such as acquisition, image reconstruction, pre-processing, 

functional volume segmentation, methods of establishing and quantifying 

correspondences with genomic and clinical metrics of interest. A lack of understanding 

of what the features may represent for underlying pathophysiological processes and 

the variability of technical implementation practices makes comparing results in the 

literature challenging, if not impossible. Since progress as a field requires pooling 

results, there is therefore an urgent need for standardization and 

recommendations/guidelines to enable the field to move forward. We provide a list of 

correct formulas for usual features and recommendations regarding implementation. 

Studies on larger cohorts with robust statistical analysis and machine learning 

approaches represent promising directions to evaluate the potential of this approach. 
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Introduction 

Tumours are heterogeneous entities at all scales (macroscopic, physiological, 

microscopic, genetic) [1]. As a multimodal imaging modality, Positron Emission 

Tomography/Computed Tomography (PET/CT) is a promising tool for noninvasive 

exploration of intra-tumour heterogeneity at a macroscopic scale in both the anatomical 

and functional dimensions [2,3]. The term heterogeneity usually conveys a different 

meaning depending on the image modality. When considering the PET component, it 

refers to the radiotracer uptake spatial distribution, which may reflect, depending on 

the radiotracer used, the combination of underlying biological processes such as 

metabolism, hypoxia, cellular proliferation, vascularization and necrosis [4–6]. 

Regarding the low-dose, usually non-contrasted, CT component of PET/CT, 

heterogeneity refers to the variability of tissue density, which may result from spatially 

varying vascularization, necrosis or cellularity, as well as the proportions of fat, air and 

water [7].  

In other modalities such as contrast-enhanced CT, as well as in MRI various 

sequences (T1, T2, FLAIR, DCE-MRI…), heterogeneity can also include the spatial 

variability of vessel density, perfusion, proton density, physiological tissue 

characteristics, etc. [8–12].  

The heterogeneity of image voxel intensities can be quantified by different image 

processing and analysis methods, including texture analysis (TA) [3], fractal analysis 

[13], shape models [14–16], intensity histogram analysis [15,17] or filtering combined 

with statistical and frequency-based methods [18]. This critical review will focus on the 

use of TA in PET/CT images, although for completeness a section dedicated to 

alternative heterogeneity metrics can be found in Supplemental material section 1. 

Systematically constructing higher-dimensional information from data falls under the 



general rubric of ‘-omics’, which includes genomics, proteomics and others [19]. 

Extracting a large amount of features from images (including TA metrics, shape 

descriptors and other quantitative metrics) has become popular under the 

denomination radiomics [20,21]. The potential of such an approach is to quantify 

properties of tissues and/or organs beyond the capability of visual interpretation or 

simple metrics. The use of TA has been widespread in MR and CT imaging since the 

early 90’s [22,23] and more recently (end of 2000’s) for PET intra-tumour heterogeneity 

characterization [15,24,25]. PET images have a priori less favorable properties for TA 

than MRI or CT, due to relatively lower signal-to-noise ratio and spatial resolution, as 

well as poorer spatial sampling. In addition, reconstructed PET images are often 

smoothed in clinical practice for the visual analysis by clinicians using filters which 

reduce the texture content of the image, such as the Gaussian filter [26]. However, the 

fidelity and quantitative accuracy of PET imaging has substantially improved in the last 

decade, with the advent of PET/CT systems, time-of-flight (TOF) capabilities, improved 

sensitivity, and the incorporation of several quantitative corrections in the current 

clinical gold standard iterative reconstruction algorithms [27]. Note also that the low-

dose CT component of PET/CT has different image characteristics than the higher 

resolution dosimetry or diagnostic CT. In the last four years, dozens of studies 

investigating PET/CT uptake heterogeneity have been published and mostly focused 

on the PET component. Unfortunately, especially for TA, the number of required pre-

processing steps and the numerous implementation choices in the involved workflow, 

have led to contradictory results and controversies, rendering impossible the 

comparison of results across studies [28]. In addition, the tendency in the biomedical 

field of publishing positive results easier than negative ones [29] may have led to 

overoptimistic interpretation of the potential value of TA in PET. This should also be 



viewed in the context of current widespread concerns about reproducibility in 

biomedical research in general [30]. 

The objective of this review is to provide critical insights into the rapid development of 

the use of TA to characterize radiotracer uptake heterogeneity in PET/CT images, and 

identify current issues and challenges left to address. Finally, some recommendations 

for future research methodologies and reporting standards are discussed. 

