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The present paper deals with the inverse scattering problem involving macroscopically 
inhomogeneous rigid frame porous media. It consists of the recovery, from acoustic measurements, 
of the profiles of spatially varying material parameters by means of an optimization approach. The 
resolution is based on the modeling of acoustic wave propagation in macroscopically 
inhomogeneous rigid frame porous materials, which was recently derived from the generalized 
Biot’s theory. In practice, the inverse problem is solved by minimizing an objective function defined 
in the least-square sense by the comparison of the calculated reflection �and transmission� 
coefficient�s� with the measured or synthetic one�s�, affected or not by additive Gaussian noise. 
From an initial guess, the profiles of the x-dependent material parameters are reconstructed 
iteratively with the help of a standard conjugate gradient method. The convergence rate of the latter 
and the accuracy of the reconstructions are improved by the availability of an analytical gradient.
I. INTRODUCTION

Porous materials are encountered in a large domain of
application in building acoustics �concrete walls, rockwools,
plastic foams�, in aeronautic, in geophysics, in petroleum
prospection, in medicine �osteoporosis diagnose�… The res-
olution of the inverse scattering problem for the character-
ization of the parameters of rigid frame porous materials is of
large importance, particularly when they are spatially vary-
ing. The parameters of interest in rigid frame porous materi-
als are the porosity �, which is the ratio of the fluid volume
to the total sample volume; the tortuosity ��, which is a
parameter describing the change in magnitude and direction
of the fluid microvelocity due to the curliness of the pores;
the characteristic viscous and thermal lengths � and ��,
which are illustrating the geometry of the pores through the
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viscous and thermal losses; and the flow resistivity Rf, which
is the ratio of the fluid viscosity � to the fluid permeability
� f.

Wave propagation in homogeneous porous materials
was mainly studied after Biot’s theory1–4 and latter
contributions.5–8 However, the equations of motion for mac-
roscopically inhomogeneous porous materials were only re-
cently derived from the alternative formulation of Biot’s
theory.3,4,9,10 In particular, when the assumption of rigid
frame is valid,5–7,11 i.e., when the saturating fluid is light,
such as air, and the frame is not moving, the equations of
motion reduce to those of an equivalent inhomogeneous fluid
with spatial and frequency dependent effective density and
bulk modulus.9,10,12 The frequency band suitable to this ap-
proximation is bounded at high frequency by the diffusion
limit �when the wavelength is of the order of, or smaller than
the pore size�, and at low frequency by the Biot characteristic
frequency, below the which the skeleton may vibrate. Under

these conditions, the reflected and transmitted pressure fields



as well as the internal pressure field can be numerically
determined9,10 by means of the wave splitting and transmis-
sion Green’s functions method.13 This method is employed in
the present paper to generate synthetic data to feed the opti-
mizer solving the inverse scattering problem. For multilay-
ered materials, the analytic calculation of the scattered fields
is preferred.

Several methods have been developed to characterize
homogeneous porous samples, or layered homogeneous po-
rous samples. One is based on the measurement of the
change in the fluid volume of a chamber without or with the
sample �porosimeter for the determination of the porosity�14;
another one concerns the simultaneous measurement of the
pressure drop accross a sample and the rate of fluid flow
through a porous sample �flowmeter for the determination of
the flow resitivity�15; more recent methods deal with ultra-
sonic measurements in both time and frequency domains to
retrieve the following parameters: the tortuosity,16 the
viscous17 and thermal characteristic lengths �the Q�
method�,11 the porosity and the tortuosity simultaneously,18,19

and finally the porosity, the tortuosity, and the viscous char-
acteristic length simultaneously.20 The complexity of the
problem is hardened by the different sensitivity of each pa-
rameter on the physical quantities that are measured and to
the frequency of the solicitation. For example, both density
and bulk modulus do not depend on Rf in the asymptotic
high frequency model.

The aim of the following material is to reconstruct the
depth profiles of all or some material parameters from the
measurement of the acoustic field scattered �more specifi-
cally: reflected and/or transmitted� by a sample of known
thickness. To solve such inverse problems, the Wave Split-
ting method was extensively studied in the time domain.21–26

More recently, similar methods, together with an optimiza-
tion approach, were developed in the frequency domain.27,28

The latter are more suitable to model wave propagation in
rigid frame macroscopically inhomogeneous porous materi-
als in all its complexity, i.e., over a large frequency range for
which the five parameters have to be accounted for. More-
over, this allows us to work with band-limited data, which is
more appropriate when one has to deal with measured data.
The inverse scattering problem considered here is unidimen-
sional �depth profiling� and is solved iteratively via a mini-
mization approach based on a classical conjugate gradient
method �CG�. This method minimizes an objective function
which compares measured �or synthetic� reflection coeffi-
cients with numerically estimated ones obtained by the fre-
quency domain wave splitting and invariant imbedding
technique.24,27 The availability of the analytical gradient of
the objective function allows to accelerate the rate of conver-
gence of the optimization method. The choice of the invari-
ant imbedding technique instead of the transmission Green’s
function method is motivated by the use of the reflection
coefficient and optionally the transmission coefficient, but
also by the necessity to avoid computational traps and errors
due to the so-called “back marching effect,” also known as
the “inverse crime.”29 The latter arises when the synthetic
data are generated with a direct solver identical or very simi-

lar to the one employed in the minimization method. When

2

the invariant imbedding �inverse problem� and transmission
Green’s functions technique �direct problem� are used to-
gether with the wave splitting method, Gaussian noise is
added to the data to avoid the inverse crime.

