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Section 1: alternative heterogeneity metrics 
Several numerical methods other than textural features have been proposed to quantify intra 
tumor radiotracer uptake heterogeneity in PET images. The most simple one is SUVCOV 
defined as the ratio between SUV standard deviation and mean SUV [1,2]. One of the first 
work investigating heterogeneity of PET uptake through a quantitative assessment dates 
back to 2003 in which a shape-derived statistical metric (defined as a deviation from an 
homogeneous ellipsoid contour) was used to quantify heterogeneity in sarcoma tumors and 
stratify patients [3]. This approach was further developed and investigated, and always 
applied to sarcoma tumors [4–6]. Another approach consists in building a SUV-volume 
histogram and quantifying the area under the curve (CHAUC), lower values indicating higher 
heterogeneity [1,7]. This metric has been the subject of controversy regarding its capability to 
quantify intra tumor uptake heterogeneity [8–10]. It has been nevertheless used in several 
cancer models, showing correlation with visual heterogeneity analysis and ability to 
distinguish different tumor types [11]. It has also been evaluated for reproducibility and found 
to be highly reliable [12,13].  

Another relatively popular metric in recent publications is the so-called “heterogeneity factor” 
(HF) defined as the derivative (dV/dT) of the volume-threshold function (for thresholds 
between 80% and 40% of SUVmax) [14–21]. However, this HF was reported to be highly 
correlated with MATV (r=0.955) [15] and represents in fact a surrogate of functional volume 
rather than an heterogeneity measurement [22], which may explain why it is often reported 
as an independent factor in place of the volume, when included in a multivariate analysis with 
the associated volume [17,18,20,23].  

Although fractal analysis has also been suggested for quantifying PET uptake heterogeneity 
[24], there are only a few studies that have exploited this approach with clinical images 
[25,26]. Recently, other groups have devised new heterogeneity metrics in functional images. 
For example, an algorithm for ranking and visualizing heterogeneity of tracer distribution was 
developed exploiting several parameters: distances between deviating peaks, gradients and 
size compensations, and built-in matrices [27]. It was applied to pre-clinical images and 
although the calculated heterogeneity factors were sensitive to the reconstruction algorithm, 
pixel size and tumour ROI volumes, the method proved able to stratify the different levels of 
heterogeneity.  

In another example, a new metric generalizing the SUV-volume relationship was proposed: 
generalized effective total uptake (gETU) [28]. Although not directly aimed at quantifying 
heterogeneity, this metric proved to be efficient for patients stratification in 113 patients with 
squamous cell cancer of the oropharynx, and 72 patients with locally advanced pancreatic 
adenocarcinoma, by placing more emphasis on volume or on SUV respectively, which can 
be of interest for both homogeneous or heterogeneous tumours.  

Another metric has been proposed as a more intuitive and simple alternative to GLCM 
textural features, by summing voxel-wise distribution of differential SUV, weighted by the 
distance of SUV difference among neighboring voxels from the center of the tumour [29]. 
This metric was designed to yield increased values of tumours with peripheral sub-regions of 
high SUV. The ability of the metric to quantify heterogeneity was demonstrated on simple 
phantoms and 6 lung cancer patients. 

Finally, a surrogate measure of tumor heterogeneity may be based on the use of shape 
analysis and descriptors (such as (a) sphericity, solidity, convexity, etc.), which have also 
been explored in PET clinical images [1,23,30–32]. These metrics do indirectly assess tumor 
heterogeneity, since larger, more heterogeneous tumors are likely to exhibit a larger range of 
shapes’ complexity. Shape descriptors are also likely to depend on the segmentation, 
especially when comparing segmentation including or not necrotic cores. 
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Figure 1 shows in a set of 116 NSCLC primary tumors the relationships between sphericity 
and volume, heterogeneity quantified with entropyGLCM and volume, as well as between 
sphericity and heterogeneity. 

 
Figure 1: distributions of (a) heterogeneity (co-occurrence entropy) with respect to MATV, (b) 
sphericity with respect to MATV and (c) heterogeneity with respect to sphericity. 