The past: Clinical potential and underlying motivations 

The underlying motivation arose in part from the recognition that standard metrics 

considered in clinical practice or research studies, i.e. maximum or mean of 

standardized uptake value (SUVmax and SUVmean) or the metabolically active tumour 

volume (MATV) do not fully describe the properties of tumours [14]. Some of these 

properties, such as shape and uptake heterogeneity, may reflect different tumour 

profiles associated with their aggressiveness, metastatic potential, or degree of 

response to a specific treatment, and consequently prognosis [31,32]. Quantifying 

these properties could provide indices with higher clinical value than usual metrics in 

stratifying patients or identifying poor responders to treatment. This proof-of-concept 

regarding the use of TA in PET images was shown first by El Naqa and colleagues in 

a seminal paper in 9 head and neck and 14 cervix cancer patients [15]. Only two other 

studies investigating TA in PET were published in the two following years. The first one 

demonstrated the impact of parameters used in PET iterative image reconstruction 

algorithms on TA metrics, of which many were shown to be sensitive to the resulting 

varying characteristics of the reconstructed images [24]. This highlighted the need for 

standardization if such features are to be considered within the context of multi-centric 

trials. Secondly, the extremely high variability (>100%) observed for some features 

suggested they should never be used, even in a single-site, single scanner study. The 



second study reported on the predictive value of FDG uptake heterogeneity quantified 

using TA, in 41 patients with locally advanced esophageal cancer treated by 

concomitant chemoradiotherapy, showing that TA metrics had higher predictive value 

than SUV [25]. 

In subsequent works, several studies have shown significant correlations between the 

visual assessment of intra-tumour heterogeneity in PET images by experts and 

quantitative metrics including the area under the curve of the cumulative histogram 

[33], shape descriptors [34] (see Supplemental material section 1) and TA metrics [35]. 

However, the interpretation of the underlying biological meaning of PET image uptake 

heterogeneity and the explanation of why it may be potentially more powerful than 

other standard metrics is still largely based on assumptions linking it to differences in 

underlying metabolism, cellular proliferation, hypoxia and necrosis. This obviously 

depends on the radiotracer used, however the vast majority of the studies to date have 

been carried out using FDG (and static SUV images), with only a few examples on 

other radiotracers, such as FET [36], FLT [5,37], or DBTZ [16]. By comparison in CT 

or MRI, there have been several studies linking image-derived TA features with 

underlying pathophysiological properties including at the level of genomics [7,11,38–

40], thereby providing growing evidence of their relevance and potential explanation 

for their observed clinical value. To the best of our knowledge, similar results currently 

available regarding TA applied to PET are very limited. A study established a 

correlation between perfusion CT derived parameters (e.g. blood flow) and TA metrics 

from FDG PET in stage III/IV colorectal tumours [41]. Regarding the relationship 

between PET TA features and data from underlying scales, preliminary results from a 

prospective study in 54 head and neck patients were recently presented, 

demonstrating that some PET TA metrics could be linked with altered signaling 



pathways related for example to cell proliferation and apoptosis [42]. Such studies 

have the potential to help in understanding the observed higher clinical value of these 

metrics compared to standard quantitative parameters. 

The present: An era of rapid expansion 

Several dozens of papers investigating the clinical value of PET uptake heterogeneity 

(using TA or other methods) in various tumour types (including esophageal, lung, 

rectum, breast, head and neck, brain, lymphoma, etc.) as well as more recently in 

neurodegenerative diseases with PET [16,43] and DAT SPECT [44] have been 

published in the last four years alone. More recently, a few studies have also been 

interested in extracting features from both the PET and CT components (see the 

section “promising clinical results” below). For a more exhaustive list, we refer the 

readers to other recent reviews [2–4,9,45–49]. From a critical review of these studies, 

several common issues can be identified. 

1. Nomenclature variability, formula and implementation issues 

The variability in definitions of TA metrics and nomenclature, as well as errors in 

methods, published formulae and computational codes complicate any evaluation and 

comparison of the published results. The use of the term “textural” itself can be 

confusing: in a recent study, the title and abstract refer to “textural parameters”, 

reporting a higher predictive value regarding response to therapy in a cohort of 27 

rectal cancer patients [50]. However, only 1st order histogram-derived features 

(coefficient of variation (COV), skewness and kurtosis) and none of the textural 

features of 2nd or higher order features (that actually take into account spatial 

distribution) were explored. In addition, since these metrics were compared in pre-, 

mid- and post-therapy PET images, their repeatability should be carefully verified. Yet 



studies have reported before on a relatively low level of repeatability of these features, 

especially skewness [51,52]. This challenge is not restricted to PET studies, as a 

recent work on the use of DCE-MRI in lung cancer made the exact same use of the 

term “textural”, although only 1st order histogram-derived metrics were used [12]. 