The last part of this paper deals with profile reconstruc-
tions of one or several material parameters. The accuracy and
computation time of the reconstructions are discussed.

II. MACROSCOPICALLY INHOMOGENEOUS RIGID
FRAME POROUS MATERIALS

In this section, the acoustic wave propagation model in
macroscopically inhomogeneous rigid frame porous materi-
als is presented.9,10,12 The theory of wave propagation in ho-
mogeneous porous materials was initially given by Biot.1–4

In most of the plastic foams saturated by a light fluid like air,
the rigid frame assumption is valid so that an acoustic exci-
tation impinging on a porous sample induces wave propaga-
tion only in the fluid phase. Therefore the viscothermal ef-
fects taking place in the pore channels are included in an
effective density �e and an effective bulk modulus Ke of a
so-called equivalent fluid.7

The model of rigid frame has been recently extended to
macroscopically inhomogeneous porous media.9,10,12 In the
frequency domain, the Helmholtz equation in terms of the
fluid pressure p inside the equivalent inhomogeneous fluid
is9,10

� · � 1

�e�x,	�
� p� +

	2

Ke�x,	�
p = 0, �1�

where 	 is the angular frequency and � the nabla operator.
Attenuation, viscothermal losses and dispersion are ac-
counted for in the effective density and bulk modulus. Effec-
tive sound speed and characteristic impedance are ce�x ,	�
=�Ke�x ,	� /�e�x ,	� and Ze=�e�x ,	�ce�x ,	�.

In all of this paper, inhomogeneities occur along the x
direction and so a unidimensional approach is considered.
According to the Biot–Johnson–Allard model1–7 extended to
macroscopically inhomogeneous porous materials:9,10

�e�x,	� = � f
���x�
��x� �1 − j

Rf�x���x�
� f���x�	

F�x,	�	 , �2�

Ke�x,	� =

P0/��x�


 − �
 − 1��1 − j
Rf�x���x�

� f���x�Pr	
G�x,Pr	�	−1 ,

�3�

wherein 
 is the specific heat ratio, � f the saturating fluid
density, P0 the atmospheric pressure and Pr the Prandtl num-
ber. The well-defined correction functions of this model
are5–7

F�x,	� =�1 + j4
�� f��

2 �x�
Rf�x�2��x�2�2�x�

	 , �4�

�� f��
2 �x�
G�x,Pr	� =�1 + j4
Rf�x�2��x�2��2�x�

Pr	 . �5�



The five so-called acoustical parameters ��x�, ���x�,
��x�, ���x�, and Rf�x� described in the introduction become
here space-dependent functions.9,10 Without addition of
shape factors, the thermal and viscous permeabilities are as-
sumed to be equal so that the flow resistivity Rf appears in
both correction functions.6,7

The wave splitting and invariant imbedding method cho-
sen to solve both the direct and inverse scattering problem is
solely based on the equations of motion �6�:9,10

d

dx
� p

��x�V
� = 
 0 − j	�e�x,	�

−
j	

Ke�x,	�
0 �� p

��x�V
� ,

�6�

where V is the fluid particle velocity. This set of equations is
equivalent to the Helmholtz equation �1�.

III. STATEMENTS OF THE PROBLEM AND DIRECT
SCATTERING SOLUTION

In all the following paper, a macroscopically one-
dimensional �1D� inhomogeneous porous slab of thickness L,
solicited by an incident plane wave propagating initially in
the air �the saturating fluid here�, is considered. This is de-
picted in Fig. 1.

The wave splitting method was mainly used to solve
both direct and inverse scattering problems in several fields
of physics, especially in electromagnetism, initially in the
time domain21–23,30 and then in the frequency domain.9,10,13,27

In order to avoid convolution products in time and fractional
derivatives,18,20 the direct and inverse scattering problems
are treated in the frequency domain. Also, the Fourier trans-
form p�x ,	� of the measurable pressure field p�x , t� is used.
The inverse Fourier transform is chosen such that

p�x,t� =�
−�

�

p�x,	�exp�j	t�d	 . �7�

The inverse scattering problem consists in the retrieval
of the profile of the five acoustical parameters from the mea-
surement of the pressure waves reflected by an inhomoge-

ω+p (L, ) = pt

θ

0

ω

ω

p (0, ) = p−

p (0, ) = p+

r

i

y

xL

FIG. 1. Slab of porous material of thickness L. pi is the incident signal, pr is
the reflected signal, and pt is the transmitted signal. The angle of incidence
is denoted by 
. In a homogeneous medium, p− are the backward propagat-
ing waves and p+ are the forward propagating waves.
neous porous sample. The solution of the direct scattering
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problem is used to improve each profile at each step of the
iterative optimization approach. In order to be able to simul-
taneously reconstruct more than one depth-dependent mate-
rial property, enough information must be provided. Several
frequencies are used in order �I� to regularize the inverse
scattering problem, �II� to use a large enough frequency band
for most of the acoustic parameters to have an influence on
the scattered field, and �III� to be able to recover from the
“low frequency” content of the scattered field the average
values of the acoustic parameters and from its “high fre-
quency” content their spatial variations, which can be sharp
in case of layered medium. On the other hand, the problem is
much more complicated than the one usually treated in ho-
mogeneous case because, for instance, the porosity and tor-
tuosity are space dependent functions and cannot be “sim-
ply” recovered from the instantaneous reflection at the first
interface of the sample. The additional information available
from the wave front during its propagation inside the whole
sample has to be caught. To increase the amount of informa-
tion, several operations are applicable: �I� For the simulta-
neous reconstruction of two profiles, a two-sided normal re-
flection measurement can be used, i.e., the recording of both
the reflected data at x=0 after an excitation from a source at
x�0 and the reflected data at x=L after an excitation in the
opposite direction from x�L; �II� For the simultaneous re-
construction of one to four depth profiles, several two-sided
reflection measurements at normal incidence can be done by
imposing or not a rigid wall condition on the opposite side of
the solicitation; �III� Another classical way to solve the prob-
lem of reconstructing many depth profiles is to use acoustic
waves impinging on the porous sample at various oblique
incidence. The last operation is followed and as many pro-
files as angles of incidence should normally be reconstructed.