 

Section 2: Quantization approaches. 
Quantization is usually performed by downsampling the original range of values to 

  2
n  ;n∈ 1,2…,8{ } (in most studies 32, 64 or 128) following a uniform way of distributing 

these intensities on the chosen scale. This typically corresponds to the equations 1 or 2 
below. 		

	
  
IQ = Q

IO − Imin

Imax − Imin  

 1( )  

	
  
IQ = Q

IO − Imin

Imax − Imin

 +1 2( )  

Where IO is the original intensity of the voxel, IQ is the discretized value and Q is the chosen 
quantization value. Imin and Imax are minimum and maximum values in the ROI, i.e. tumor. 
However, it has been suggested recently to use an equal probability approach or the Max-
Lloyd clustering algorithm to distribute the voxels intensities on the chosen interval instead of 
distributing them uniformly [33], or to perform quantization using a fixed width of the bins 
(e.g. 0.5 SUV) rather than a fixed number of bins [34,35], according to equation 3. 

	
  
IW =

IO

W
− min

IO

W
⎛
⎝⎜

⎞
⎠⎟
+1 3( )  

Where W is the bin width. This approach could result in more consistent histograms for the 
purpose of comparing values before and after treatment [34], as well as higher or lower 
repeatability, depending on the features [13]. It also means that texture matrices have 
different sizes for each image since the number of bins is dependent on the SUV range. It 
has also been suggested to modify equations 1 and 2 as shown in equation 4 by replacing 
the Imax-Imin term by a fixed value V (e.g V=20) [36]. 

	
  
IQ = Q

IO

V
 4( )  

This approach is similar to the fixed-width bin approach previously published [34,35]: 
equation 3 with W=0.5 SUV corresponds to equation 4 with Q=64 and V=32. This 
quantization results in TA that have overall a lower correlation with the corresponding 
volume, but at the cost of a high correlation with SUVmax (see also figure 2 in the main 
manuscript). 



Supplemental material: "Characterization of PET/CT images using texture analysis: the past, 
the present... any future?" Hatt, M. et al. Eur J Nucl Med Mol Imaging (2016).  
	

	 3	

 
Section 3: Formulas errors, typos, and nomenclature variability. 
1. Histogram-based (first order) metrics. 

The histogram is a column vector h with each entry indexed by the grey level values and 
whose values is the number of voxels in the region of interest with that grey level value. Thus 
grey level value i appears within the ROI hi times. 

Note: Materka 1998 [37] and others use the information-theoretic logarithm based 2 in the 
entropy calculations. We suggest the use of natural logarithm in all calculations. 

1. Mean 

	
  
µ =

i=1

Gmax

∑ i ⋅hi{ }  

2. Variance 

	
  
σ 2 =

i=1

Gmax

∑ (i − µ)2 ⋅hi{ }  

3. Skewness – set to 0 when σ=0 

	
  
µ3 =

1
σ 3

i=1

Gmax

∑ (i − µ)3 ⋅hi{ }  

4. Excess Kurtosis – set to 0 when σ=0 (NOTE: “Kurtosis” and “Excess Kurtosis” differ 
in that Excess Kurtosis = Kurtosis – 3). 

	
  
µ4 =

1
σ 4

i=1

Gmax

∑ (i − µ)4 ⋅hi{ }− 3  

5. Energy 

	
  
Ene =

i=1

Gmax

∑ hi⎡⎣ ⎤⎦
2{ }  

6. EntropyHIST (NOTE: We will differentiate between the various entropy calculations in 
this document, specifying the distribution from which the entropy is computed) 

	
  
Ent =

i=1

Gmax

−∑ hi ⋅ ln hi⎡⎣ ⎤⎦{ }  

2. Grey-level co-occurrence matrix GLCM (also called grey tone spatial dependence matrix 
GTSDM). 

Let p be the normalized (sum all of matrix entries is one) Grey level co-occurrence matrix. 

Notes: Haralick 1973 [38] ambiguously states that Ng is the “number of distinct grey levels in 
the quantized image”. However, the equations indicated that Ng is not the number of distinct 
values present in the image, but rather the maximum possible quantized value (called Gmax in 
the following formulas). 