Another example of potential nomenclature confusion is the use of the term “entropy” 

to mean “randomness” or “disorder” for the 1st order metric, when it is actually the 

entropy of the probability histogram [12]. Furthermore, we recommend to use the terms 

entropyGLCM and entropyHIST in order to avoid confusion between the feature calculated 

in the co-occurrence matrix and the one calculated in the histogram, as an intuitive 

understanding of entropy may not apply to these metrics. Similarly, we recommend to 

use the terms constrastGLCM and constratNGTDM to avoid confusion. 

Section 3 in the supplemental material contains a list of TA metrics calculation formula 

with detailed notes. Several software distributions have also been made available 

[53,54], but there is a need to ensure that all feature calculations are accurately 

implemented before they could be reliably used for research. Section 4 in the 

supplemental material contains a list of several such codes with associated remarks. 

2. Workflow complexity 

One issue with TA is the very large number of parameters that can theoretically be 

calculated, in some cases over 100, as well as the number of ways they can be 

calculated. The recognized sources of variability (acquisition protocol, scanner type, 

quantitative corrections, type of reconstruction algorithm and parameters, post-

reconstruction image processing, region of interest definition, etc.) in the standard 

metrics (SUV, MATV) quantification can also have a similar impact on TA features. 

There are also additional steps and methodological choices that have a similarly (if not 



higher) impact on the resulting TA metrics. Figure 1 illustrates the TA workflow 

complexity, with the different steps discussed in the following sections. Note than some 

upstream steps can also have an impact on these choices, such as the segmentation 

(section 3 below).  

First order features estimate properties of individual voxel values, ignoring the spatial 

interaction between them (and as such cannot really be considered as “textural” 

features, because they do not differentiate spatial arrangements and patterns), 

whereas second- and higher-order features estimate properties of two or more voxel 

values occurring at specific locations relative to each other. For these 2nd and higher 

order TA features, the first steps usually consist in re-sampling or interpolating the non-

cubic voxel grid into cubic voxels (seldom carried out) and performing quantization 

(systematically carried out, also called discretization, downsampling or resampling) of 

the original intensities (or SUV) into a discrete set of values. This number determines 

the size of the matrices that are built and in which TA metrics are subsequently 

calculated. Several methods have been proposed to perform this quantization (see 

supplemental section 2) such as a linear distribution into a set number of bins (e.g. 32 

or 64) [15,25], the use of a clustering algorithm (Max-Lloyd) [55] or into bins of fixed 

width (e.g. 0.25 [52] or 0.5 [56,57] SUV). The chosen quantization approach and value 

can have an important impact on the resulting TA metrics, as well as their relationship 

with tumor volume or SUVmax [51,56,58–60] and it is thus an important factor not to 

overlook, as illustrated in figure 2. 

The second step consists in building texture matrices, of which several exist (e.g. grey-

level co-occurrence matrix GLCM, neighborhood grey tone difference matrix NGTDM 

and grey level zone size matrix GLZSM) and can be built in different ways (see 

supplemental material, section 3). For example, co-occurrence matrices quantify 



relationships between pairs of voxels. They are usually defined according to a given 

spatial direction and a given distance between the pairs of voxels. For a 3D analysis, 

13 directions are often considered and one matrix is built per direction. The TA metric 

is then calculated in each of these matrices, and the 13 resulting values are averaged. 

Usually, the distance is set to one voxel. Modifying these choices (e.g. using only one 

matrix for all directions) can lead to different TA features distributions (see figure 3), 

associated complementary value with other metrics, and as a consequence, overall 

clinical value [55,60]. 