The direct scattering problem consists of determining
the scattered, i.e., reflected and transmitted, pressure field
due to the presence of a macroscopically inhomogeneous
porous slab. Therefore, the aim is to solve the system of
equations �6� for an incident acoustic excitation from a po-
sition x�0. The solution is obtained through the wave split-
ting and invariant imbedding approach9,10,12,27, which re-
quires boundary conditions. They are found via the
characteristic impedances of both surrounding media for x
�0 and x�L. Here, for all x�0, the medium is a homoge-
neous free fluid �air�. Its characteristic impedance is denoted
by Z0=� fcf with cf the sound speed in the free fluid. For all
x�L, the medium can be either air or a rigid wall. Its im-
pedance is denoted by ZL, which is respectively Z0 in the first
case and the infinity in the second case.

A. Wave splitting transformation

Wave splitting is a method based on the mathematical
properties of the wave equation. It had been demonstrated
since d’Alembert31 that the solution of the wave equation in
terms of the pressure field p�x , t�, which is the inverse Fou-
rier transform of the Helmholtz Eq. �1�, can be exactly de-
composed into two components p+�x , t� and p−�x , t� corre-
sponding to forward and backward propagating waves in a

13,21–24,32
homogeneous medium. The transformation is gener-



alized for inhomogeneous media since it can be seen as an
algebraic transformation from the base of functions
�p ;��x�V� to the base of functions �p+ ;p−�. Several transfor-
mations are available. In the present case, the so-called
vacuum wave splitting tranformation9,10,27,13 is chosen,

�p+

p− � =
1

2
�1 Z0

1 − Z0
�� p

��x�V
� . �8�

This choice is possible because the wave splitting is
coupled with an invariant imbedding technique. In a general
wave splitting transformation, the characteristic material im-
pedance Ze�x ,	� should be used.21–23 However, the invariant
imbedding technique, which will be detailed in the next sec-
tion, allows a transformation that uses the known character-
istic impedance Z0=� fcf of the saturating fluid instead.27,28

As a schematic explanation, one considers that at the initial
state, and for all x�L, there is only the ambient fluid of
characteristic impedance Z0. Then, layer after layer, the in-
homogeneous porous material is constructed from x=L to
x=0. Therefore, in the present formulation, each nth layer of
infinitesimal thickness dx added at x=L−ndx is taken into
account as a perturbation of the impedance Z0 at the point
x=L−ndx. Continuity conditions from layer to layer are im-
plicitely accounted for.

Applying the transformation �8� to the equations of mo-
tion �6� in the frequency domain straightforwardly yields9,10

d

dx
�p+

p− ��x,	� = �− A+ − A−

A− A+ ��p+

p− ��x,	� , �9�

with

A��x,	� =
j	

2
� Z0

Ke�x,	�
�

�e�x,	�
Z0

	 . �10�

For all x�0, the pressures waves p+�x ,	� and p−�x ,	�
are respectively the incident and reflected pressure waves.
Similarly, for all x�L, p+�x ,	� corresponds to the transmit-
ted pressure wave. Therefore, the splitted pressure waves p�

are easily connected to the reflection and transmission coef-
ficients R�	� and T�	�. These coefficients contain informa-
tion on the inhomogeneities inside the sample, but an exten-
sion of these data for each depth x is necessary to take
accurately into account the material properties variations be-
tween x=0 and x=L. A continuous approach is done in the
following by taking the limit dx→0.

B. Invariant imbedding method

In the invariant imbedding method, an imbedding geom-
etry is considered, i.e., a subslab between x and L of the total
material slab of thickness L. For each subslab, it is assumed
that the medium filling the domain between 0 and x is the
same as the medium chosen for all x�0, e.g., air in the
treated case. This allows us to define the x-dependent reflec-
tion and transmission coefficients R�x ,	� and T�x ,	� as fol-
lows:

p−�x,	� = R�x,	�p+�x,	� , �11�

+ +
p �L,	� = T�x,	�p �x,	� . �12�

4

From the above relations, one deduces that R�0,	�
=R�	� and T�0,	�=T�	� are the usual reflection and trans-
mission coefficients for the total porous slab of length L.
These coefficients link the measurable reflected and transmit-
ted pressure fields, respectively denoted by pr�	�=p−�0,	�
and pt�	�=p+�L ,	�, to the incident pressure field pi�	�
=p+�0,	� illuminating the porous slab at x=0, as in Fig. 1.