For the metrics calculations we use the following: 
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px i( ) =

j=1

Gmax

∑ pi, j{ } ; py j( ) =
j=1

Gmax

∑ pi, j{ }  

	
  
px+ y n( ) =

i+ j=n
∑ pi, j{ } ; n∈ 2,3…,2 ⋅Gmax{ }  

	

  
px− y n( ) =

i− j =n
∑ pi, j{ } ; n∈ 0,1…,Gmax −1{ }  

	
  
µx− y =

n=0

Gmax−1

∑ n ⋅ px− y n( ){ }  

Physics and Information theory dictates that 
 
0 ⋅ log 0( ) = 0  for entropy calculations. This 

differs from Haralick 1973 [38]  where an arbitrary ε  is recommended. 

GLCM metrics1-14, are from Haralick 1973). 

1. Angular Second Moment (ASM) is called Energy in Soh 1999 [39] and Uniformity in 
Clausi 2002 [40]. 

	

  
f1 =

i=1

Gmax

∑
j=1

Gmax

∑ pi, j( )2{ }⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

2. ContrastGLCM: the first formula from Haralick 1973 [38]  and the second version from 
Clausi 2002 [40] are equal to each other. 

	

  
f2 =

n=0

Gmax−1

∑ n2 ⋅ px− y n( ){ } =
i=1

Gmax

∑
j=1

Gmax

∑ i − j( )2
⋅ pi, j{ }⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

 

3. Correlation: the first version corresponds to equations from Haralick 1973 [38] and 
Soh 1999 [39] which are equal to each other. The second one is from Clausi 2002 
[40], the two are equivalent. 

	
  
f3 =

i=1

Gmax∑ j=1

Gmax∑ i ⋅ j ⋅ pi, j{ }{ }− µx ⋅µy

σ x ⋅σ y

= i=1

Gmax∑ j=1

Gmax∑ i − µx( ) ⋅ j − µy( ) ⋅ pi, j{ }{ }
σ x ⋅σ y

 

µx, µy, σx, and σy are only loosely hinted at in Haralick 1973 [38]. Taking the means and 
variances of the px could be interpreted as taking the mean of the values of px as a set of 
numbers, rather than the distribution mean. This would be an incorrect interpretation, and 
computing the mean of the distribution is the correct interpretation. This is corroborated by 
Bharati 2004 [41]. The following definitions are taken from Bharati 2004 [41]: 

	

  
µx =

i=1

Gmax

∑ i ⋅
j=1

Gmax

∑ pi, j{ }⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 ,  µy =

j=1

Gmax

∑ j ⋅
i=1

Gmax

∑ pi, j{ }⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 ,  

	

  
σ x =

i=1

Gmax

∑ i − µx( )2
⋅

j=1

Gmax

∑ pi, j{ }⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

⎛

⎝
⎜

⎞

⎠
⎟

1/2

, σ y =
j=1

Gmax

∑ j − µy( )2
⋅

i=1

Gmax

∑ pi, j{ }⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

⎛

⎝
⎜

⎞

⎠
⎟

1/2

.  
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4. Sum of Squares Variance: ambiguous, as µ was not defined. 

	

  
f4 =

i=1

Gmax

∑
j=1

Gmax

∑ i − µ( )2
⋅ pi, j{ }⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

 

We use the following definition for µ: 

	

  

µ = i=1

Gmax∑ j=1

Gmax∑ pi, j{ }{ }
Gmax( )2  

5. Inverse Different Moment (is called Homogeneity in Soh 1999 [39]). 

	

  

f5 =
i=1

Gmax

∑
j=1

Gmax

∑ 1

1+ i − j( )2 ⋅ pi, j

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

6. Sum Average. 

	
  
f6 =

n=2

2⋅Gmax

∑ n ⋅ px+ y n( ){ }  

7. Sum Variance: the formula is Haralick 1973 [38] incorrectly uses f8, an error that has 
propagated into many other papers and code implementations. 