3. PET tumour volume segmentation 

Numerous studies have used the least robust and/or accurate methods to define 

overall tumour volume, such as manual delineation or fixed thresholding. Single 

observer manual delineation suffers from high inter- and intra-observer variability, 

whereas fixed thresholding significantly underestimates the true MATV extent by 

focusing on the tumour sub-volume with the highest uptake [61,62]. This in turn may 

bias the heterogeneity assessment and the associated ranking of intra-tumour 

heterogeneity levels. Another issue concerns the way the tumour volume is a priori 

considered in the analysis. More specifically one can define functional volume so that 

areas with low or no radiotracer uptake are included in the volume, or alternatively 

excluded from it. Excluding these areas would exclude necrotic regions but would also 

limit the risk of including non-pathological areas in the heterogeneity analysis. The 

choice of the segmentation approach used may result in more or less constraints. For 

example, with a gradient-based tool [63,64], the resulting contour is binary only and 

covers the entire tumour including areas without uptake (figure 4). On the contrary, 

with a method based on region-growing or clustering paradigms [65,66] the areas with 



uptake similar to the background are usually excluded, although they could easily be 

included in the analysis with an additional step. 

4. Statistical issues 

In the vast majority of the published studies, there is no multivariate analysis including 

potential confounding factors, nor a correction for multiple testing, and very rarely was 

robust machine learning with cross-validation used. The size of the patient cohorts 

considered is most often very small with respect to the number of explored parameters 

and tested hypotheses. Ideally, these studies should be combined to provide a meta-

analysis; however, there are often problems with how results are reported [21] which 

renders such a meta-analysis practically impossible. Finally, the cohorts are often 

heterogeneous in terms of staging or treatment modality, are most often retrospective 

in nature, and the results are almost never validated on external cohorts. A recent 

review paper highlighted these issues for a selection of 15 studies (in both PET and 

CT), showing that the majority of these suffered from at least some of these 

shortcomings. The review concluded that the clinical value of TA metrics extracted 

from CT or PET images remains to be demonstrated [28]. Although the bias in 

publishing positive results is strong in the biomedical field [29], one has to keep in mind 

that only a handful of studies have concluded that heterogeneity quantification does 

not bring any value regarding the aimed clinical endpoint [67–69], with the overall trend 

being mostly positive. More specifically, two studies in cervical cancer have concluded 

that a metric based on a “Volume versus Threshold Curve” was not able to predict 

outcome in 73 patients [67], contradicting a previous assessment in the same cohort 

[70]. Although other 1st order features such as standard deviation, skewness and 

kurtosis were also included, it should be emphasized that this study essentially 

highlighted the fact that the metric based on “volume versus threshold curve” is a 



surrogate of volume, not a measurement of heterogeneity (see also supplemental 

material). The same authors further explored additional metrics (sphericity, extent, 

Shannon entropy and the accrued deviation from smoothest gradients, i.e. not TA 

metrics) in another group of 85 FIGO stage IIb patients, with similar negative 

conclusions regarding the prediction of pelvic lymph node involvement [69]. Finally, in 

contradiction to these two studies, the same group also published another paper in 

which TA metrics had predictive value of response to therapy in 20 cervical cancer 

patients when considering their temporal evolution between baseline, week 2, week 4 

and post-therapy PET scans [71]. It should also be noted that in all these studies MATV 

were delineated using a fixed threshold at 40% of SUVmax. 

A recent study in breast cancer showed in a prospective homogeneous cohort of 171 

women, that contrary to previous results obtained in a smaller cohort (n=54) [72], none 

of the considered PET TA metrics were able to improve differentiation between the 

three main molecular subtypes of breast tumours beyond the standard clinical factors 

and SUV metrics [68]. 

5. Redundancy of features 

The vast majority of studies are based on analyzing a pre-determined functional tumour 

volume, which is thus known prior to the heterogeneity characterization. Therefore an 

heterogeneity metric can only have complementary (or significantly higher) value if it 

is not highly correlated with the corresponding volume. The correlation between 

heterogeneity metrics and the MATV or another image derived parameter (such as 

SUVmax, SUVmean or Total Lesion Glycolysis=MATV×SUVmean [73]) can be explained 

by two different but complementary aspects: the mathematical/algorithmic design of 

the parameter, and the fact that heterogeneity is intrinsically and biologically correlated 



with it. Indeed, heterogeneity quantification of uptake is expected to be correlated with 

other tumour properties. In most solid tumours larger volumes exhibit a wider range of 

heterogeneity patterns and intensity than smaller ones. This is due first to the fact that 

larger tumours have more potential to be composed of several different types of tissues 

and regions with variable uptake that can be resolved in a PET image compared to 

smaller volumes, for which a similar heterogeneity may exist at the cellular and tissue 

levels but is blurred due to the limited spatial resolution. On the other hand, a 

correlation between high heterogeneity and high SUV seems less logical, since small 

homogeneous uptakes can have high or low SUVmax, whereas both larger 

homogeneous or heterogeneous lesions can exhibit a wide range of maximum uptake. 