Combining Eqs. �11� and �12� with �9� and �10� leads to
the imbedding equations for R�x ,	� and T�x ,	�,

d

dx
R = 2A+R + A−�1 + R2� , �13�

d

dx
T = �A+ + A−R�T . �14�

The first equation is a nonlinear Riccati differential
equation for R, which can be solved with a classical fourth
order Runge Kutta algorithm. The second one is a linear
differential equation for T, which can be solved with the help
of the method described in Appendix A, once the Riccati
equation is solved for R. The resolution of these equations
requires boundary conditions to be satisfied. According to the
definition of the imbedding geometry, there is no porous sub-
slab between x and L when x=L. This means that there is just
a simple interface between the two homogeneous media of
characteristic impedances Z0 and ZL. These impedances are
constants so that the boundary conditions at x=L for the
imbedding geometry are

R�L,	� =
ZL − Z0

ZL + Z0
, �15�

T�L,	� =
2ZL

ZL + Z0
. �16�

If the homogeneous medium for all x�L is the same
free fluid as the one for all x�0, then ZL=Z0 and the bound-
ary conditions reduce to

R�L,	� = 0, �17�

T�L,	� = 1. �18�

If the homogeneous medium for all x�L is a rigid wall,
then ZL=�. There is no transmitted waves, and only the im-
bedding Eq. �13� for R�x ,	� is used. The boundary condition
reduces to

R�L,	� = 1. �19�

Equations �11� and �12� together with the boundary con-
ditions �15� and �16� constitute the direct solver.

C. Notes about the oblique incidence

The oblique incidence implies some slight changes in
Eqs. �6�–�14�. In the latters, for an angle of incidence 
, the
effective bulk modulus Ke, the characteristic impedances Z0

and Ze must be replaced by10

K̄e = Ke�1 −
ce

2

c2 sin2
�−1

, �20�

f



Z̄0 =
Z0

cos 

, �21�

Z̄e = Ze�1 −
ce

2

cf
2 sin2
�−1/2

. �22�

These expressions are extracted from the projection of
the wave vector onto the x axis.

In the next section, the optimization method that is em-
ployed to solved the inverse problem of the recovery of the
profiles is presented. The transmission data are not often
used28 and may even trap the optimizer.27 Therefore, in the
following, only the minimization of the reflection data is
detailed.

IV. OPTIMIZATION APPROACH OF THE INVERSE
SCATTERING PROBLEM

Let us introduce a five-element vector

p = ���x�,���x�,��x�,���x�,Rf�x��T, �23�

where the superscript T denotes the transpose operation. An
objective function J�p� is defined such that27

J�p� = 


min


max



	min

	max

WR�	��R�0,	;
� − Rm�	;
��2, �24�

where Rm is the measured reflection coefficient, R�0,	 ;
�
the reflection coefficient calculated at x=0 with the help of
our direct solver presented in the previous section, and WR a
non-negative frequency-dependent weighting function.

The objective function is defined such that a summation
is performed over the angles of incidence between 
min and

max, and over a frequency band �	min,	max�. The larger the
number of angles of incidence and the number of discrete
frequencies, the more regularized the minimization problem
is.

The optimal values of the elements of p are obtained
when the objective function J�p� is minimal. These optimal
values correspond to the profiles that are to be reconstructed.
Therefore the optimization approach consists of minimizing
the function J�p� from an initial guess of the elements of the
vector p. The resolution of our problem, involving the mini-
mization of the function J�p�, is hopeless if no other infor-
mation is available. If the gradient of the objective function
is known for all x—analytically or numerically—the conver-
gence to the global minimum is much improved and
accelerated.25,27 This is due to the fact that the gradient pro-
vides the best directions to follow in order to converge to a
minimum. Moreover, if the gradient is available for all x, the
profiles of each parameter, along the sample thickness, are
optimizable. Then, well-known iterative minimization rou-
tines can be applied.

A. Analytical gradient of the objective function

A small perturbation �p is applied to the material prop-
erty vector p. By definition, the perturbation of the reflection

coefficient is �R= R̃−R where R̃=R�x ,	 ;p+�p� is the solu-
27
tion of the perturbed Eq. �13�, which becomes:

5

d

dx
�R − 2�A+ + A−R��R = 2R�A+ + �1 + R2��A− �25�

with the perturbed condition �15� reducing to

�R�L,	� = 0 �26�

because the impedances Z0=� fcf and ZL are independent of
the material properties, which are solely included in the vec-
tor p.

The perturbations of the coefficients A� are deduced
from Eq. �10� and are expressed, for any oblique angle of
incidence, as

�A� =
j	

2
�Z0�K̄e

−1 � Z0
−1��e� , �27�

wherein the perturbation of �e �Eq. �2�� and of K̄e
−1 �Eq. �20��

yield

��e =
��e

��
�� +

��e

���

��� +
��e

��
�� +

��e

�Rf
�Rf , �28�

�K̄e
−1 = �Ke

−1 +
sin2


�e
2cf

2 ��e �29�

with

�Ke
−1 =

�Ke
−1

��
�� +

�Ke
−1

���

��� +
�Ke

−1

���
��� +

�Ke
−1

�Rf
�Rf .

�30�

From Eqs. �2� and �3�, the partial derivatives in Eqs. �28�
and �30� are reduced to functions in terms of ��x�, ���x�,
��x�, ���x� and Rf�x�.