	
  
f7 =

n=2

2⋅Gmax

∑ n− f6( )2
⋅ px+ y n( ){ }  

8. GLCM Sum Entropy. 

	
  
f8 = −

n=2

2⋅Gmax

∑ px+ y n( ) ⋅ ln px+ y n( )⎡⎣ ⎤⎦{ }  

9. EntropyGLCM. 

	

  
f9 = −

i=1

Gmax

∑
j=1

Gmax

∑ pi, j ⋅ ln pi, j
⎡⎣ ⎤⎦{ }⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

10. Difference Variance: the equation from the Murphy lab code was incorrect (mean was 
not subtracted) and is equal to ContrastGLCM (f2 above). This error has propagated into 
several code implementations. 

	
  
f10 =

n=0

Gmax−1

∑ n− µx− y( )2
⋅ px− y n( ){ }  

11. GLCM Difference Entropy 

	
  
f11 = −

n=0

Gmax−1

∑ px− y n( ) ⋅ ln px− y n( )⎡⎣ ⎤⎦{ }  
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12. Information Correlation 1: set to infinity if the denominator is zero. 

	

  
f12 =

f9 − Entxy ,1

max Entx ; Enty{ }  

13. Information Correlation 2. 

	
  
f13 = 1− exp −2 ⋅ Entxy ,2 − f9( )⎡

⎣
⎤
⎦{ }1/2

 

For f12 and f13 above: 

	

  
Entx = −

i=1

Gmax

∑
j=1

Gmax

∑ pi, j{ } ⋅ ln
j=1

Gmax

∑ pi, j{ }⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

	

  
Enty = −

j=1

Gmax

∑
i=1

Gmax

∑ pi, j{ } ⋅ ln
i=1

Gmax

∑ pi, j{ }⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

	

  
Entxy ,1 = −

i=1

Gmax

∑
j=1

Gmax

∑ pi, j ⋅ ln px i( ) ⋅ py j( )⎡⎣ ⎤⎦{ }⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

	

  
Entxy ,2 = −

i=1

Gmax

∑
j=1

Gmax

∑ px i( ) ⋅ py j( ) ⋅ ln px i( ) ⋅ py j( )⎡⎣ ⎤⎦{ }⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

14. Autocorrelation 

	

  
f14 =

i=1

Gmax

∑
j=1

Gmax

∑ i ⋅ j ⋅ pi, j{ }⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

15. Dissimilarity 

	

  
f15 =

i=1

Gmax

∑
j=1

Gmax

∑ i − j ⋅ pi, j{ }⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

16. Cluster Shade 

	

  
f16 =

i=1

Gmax

∑
j=1

Gmax

∑ i + j − µx − µy( )3
⋅ pi, j{ }⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

17. Cluster Prominence 

	

  
f17 =

i=1

Gmax

∑
j=1

Gmax

∑ i + j − µx − µy( )4
⋅ pi, j{ }⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

18. Maximum Probability 

	
  
f18 = max

i, j
pi, j{ }  

19. Inverse Difference (Clausi 2002 [40]) 
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f19 =

i=1

Gmax

∑
j=1

Gmax

∑ 1
1+ i − j

⋅ pi, j

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.  

 

3. Neighborhood grey tone difference matrix (NGTDM). 

Let s be the NGTDM vector, indexed si, and pi be the probability of a voxel value for voxels 
that are used in the computation of the NGTDM. Ng is the number of unique grey levels 
present in the image (not necessarily equal to the highest grey level value Gmax, since some 
values may not be present in the image). When a grey level is not present, the corresponding 
si is zero. 

Notes: no ε  is added to the coarseness or textures strength computation. Rather, if the 
denominator is zero, the value is set to infinity. 

For contrast and complexity, the normalization factor n is meant to be the number of voxels 
that are used in the computation of the neighborhood difference matrix. 

For Busyness, Amadasun 1989 [42] does not have the absolute value within the 
denominator. This would lead to a denominator that is always zero if implemented according 
to the equation given in Amadsun 1989 [42]. Materka 1998 [37] shows the absolute value in 
the denominator in the busyness equation, a form that we recommend. 