The challenge for future studies is therefore to identify which part of the correlation 

comes from a biological reality, imaging limitations and/or from the mathematical and 

algorithmic definition of the heterogeneity metrics. Another challenge is to identify 

above what level of correlation to exclude a TA feature for a subsequent multivariate 

analysis since it is unlikely to provide complementary information. This is less trivial 

than it may sound, since the absolute level of correlation varies depending on the 

chosen coefficients: Pearson coefficients may significantly underestimate the 

correlation between two metrics when it is not linear. Kendall and Spearman 

coefficients both provide rank correlation assessment, however Kendall coefficients 

are usually smaller than Spearman, as illustrated in figure 5. These would thus require 

different scales to describe strong, moderate or weak correlations (in the case 

presented in figure 5, the correlation is above 0.9 according to Spearman but is below 

0.8 according to Kendall). Using simple correlation coefficients to select features to 

combine in a multi-parametric model may be sub-optimal, and we recommend using 



robust machine learning techniques to achieve better redundancy analysis and feature 

selection / combination. 

Although it should be recognized that the relationship between tumour volume and 

PET spatial resolution has an impact on derived metrics, there is an additional factor 

to take into account for TA metrics that quantify intensity and spatial relationships 

between pairs or groups of voxels. The correlation between a TA metric and the volume 

of interest in which it is calculated needs to be analyzed not only in terms of absolute 

volume, but more importantly in terms of the number of voxels involved in the 

calculation. For example, if we consider a given tumour volume sampled on a 2×2×2 

mm3 or 4×4×4 mm3 grid, the entropyGLCM metric will have higher value for the 2×2×2 

mm3 image compared to the 4×4×4 mm3 one, not because of a higher heterogeneity, 

but only because of a higher number of voxels involved in the calculation. This “number 

of voxels confounding effect” has been demonstrated in a recent study that showed 

the matrix grid in the reconstruction has a strong impact on most TA metrics [74]. It is 

especially crucial to take into account in a multi-centric study where reconstructed 

matrix sizes vary across sites. Regarding the tumour volume confounding effect, the 

correlation between TA metrics and tumour volume was reported in several studies 

[59,60,75,76], two of which were specifically focused on the issue. The first aimed to 

identify which was the minimal volume of interest so that the volume would be 

sufficiently large for the TA to differentiate between different levels of heterogeneity 

and concluded that a minimal volume of 45 cm3 was necessary [76]. This study was 

based on the use of a single TA feature, with a uniform quantization (Q=152 bins), an 

analysis in 2D with 2 directions (horizontal and vertical), with one co-occurrence matrix 

used for each direction followed by averaging the resulting values, and without testing 

different configurations. Another study tackled the same issue by considering 555 



tumours of 5 different types [60]. The results showed that the correlation between TA 

metrics and volume was highly variable among TA features, decreased as tumour 

volumes increased, and depended on the quantization value and design of the co-

occurrence matrices. The above study also showed that using the same set of 

parameters as in the previous study [76] led to a very high correlation (>0.9) between 

the volume and entropyGLCM, whereas using a different configuration (a smaller 

quantization value of 64 and only one co-occurrence matrix taking into consideration 

all directions simultaneously instead of averaging the values obtained in different 

matrices) the correlation dropped below 0.5.  With this calculation, entropyGLCM thus 

provided complementary information to volume (figure 3), which also translated into 

complementary prognostic value: when the two parameters were combined, improved 

stratification of patients overall survival could be reached in 101 NSCLC patients [60]. 

These two studies clearly highlight the need to carefully consider interactions between 

tumour volume and heterogeneity quantitative metrics. The latter study also showed 

that the choices made in the calculation workflow can determine the efficacy of a 

metric. 

Beyond the relationships with tumour volume, TA provides the ability to calculate 

numerous parameters that also exhibit high levels of redundancy [59,75]. It is therefore 

necessary to establish a method of selection amongst all calculated features (and 

amongst all ways of calculating them). The properties of an “ideal” heterogeneity metric 

as well as the recommended methodology to assess them are listed in table 1. 