The increment of the objective function �24� induced by
the perturbation �p takes the form25,27

�J�p� = J�p + �p� − J�p� = 2 Re


,	

u�0,	;
��R�0,	;
� ,

�31�

where Re represents for the real part and wherein the auxil-
iary function u�x ,	 ;
� is defined such that

u�0,	;
� = WR�	��R�0,	;
� − Rm�	;
���, �32�

in which the superscript
�

denotes the complex conjugate.
Using the boundary conditions �26� at x=L, the follow-

ing integration rule can be applied:

− u�0,	;
��R�0,	;
�

= �
0

L � d

dx
u�x,	;
��R�x,	;
�	

x=z
dz , �33�

the integrand of which, from Eq. �25�, is developed as fol-
lows:

d

dx
�u�R� =

du

dx
�R + u

d�R

dx
= �du

dx
+ 2�A+ + A−R�u��R

+ 2Ru�A+ + �1 + R2�u�A−. �34�

u�x ,	 ;
� is an arbitrary function, except at x=0, so that

we can choose it in order to eliminate the dependence on the



unknown perturbation �R in Eq. �34�. Thus, the following
linear first order differential equation must be satisfied:

du

dx
+ 2�A+ + A−R�u = 0, �35�

with the boundary conditions at x=0 given in Eq. �32�. This
equation can be solved iteratively, as explained in Appendix
A.

Combining Eqs. �33� and �31� with the condition im-
posed in Eq. �35�, the perturbation of the objective function
reduces on one hand to

�J�p� = − 2Re


,	
�

0

L

�2Ru�A+ + �1 + R2�u�A−�dx

= − Re�
0

L




,	

j	�Z0�1 + R�2u�Ke
−1

− Z0
−1�1 − R�2u��e�dx , �36�

and on the other hand, the same perturbation can be ex-
pressed as the inner product

�J�p� = �
0

L � �J

��
�� +

�J

���

��� +
�J

��
�� +

�J

���
���

+
�J

�Rf
�Rf	dx . �37�

Therefore, with the help of Eqs. �28� and �30�, the iden-
tification of �36� with �37� leads to the exact expression of
the gradient of the objective function. The components of the
gradient in terms of each of the parameters to reconstruct are

�J

��
�x� = − Re



;	
j	�Z0�1 + R�2u

�Ke
−1

��

− Z0
−1�1 − R�2u

��e

��
� , �38�

�J

���

�x� = − Re


;	

j	�Z0�1 + R�2u
�Ke

−1

���

− Z0
−1�1 − R�2u

��e

���
� , �39�

�J

��
�x� = − Re



;	
− j	�Z0

−1�1 − R�2u
��e

��
� , �40�

�J

���
�x� = − Re



;	
j	�Z0�1 + R�2u

�Ke
−1

���
� , �41�

�J

�Rf
�x� = − Re



;	
j	�Z0�1 + R�2u

�Ke
−1

�Rf

− Z0
−1�1 − R�2u

��e

�Rf
� . �42�

In the above relations, all partial derivatives are

functions of the components of the vector
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p= ���x� ,���x� ,��x� ,���x� ,Rf�x��T via the definitions of �e

and Ke in Eqs. �2� and �3�. The available analytical expres-
sion of the gradient will help the iterative minimization
scheme to converge faster to the optimal depth profiles of the
five parameters of interest. Classically, one of the most suit-
able iterative algorithms for our problem is the conjugate
gradient method.25,27,33–35

A discussion of the numerical calculations, and a presen-
tation of some reconstructions, are given in the following
section.

V. PROFILE RECONSTRUCTION OF x-DEPENDENT
POROUS MATERIAL PROPERTIES: SIMULATIONS

In this section, the computation of the direct scattering
solver from Sec. III and the iterative method chosen to solve
the optimization problem from Sec. IV are described. The
differences with similar problems in electromagnetism25 or
transmission line theory27 mainly concern the numerical as-
pects, particularly the choice of the frequency range and the
number of points for discretizing our samples. Physical as-
pects, such as the specific dispersion and absorption pro-
cesses and properties of porous materials linked to the rela-
tions �2�–�5�, in which the five material parameters we deal
with are introduced, are also treated.

A. Conjugate gradient method

Due to the fact that the objective function J�p�x�� �24� is
not a quadratic form and continuous in p�x�, the optimization
problem we deal with is nonlinear. The minimization should
give accurate enough results when the analytical gradient of
J is available. The classical and widely used conjugate gra-
dient method �CG� is one of the most suitable iterative
algorithms25,33–35 for minimization. For clear and rigorous
details about the method, the reader can refer to a tutorial
�with provided algorithms�.33 For CG algorithms, as well as
other optimization techniques, the reader can refer to Polak35

and Press et al.34 Herein, we describe the CG algorithm for
the reconstruction of a single parameter p�x�, e.g., the poros-
ity ��x�. The reconstruction of the other parameters can be
simply derived in closed form. The gradient �J /�p is denoted
by G�p�. The implementation is as follows:25,33,34

• Step 0: Initial approximation: For all x in �0,L�, p�x�=1
=p�0�.

• Step 1: Set i=0; Solve the direct problem for all x in �0,L�
using Eq. �13�–�16�; Calculate the gradient of J with re-
spect to � with the help of Eq. �38�; For all x in �0,L�,
G�0�=G�p�0��= �J / �� �p�0��; Set D�0�=G�0�. For any itera-
tion order i, D�i� is the search direction.

• Step 2: The line search consists in computing a scalar �i

such that

∀x � �0,L�,J�p�i� − �iD
�i�� = min

��R
�J�p�i� − �D�i��;� � 0� .

�43�

• Step 3: Improve the reconstruction by setting p�i+1�=p�i�

−�iD
�i�.

• Step 4: Compute a new gradient G�i+1�=G�p�i+1�� with the

help of Eq. �38�.



• Step 5: if G�i+1���, with ��1 the convergence criterion,
STOP. Else, if i�MaxIter, with MaxIter the maximal
number of iterations, STOP. Otherwise, update the direc-
tion search with a Polak–Ribière condition:33,35

D�i+1� = G�i+1� + 
iD
�i� �44�

with

i = max�G�i + 1�TG�i+1� − G�i + 1�TG�i�

G�i�TG�i�
,0� . �45�

Set i= i+1 and GO TO Step 2.