1. Coarseness 

	

  
g1 =

i=1

Gmax

∑ pi ⋅si{ }
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

 

2. ContrastNGTDM. Set to -1 if there is only a single grey level (no contrast can be 
computed) 

	

  

g2 =
1

Ng ⋅ Ng −1( ) ⋅ i=1

Gmax

∑
j=1

Gmax

∑ pi ⋅ pj ⋅ i − j( )2{ }⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅ 1

n
⋅

i=1

Gmax

∑ si{ }
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

3. Busyness 

	

  

g3 =
i=1

Gmax∑ pi ⋅si{ }
i=1

Gmax∑ j=1

Gmax∑ i ⋅ pi − j ⋅ pj{ }{ }  ; pi ≠ 0 ; pj ≠ 0  

 

4. Complexity 

	

  

g4 =
i=1

Gmax

∑
j=1

Gmax

∑
i − j ⋅ pi ⋅si + pj ⋅sj( )

n ⋅ pi + pj( )
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 ; pi ≠ 0 ; pj ≠ 0  

5. Texture Strength 
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g5 =
i=1

Gmax∑ j=1

Gmax∑ pi + pj( ) ⋅ i − j( )2{ }{ }
i=1

Gmax∑ si{ }
 ; pi ≠ 0 ; pj ≠ 0  

 

4. Grey Level Zone Size Matrix (GLZSM) 

Let p be the grey level zone size matrix (GLZSM) indexed by pi,j with rows i indicating grey 
levels and columns j indicating zone sizes. The largest zone size (the number of columns) 
will be denoted Smax. The total number of unique connected zones is nz. The total number of 
voxels is nv. The following metrics are taken from Tang 1998 [43]. 

1. Small Zone Size Emphasis 

	

  
Z1 =

1
nz

⋅
i=1

Gmax

∑
j=1

Smax

∑
pi, j

j2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

2. Large Zone Size Emphasis 

	

  
Z2 =

1
nz

⋅
i=1

Gmax

∑
j=1

Smax

∑ pi, j ⋅ j2{ }⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

3. Low Grey Level Zone Emphasis 

	

  
Z3 =

1
nz

⋅
i=1

Gmax

∑
j=1

Smax

∑
pi, j

i2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

4. High Grey Level Zone Emphasis 

	

  
Z4 =

1
nz

⋅
i=1

Gmax

∑
j=1

Smax

∑ pi, j ⋅ i
2{ }⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

5. Small Zone / Low Grey Emphasis 

	

  
Z5 =

1
nz

⋅
i=1

Gmax

∑
j=1

Smax

∑
pi, j

i2 ⋅ j2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

6. Small Zone / High Grey Emphasis 

	

  
Z6 =

1
nz

⋅
i=1

Gmax

∑
j=1

Smax

∑
pi, j ⋅ i

2

j2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

7. Large Zone / Low Grey Emphasis 

	

  
Z7 =

1
nz

⋅
i=1

Gmax

∑
j=1

Smax

∑
pi, j ⋅ j2

i2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

8. Large Zone High Grey Emphasis 
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Z8 =

1
nz

⋅
i=1

Gmax

∑
j=1

Smax

∑ pi, j ⋅ i
2 ⋅ j2{ }⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

9. Gray-Level Non-Uniformity 

	

  

Z9 =
1
nz

⋅
i=1

Gmax

∑
j=1

Smax

∑ pi, j{ }⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

10.  Zone Size Non-Uniformity 

 

	

  

Z10 =
1
nz

⋅
j=1

Smax

∑
i=1

Gmax

∑ pi, j{ }⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

11.  Zone Size Percentage 

	
  
Z11 =

nz

nv

 

 

Section 4: Evaluation of available codes for textural features computation 
Software Tested (alphabetical order): 

CGITA Murphy Lab Code 

GLCM (Alex Zvoleff) Orfeo 

IBEX Uppuluri matlab code 

LIFEX Vallieres TCIA code 

MaZda  

 
Software are reviewed in a randomized order, the identified list can be accessed on request 
at lapierce@uw.edu: 

Software A: Matlab code that has a stand-alone executable that does not require a Matlab 
license (uses compiled matlab and requires the compiled matlab runtime environment). 

Listed issues: 

1. Co-occurrence matrix metric computation is done in nested for loops, looks slow 
(however, ASM is vectorized, but this is the only one). 

2. Code is not well documented and references to formulae are not present in source 
code. 

3. Several co-occurrence functions are copies of each other with different names or 
names that are not from the Haralick paper. 
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4. The words “coocurrance” and “coocurrence” are interchanged (seemingly at random) 
and there are 2 copies of Inverse Difference Moment computation function under 
each spelling. 