6. Repeatability and reproducibility / robustness 

Repeatability is a measurement of precision that occurs with identical or near-identical 

conditions, e.g. double baseline (also called test-retest) studies. Reproducibility, in 



contrast, is a measurement of precision when location, measuring system, or other 

factors differ [77]. In reproducibility studies, the objective is to measure the effects of 

different conditions on the performance of a quantitative imaging biomarker with the 

goal of demonstrating equivalent performance in less restrictive study conditions. 

Repeatability has already been studied for TA in PET, demonstrating that only a 

handful of metrics have repeatability limits similar to MATV and SUV measurements, 

and are therefore reliable enough to be considered further, especially in the context of 

therapy monitoring [51,52,57]. Regarding reproducibility or robustness, it has been 

shown that only a few features are robust versus variations in image reconstruction 

algorithm types [24,52,74,78]. It was also shown that the impact of tumour 

segmentation [52,57,58,75], post-reconstruction smoothing [26], quantization [52,58] 

or partial volume effects correction [75] varied between TA metrics. More recently, two 

studies also investigated the impact of respiratory motion, by comparing TA features 

in PET images of lung cancer patients with and without respiratory gating, showing that 

TA features may be affected in standard non-gated acquisitions, particularly in the 

lower lung lobes [79,80]. It was also shown that the use of a respiration-averaged CT 

instead of a helical CT for attenuation correction of the PET data had a higher impact 

on SUV and TLG than on TA metrics [81]. Another study demonstrated that TA features 

calculated in parametric maps derived from dynamic PET acquisitions or from 

corresponding static SUV images were not significantly different, suggesting that 

heterogeneity quantification on parametric images through TA may not provide 

significant additional information compared to static SUV images [82]. Finally, it was 

also shown that even basic stochastic effects of PET acquisitions can affect some TA 

metrics [83]. All these factors may impact not only the absolute values of calculated 

features, but also their correlation with volume. Figure 6 illustrates this on a set of 



tumours reconstructed using two different voxel sizes (the only modified parameter in 

the reconstruction). The exact same number of voxels was considered using either 

nearest neighbors or b-splines interpolation of the image with larger voxels, in order to 

obtain exactly the same number of voxels as the image with the smaller voxels. 

Promising clinical results 

Demonstration of the clinical value of TA requires large cohorts of patients combined 

with a rigorous statistical analysis. Although a number of studies have been recently 

published exploiting cohorts between 20 and 70 patients only [50,71,84–90], some of 

the most recent studies have been carried out on larger cohorts between 80 and more 

than 200 patients: 88 oropharyngeal squamous cell carcinoma [91], 103 bone and soft 

tissue lesions [92], 101 early-stage NSCLC [93], 112 œsophageal and 101 NSCLC 

[60], 113 gliomas [36], 107 and 217 œsophageal [94,95], 132 lymph nodes in lung 

cancer [96], 116, 195 and 201 NSCLC [97–99], 137 pancreatic lesions [100] and 188 

lesions in lymphoma patients [101]. Some of the most recent studies have also used 

more robust statistical analysis, compared to these recently reviewed [28], several of 

them using machine learning method, e.g. neural networks [94], support vector 

machines [92,96,101] or the least absolute shrinkage and selection operator (LASSO) 

[93,99]. The majority of these recent studies have reached the conclusion that TA can 

provide useful quantitative metrics regarding patient management (prognosis, 

response to therapy, distant metastasis prediction…) in different cancer models except 

one that showed more mixed results [102], whereas another concluded that the 

improvement, although significant, may not be sufficient to have a clinical impact [95].  

Note also that a few studies have recently investigated the potential combination of 

image-derived features from both PET and the corresponding low-dose CT component 



of the PET/CT dataset [8,92,96,97,101,103], while another recent work has combined 

TA from PET and MRI to predict lung metastases in soft-tissue sarcomas of the 

extremities [55]. A recent proof-of-concept study (on 2 patients) investigated the 

characterization of renal cell carcinoma in simultaneous 18F-FLT PET/MRI acquisitions 

(with pre- and mid-treatment images) [104]. 

Finally, the combination of PET image-derived features with other contextual data may 

be considered, such as in a recent study in which zone-size non-uniformity extracted 

from pretreatment FDG PET was combined with key immunohistochemistry metrics, 

leading to improved stratification in 113 patients with advanced stage oropharyngeal 

squamous cell carcinoma [105]. In another recent work, TA metrics extracted from both 

PET and low-dose CT components of PET/CT standard acquisitions were combined 

to improve patient prognosis stratification over clinical staging [97]. 