The minimization over the parameter � is easily
achieved by means of the Nelder and Mead Simplex
method.34,36 This is a fast way to solve an unconstrained
minimization problem with only one or a few variables. In
case of the simultaneous reconstruction of more than one
parameter, � becomes a vector with as many components as
analytical gradients �or material properties to reconstruct�.

B. Numerical settings

The general procedure for carrying out the reconstruc-
tion of the material profiles is now described.

The simulations are performed for an acoustic plane
wave excitation coming from x�0, for several angles of
incidence ranging from 
=0 rad to 
=� /3 rad, and either
for ZL=Z0=� fcf �same fluids on each side of the slab� or
ZL=� �rigid wall at x=L�. The advantage of the rigid wall is
to detect a reflected signal with large amplitude despite the
strongly absorptive material through which the waves travel
two times.

1. Generating profiles and scaling

For each parameter to reconstruct, a depth profile is cre-
ated. The value of each parameter at the boundary x=0 is
given in Table I. These values were measured on a porous
polyurethane foam.11 When performing the numerical recon-
struction of some of the five parameters along the depth x,
the others remain constant.

The parameters in Table I can be classified as: �i� those
without dimensions �� and ���, which vary around one, their
value in the ambient fluid, �ii� those with dimensions of
length �� and ���, which are of the order of several hun-
dreds of micrometers, and �iii� the last one �Rf�, whose value
is of the order of one to ten thousand.

In order to optimize the detection of variations in the
profiles that are of similar range for each parameter, a scaling
can be operated. While the parameters keep their physical
values when the cost function is evaluated by solving the

TABLE I. Values of the porous material at x=0.

� �� �

��m�
��

��m�
Rf

�Ns m−4�
L

�cm�

0.96 1.07 273 672 2843 2
direct problem at each iteration, they are scaled while the

7

minimization is running by means of the CG algorithm.
When a scaling is applied, some new parameters are defined,

∀x � �0,L�, ��S = 10 000� ,

�S� = 10 000��,

RfS
= Rf/1000.

�46�

2. Generating synthetic data

Once the profiles are selected for numerical tests, the
effective density �e and Ke are calculated using Eqs. �2� and
�3�. From the effective characteristic impedance Ze=��eKe,
the synthetic reflection coefficient Rm is generated.

In a multilayer case, the reflection coefficients Rm�	 ;
�
are calculated by a recursive method such as the determina-
tion of local surface impedances7 Z�x� in an imbedding ge-
ometry,

Z�xi� = Z̄e�xi�
− jZ�xi+1�cotan�kdx� + Z̄e�xi�

Z�xi+1� − jZ̄ecotan�kdx�
, �47�

Rm = R�x1� =
Z�x1� − Z̄0

Z�x1� + Z̄0

�48�

wherein xi, i=1. . .Nx−1 is the discretization of x from x1

=0 to xNx
=L, dx=xi+1−xi the thickness of an infinitesimal

layer, k=	 / c̄e�x ,	� the component of the wave vector along

the x axis inside the porous slab in which c̄e=�e / Z̄e with Z̄e

from Eq. �22�; and Z�xNx
�= Z̄L is the known impedance at x

=L. Another advantage of generating data by these methods
is that the inverse problem can be solved without adding
artificial noise. Indeed, the direct solver of the optimization
process uses a completely different technique from the solver
for generating synthetic data, and thus the “inverse crime”29

is avoided.
For other inhomogeneous profiles, continuous or not, the

synthetic data Rm can be generated by a wave splitting and
transmission Green’s functions method9,10 �WS-TGF�. The
latter is a direct solver that accurately predicts the reflected
and transmitted pressure fields, with explicit expressions of
the reflection and transmission coefficients, for all the con-
sidered frequencies. The WS-TGF method is therefore suit-
able to generate data in the present work. This method is not
similar to the direct solver, except that it uses forward- and
backward-propagating waves, e.g., the wave splitting trans-
formation �WS�. As explained in Lesselier and Tabbara,26 the
invariant imbedding21–23,25,27 technique is similar to layer
stripping37 and both are based on iterative resolutions of a
Riccati equation as in Eq. �13�, whereas the transmission
Green’s functions �TGFs� technique are linked to the
Cholesky factorization of the matrix equation as in �9�,
which is also similar to the so-called downward
continuation.26,38 Despite these differences between the
method of generating data and calculating the field during
the optimization, Gaussian noise is added to the synthetic

data to simulate experimental error.



3. Initial guess of the parameters

The optimization approach consists of retrieving the ma-
terial parameter profiles by minimizing the objective func-
tion J�p�x�� from Eq. �24�. Unfortunately, in general, we do
not know a priori much about the sample. Then, initial val-
ues must be chosen with respect to some general knowledge
about rigid frame porous media. In such materials, the values
of the porosity ��x� and the tortuosity �� are close to their
values in the surrounding fluid, which is one. As to the char-
acteristic lengths, in plastic foams entering into the frame-
work of the rigid frame assumption, we can assume initially
that ���x��3��x�, with ��x� varying potentially around
100 �m. The flow resistivity Rf�x� has a wide range of varia-
tion, but to be able to use the equivalent fluid model, this
parameter must not be too large. It is assumed here that Rf�x�
can vary from 1000 N s m−4 to 20 000 N s m−4. On account
of these remarks, but in somewhat arbitrary fashion, we
chose the initial values in Table II for the profile reconstruc-
tions.