5. An excel sheet with a list of metrics is included, but it is incomplete as there are many 
more texture metrics than are listed in the excel sheet. 

6. Changes PET values to SUV, which seems useless since everything gets linearly 
rescaled from BQML to SUV, them linearly rescaled from SUV to voxel intensity bins. 

7. Does not include any co-occurrence metrics that include partials or p(x-y) or p(x+y), 
thus the Haralick typos are not present 

8. In user manual it is actively asked for developers to help but also claimed that it may 
not be open source for long, and hints at commercialization of the package. 

Software B: Matlab and MEX code looks very cleanly written with lots of comments and 
references to publications in metric-computing functions. 

Listed issues: 

1. The Haralick GLCM typos are coded into the matlab scripts. 

2. Each GLCM metric is called individually, meaning that if multiple metrics are 
requested from the GLCM, then redundant expensive calculations will be performed 
(e.g. p(x-y) must be re-computed for each metric that uses it). 

3. GLCM code looks vectorized and efficient except for redundancies and p(x-y) and 
p(x+y) computations and removing bad entropy values by resizing matrix rather than 
setting to zero and using “find” to find those indices. 

4. There is a lot of strange error-handling that can only be triggered if the GLCM has 
only zeros as entries (an impossibility if an image exists). The authors may had a 
different intent for these. 

5. Does not compute all GLCM metrics (e.g. Clausi and some others missing). 

6. Adds hard-coded epsilons to the denominators (eps = 10^{-10}) for Amadasun 
metrics 

Software C: 

Listed issues: 

1. GCLM nested loops and sum-testing for p(x-y) will make this very slow. 

2. GLCM adds epsilon to entropy computation [log(0) = 0 vs. log(0+eps), regarding the 
Haralick paper mistake ]. 

3. Only computes 8 GLCM metrics. 

4. NGTDM metrics have epsilons added to prevent zero denominators which is 
incorrect. 

5. Nested loops for NGTDM would be very slow to run 

Software D:  

Listed issues: 

1. Only 3 choices of how to discretize, cannot define the number of grey-levels to use. 

2. Does not provide neighborhood difference matrix calculations. 

3. Does not compute Size Zone matrix metrics. 
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4. Claims that computation is faster with fewer grayscale values, which could mean the 
code is not mathematically optimized. 

5. Allows for 3D computation volumes, but only computes co-occurrence, run-length, 
and wavelet in 2D planes. 

Software E: 
Listed issues: 

1. Appears to be 2D only. 

2. Rectangular texture regions only. 

3. Confusing definitions of the metric “correlation” by providing two different metrics 
which should be the same. 

4. Still has the Haralick sum-variance typo in the formula where the entropy (rather than 
the mean) is subtracted to compute the variance. 

5. Includes something called a “Structural Feature Set”, without definition. 

Software F: Written in “R” 

Listed issues: 

1. 2D only 

Software G: Uses Khoral software package. The company has gone defunct and the code is 
not available. 

Listed issues: 

1. The website has several typos, and appears to be the source of several bad 
formulas, presumably from incorrect interpretations of the Haralick metrics. 

Software H: Very popular matlab software, gets several hundred downloads every month on 
Mathworks website.  

Listed issues: 

1. Haralick typos are coded into this software 

2. Code not optimized, takes 3 minutes for a single position. 

Software I: One of the most recent software made available. Has functionality for 3D ROIs. 

Listed issues (documentation only): 

1. Only computes six GTSDM metrics  

2. The documentation incorrectly states that the co-occurrence matrix correlation µ-
values are the 'average on row i or column j' (similarly for σ). These are supposed to 
be the distribution means, as stated in the definition of correlation above.  

3.  Uses absolute values for GTSDM 'homogeneity', which conflicts with Soh 1999 [39]. 
This actually matches the formula for 'Inverse Difference' given in Clusi 2002 [40]. 

4. The documentation formula for NGTDM busyness does not have absolute value in 
the denominator, which makes denominator always zero (explained in NGTDM 
formulae above). 
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