When dealing with a large number of variables and limited size cohorts, robust 

methods for features selection combined with an appropriate classifier and testing with 

cross-validation can provide tools with good performance. One has to note however 

that validation using an external cohort remains the gold standard, although it is still 

rarely performed in PET/CT studies. In a recent work, 31 patients out of 101 were used 

for validation, while the first 70 were used for building the model [93]. Contrary to the 

PET/CT field, the use of machine learning techniques including robust features 

selection, combination of features within classifiers and cross-validation or validation 

in an external cohort is well established in the fields of CT [7,106–108] and MR [109–

113] radiomics. To date, only a limited number of clinical studies investigating TA in 

PET/CT have exploited up-to-date techniques from the field of machine learning. 

Recently, a more technical study showed that appropriate hierarchical forward 

selection of features combined with a support vector machine classifier could improve 



results [114]. A  recent study focused on this topic and compared 14 feature selection 

methods and 12 classifiers using large cohorts of CT datasets, ranking the relative 

performance in terms of accuracy and stability of each approach [107]. An interesting 

result is that the performance was mostly affected by the choice of the classifier (34% 

of total variance). Although not yet performed on PET datasets, this work could 

nonetheless form a basis for selecting appropriate machine learning methods for future 

studies investigating the value of TA in PET imaging. 

Conclusions: a future for texture analysis in PET? 

Although not impossible, it is challenging to compare results from the numerous studies 

currently available and draw concrete conclusions on the clinical value of TA in PET 

imaging. This is due to a large variability in the implemented methodology associated 

with the workflow complexity involved with the calculation of features, in combination 

with the lack of technical details provided in most studies. In addition, numerous issues 

related to the statistical analysis and bias in publishing mostly positive results further 

increases the difficulty in drawing firm conclusions from the currently published 

literature. Keeping in mind these current limitations, it should nonetheless be 

emphasized that most of the studies currently published point to complementary and 

additional value in extracting more advanced image features from medical images, 

including PET/CT. Although the level of evidence is likely insufficient today, a positive 

trend can be observed. Thus the use of TA in PET/CT images should not be 

abandoned but rather reinforced by increasing the level of requirement for the studies 

to be conducted, in order to enable the field to move forward. Table 2 lists several 

objectives we should consider as a community to achieve this. 



Establishing a benchmark (objective 1) could start by providing users with tools to 

validate features calculation codes. Test images with known and verified associated 

metrics values for a range of calculation methods and choices could be provided, so 

that users can validate their TA metrics implementations [83].  

The next step (objective 2) should consist in generating and circulating a draft of 

recommendations and guidelines regarding choices in pre-processing and 

segmentation steps, especially within the context of multicentric studies. Although 

variability inherent in merging results based on images from various devices and 

reconstructions algorithms from different vendors may be difficult to avoid, some 

recommendations can already be made based on current results. First, pre-process 

and resample images to a common voxel size, preferably isotropic [55]. This would 

allow avoiding major issues in comparing co-occurrence derived metrics calculated on 

different spatial sampling [55,74]. Second, avoid post-reconstruction smoothing 

altogether, or use appropriate edge-preserving filters [26]. Third, automated 

segmentation approaches robust to heterogeneous distribution should be used [61,66]. 

Alternatively, if only fixed or adaptive thresholding methods are available, manual / 

visual checking and editing should be mandatory to avoid under-segmentation of 

heterogeneous uptakes. 

Objective 3 could consist in establishing recommendations on which features should 

be preferably used and those to exclude (e.g. features that have been identified with 

very poor repeatability and robustness), as well as recommended workflow choices to 

obtain features with lowest redundancy and highest clinical value. In that regard we 

provided in the supplemental material a list of verified formulas for the usual features, 

as well as comments, corrections and implementation recommendations to avoid 



common mistakes and misconceptions. We also recommend to preferably rely on 

features that have been demonstrated as robust and repeatable [51,52,57,58,75].  

Finally, beyond providing test images, objects, and open-source codes and formulae 

to improve standardization between research groups (objective 1), it would be 

beneficial that a benchmark would also contain publicly available clinical datasets of 

PET/CT images along with clinical endpoint information (prognosis, response to 

therapy, tumour type, etc.) and other clinical data (objective 4). This would allow any 

research group to test its own workflow (image pre-processing, tumour segmentation, 

TA metrics calculation, machine learning features selection and classifiers, etc.) and 

then compare its results with those by other groups. The Cancer Imaging Archive 

(TCIA) could be the support of such future efforts, as it already contains several publicly 

available cohorts of patients with images of various modalities and the associated 

clinical data.  