In practice, the instantaneous reflection at the first inter-
face can provide the material parameter values at x=0+. This
corresponds to the first pressure wave recorded in reflection
in the time domain, due to the sudden addition of the solid
frame at the interface at x=0. This method is valid as con-
cerns the porosity and the tortuosity in the high frequency
asymptotic model.7,18,20 Then, the values so obtained can be
employed as more suitable initial guesses.

To bound the parameter values into the minimizer is
similar to add constraints. However, the unconstrained mini-
mization scheme can be kept when an appropriate nonlinear
transformation is used. The latter is given by the relation pi

= f��i ,pmini
,pmaxi

�, i=1. . .5, such that pi is the ith component
of the vector p, i.e., one of the five acoustical parameters of
the porous medium, with pmini

and pmaxi
the related lower and

upper bounds. The parameter �i is the transformed uncon-
strained variable on which is applied the conjugate gradient
algorithm. An infinite number of nonlinear transformations
exists39 and one is selected and detailed in Appendix B. The
use of bounds can help to retrieve the profiles of the charac-
teristic lengths ��x� and ���x� simultaneously with one or
several other parameters since only their squared values ap-
pear in the equivalent fluid model, in Eqs. �1�–�5�. The
bounds force the minimizer to seek positive values within a
physical meaning.

4. Choice of the weighting function WR„�… and
filtering

The weighting function WR�	� is chosen to emphasize
the high frequency components in the minimization proce-
dure because these components can reproduce fast variations
of the material properties �i.e., because the wavelengths are

TABLE II. Initial values for the reconstructions.

� �� �

��m�
��

��m�
Rf

�Ns m−4�

1 1 100 300 1000
small�. Unfortunately, reconstructions based only on high
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frequency components are not accurate enough because of
unwanted variations in the retrieved profiles.27 Moreover, the
precision of the Runge–Kutta method to solve the differential
Eq. �13� decreases when frequency increases. Low frequency
components seem to stabilize and smooth the reconstructed
profiles. A suitable weighting function is WR�	�
=100−�	/	max�2 or WR�	�=1000−�	/	max�2 if one wants to re-
duce the high-frequency contribution.

For most of the reconstructions, the band-limited data
induce oscillations in the gradient of the objective function,
and therefore in the reconstructed profiles. To limit these
artifacts, a sliding average window filter is applied to the
gradient along the depth x. The length of the window is
chosen to be floor�Nx /Nf� with Nx the number of points to
discretize the sample thickness, Nf =128 the desired number
of windows to apply along the thickness and floor the
floor function that converts any real number a to the highest
integer less than or equal to a. The gradient is averaged in
this window and then the window is slid from x=0 to x=L
with a step dx. The result of this procedure is a smoothed
gradient and smoothed material parameter profiles, without a
noticeable change in the physical information.

5. Convergence criterion

In the given conjugate gradient algorithm, the conver-
gence criterion is based on the value of the gradient of the
cost function J. When the minimum of J is found, the gradi-
ent should have converged to zero. However, in practice, a
small value � is chosen such that the algorithm stops when
the value of the gradient for all x is below the threshold �. It
is difficult to select an optimal criterion � because the influ-
ence of each parameter on the reflection data is different.
This means that to screen the variations in the material pa-
rameter profiles that do not substantially influence the reflec-
tion coefficient a strict criterion is necessary, while a weak
criterion is sufficient for the other parameters. To overcome
this problem, another convergence criterion is added to the
previous one. For all the reconstructions performed in the
following, the evolution of the objective function J with the
number of iterations Niter is obtained as in Fig. 2. After a
certain number of iterations, the cost function J is not de-
creasing anymore, and its value remains the same for the
next iterations. The applied convergence criterion consists of
evaluating the variations of J�p�x�� for several consecutive
iterations. If the variations of J between five consecutive
iterations are below �, the global minimum might have been
found and the algorithm stops. Five iterations were chosen
because it can occur that two or three consecutive evalua-
tions of J are equal. For all the reconstructions, the algorithm
stops if the convergence criterion on the gradient, normalized
by the number of frequency points N	, is below �=10−7 or
5 .10−7, or if the value of J does not vary more than �
=10−12 after five successive iterations, or if the number of
iterations exceeds a given number NMaxIter=100.

With these ingredients, some reconstructions are per-

formed.



able I
C. Single profile reconstruction

Each of the five acoustical parameters of a virtual mac-
roscopically inhomogeneous rigid frame porous material are
reconstructed independently and successively.

The frequency band �500 Hz, 500 kHz� is discretized
into N	=200 frequency points with a logarithmic spacing. In
practice, according to the value of �� from the first layer in
Table I, the bandwidth of the incident spectrum signal should
not exceed the frequency f =500 kHz �	=2�f�. This verifi-
cation is essential to be sure to avoid the diffusion effect that
appears when the wavelength of the acoustic excitation is of
the order of the average pore radius, which can be related in
a rough approximation to ��. The lower bound is chosen
small enough to have a relatively large frequency range. This
can help to improve the reconstruction procedure since the
objective function J in Eq. �24� and its gradient of compo-
nents Eqs. �38�–�42� are summed over a range of frequen-
cies.

The differential Eq. �13� is solved using the fourth order
Runge–Kutta method. However, the thickness of the sample
must be discretized with a small-enough spatial step dx so
that, from x=0 to x=L, at least Nx=400 points are needed in
order for the direct solver to converge with enough precision.
This choice is a bit empirical but, to allow us to change the
frequency band and the material thickness, Nx=800 points
are used.