Further efforts along these lines could be organized within taskgroups of the EANM, 

QIBA, QIN, SNMMI and AAPM and they should happen in the nearest future if TA (and 

radiomics in general) are to have any future in PET/CT imaging. 
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Table 1. Properties of an ideal heterogeneity metric 

Properties Recommended methodology for evaluation 

Repeatable Compare metrics calculated on test-retest PET/CT images 
[51,57] using e.g. Bland-Altman method 

Reproducible / robust Compare metrics calculated through various analysis 
pipelines (with/without pre-processing such as denoising 
or partial volume effect correction, various segmentation 
approaches…) [57,75] 

Least redundant with 
other TA metrics (and 
other variables). 

Quantify and rank statistical correlation between features 
[59,60,75]. Use machine learning techniques to select 
features and combine them with other variables [107,114]. 

Offers value in regard of a 
given clinical endpoint 

Quantify correlation with response to treatment, diagnosis, 
survival, differentiation of tumor types using robust 
machine learning techniques for classification, logistic 
regression and multivariate analysis, and learning / testing 
in separate cohorts (at least considering leave-one-out 
cross-validation) [28,107,114].  

  



Table 2. Objectives 

1. Organize and develop a benchmark standard for TA metrics. This would include 
standardized physical and digital reference objects, open-source verified formulae and 
codes tested again reference objects, and expected values/results for comparison. 

2. Generate and circulate draft recommendations on image pre-processing, analysis and 
standardization, especially within the context of multicentric studies. Convene 
consensus groups to review, revise and ratify. 

3.  Establish recommendations on methodological choices regarding the calculation of TA 
metrics and identify repeatable, reproducible and meaningful features (as well as their 
optimal calculation). 

4. Share publicly available cohorts of patients with PET/CT images and associated clinical 
data, along with clinical endpoint (survival, response to therapy, tumour type 
classification, etc.) so that research groups can test/evaluate their workflow 

5. Support larger prospective multicentric studies and the use of robust statistical analysis 
by exploiting the methods from the field of machine learning. 

6. Adopt standards for publishing methods and results such as those promoted by the 
EQUATOR (Enhancing the QUAlity and Transparency Of health Research) network 
[115]. 

7. Advocate for improved peer-review, insisting on at least one “statistical reviewer” with 
knowledge of machine learning methodologies. 

 

  



Figure legends 

Figure 1: Workflow involved in the calculation and selection of texture analysis from a 

reconstructed PET image. 

Figure 2: Distributions with respect to (A) MATV and (B) SUVmax of four TA features 

(correlation and entropyGLCM from GLCM, complexity from NGTDM and zone size 

percentage from GLZSM) calculated after either quantization into a set number of bins 

(here 64) or into bins of fixed width (here 0.5 SUV). Note that correlation is not 

impacted, compared to the three other metrics. Also, note the inverted correlation with 

MATV and SUVmax, when changing the quantization approach. 

Figure 3: Distribution of heterogeneity as measured with entropyGLCM with respect to 

MATV for 555 lesions in five tumour types, according to four different configurations: 

with a quantization of either 64 or 128 grey-levels (uniformly distributed) and using 

either 1 single co-occurrence matrix (without averaging) or 13 matrices followed by 

averaging. 

Figure 4: Illustration of trade-offs in segmentation results using (A) contour-based 

approach (PETedge from MIMVista software, white external contour) or (B) a 

clustering-based approach (the FLAB algorithm, blue contours). In (A) the light grey 

contour inside the tumour corresponds to a fixed threshold. With (B) the various areas 

with different uptake levels are automatically determined and may be included or 

excluded from the heterogeneity analysis at the cost of a higher complexity. 

Figure 5: illustration of the relationship between a textural feature and the 

corresponding MATV in 116 NSCLC patients (A linear scale and B log scale) and the 

resulting quantification of the correlation according to Pearson coefficients and 

different rank coefficients (Spearman and Kendall). 

Figure 6: distributions of heterogeneity (entropyGLCM) with respect to MATV for a set of 

25 tumours reconstructed with either 4×4×4 mm3 (A and B) or 2×2×2 mm3 (C) voxels. 

Note that the 4×4×4 mm3 voxels image was upsampled to 2×2×2 mm3 using either 

nearest neighbors (A) or B-spline (B) interpolation.  
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