As a first test, a four-layered material in which only the
porosity is varying is simulated with the help of Eqs. �47�
and �48�. The optimal profile after 17 iterations and 5 min,
11 s of computation time is presented in Fig. 2 together with
the evolution of the objective function J with the number of
iterations. The optimization was performed on a pentium 4
PC, with a CPU frequency around 2.99 GHz and 1 Gb of
RAM memory.

To test the stability of the algorithm, a larger amount of
Gaussian noise was added to the synthetic reflection coeffi-
cient. Both the porosity profile and the reflection coefficients
are plotted in Fig. 3 for a level of Gaussian noise with a
standard deviation set to 0.05. For the three-layer material in
panel in Fig. 3�a�, the maximum number of iterations was set

0 0.005 0.01 0.015 0.02
0.86

0.88

0.9

0.92

0.94

0.96
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True profile
Reconstruction with Z

L
=Z

0

Reconstruction with Z
L
=∞

(a)

FIG. 2. �Left panel� porosity profile reconstruction after 17 iterations for a
5 min and 11 s. The data were noiseless. The initial guess is ��x�=1 for all
of the number of iterations Niter. The other parameters are constants from T
to 50. One of the reconstruction process stopped after 37
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iterations because the last five evaluations of the cost func-
tion J���x�� gave the same values. This shows that from one
computation to another, there is good stability and that the
stopping criteria involved are not always the same from one
reconstruction to another. The reconstruction of a continuous
profile of the porosity with addition of two air layers is given
in panel 3�b� with a filtered contaminated reflection coeffi-
cient. The convergence is faster, after 21 iterations and 6 min
and 34 s. From these minimization results, one remarks that
the reconstructed reflection coefficients are smoother than
the “measured” ones. The algorithm therefore appears to be
stable with respect to additive Gaussian noise.

The other four parameters, tortuosity, viscous and ther-
mal characteristic lengths and flow resistivity, can also be
reconstructed from data pertaining to single-sided normal re-
flection. However, for a given number of iterations, the ac-
curacy of the reconstructions is not the same from one pa-
rameter to another. For instance, the tortuosity is retrieved
with an accuracy similar to the one of the porosity, but using
the stronger weighting function WR=1000−�	/	max�2 and a
sliding average window filter to avoid oscillations due to the
band-limited data. The use of double-sided reflection data
helps to improve the reconstruction, but makes the minimi-
zation process slower. Using the same weighting function
and filter as the ones used to reconstruct the tortuosity en-
ables the characteristic viscous length � is to be well recon-
structed with the use of a rigid wall backing. A slightly better
reconstruction is obtained by scaling the parameter �S

=10 000�. The reconstruction of the characteristic thermal
length requires more computational time, but the conver-
gence to the true profile in the studied case is not optimal
when single-sided reflection data are employed. With a rigid
wall backing, the minimization converged only for plane
wave excitation at oblique incidence. The difficulty of recon-
structing the characteristic thermal length might come from
the fact that thermal losses are much less important than
viscous losses in most of the porous materials in which the
rigid frame assumption is valid. These losses were even ne-
glected for a long time in the theory of wave propagation in
porous materials.1–5 The fifth parameter, the flow resistivity,
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is also difficult to reconstruct despite the fact that the objec-



tive function is substantially diminished after a few itera-
tions. This result is mainly due to the poor influence of the
flow resistivity on the reflection data. This parameter mostly
influences low frequency wave propagation attenuation. A
more favorable reconstruction can be carried out when the
lower bound of the frequency band is decreased.

Examples of reconstructed profiles for the tortuosity, the
viscous and thermal characteristic lengths, and the flow re-
sistivity are given in Fig. 4. Results and details of the com-
putational choices are gathered in Table III. According to
these results, the combined use of scaling and no backwall
�ZL=Z0� at normal incidence seems appropriate to recon-
struct several parameters, except Rf.

The reconstructed profiles of properties that are discon-
tinuous exhibit large jumps, which amount to singularities
that are the signatures of numerical difficulties. Continuous
parameter profiles, even with discontinuous gradients, induce
a less ill-posed optimization problem allowing successful
and fast reconstructions. To illustrate the last remark, some
examples of single continuous profile �inside the porous
slab� reconstructions are presented in Fig. 5. These profiles,
which are constructed in a manner similar to that of the po-
rosity in Fig. 3�b�, yield more satisfactory reconstructions
that are easier to carry out than the ones in Table III and Fig.
4, as we expected. We also studied the case of two air layers,

FIG. 3. Convergence and stability of the conjugate gradient method as a fun
and the corresponding real part of the reflection coefficient. The maximum n
deviation 0.05. The noise added to the reflection coefficient is not filtered in
I.
corresponding to the existence of two jumps in the material
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parameter profiles. These jumps were found to be easier to
retrieve than the ones in the profiles of Fig. 4 because air is
a homogeneous fluid whose physical properties are known.
They are introduced in the computation as known param-
eters. The reflection coefficients were generated with the
help of the wave splitting and transmission Green’s functions
method �WS-TGF�.9,10 Since this method is considered too
similar to the one �WS-II� of the direct problem solver used
in the minimization process, a small random Gaussian noise
with standard deviation of 0.02 was added to the synthetic
data. This corresponds to a large signal to noise ratio �SNR�
of 100.

A final remark about the reconstruction of a single pa-
rameter: The use of several angles of incidence 
, and of
both backings, increases the available data and therefore the
rate of convergence and the accuracy of the reconstructions.
Several attempts were made to recover ���x� �which is dif-
ficult to reconstruct� without scaling, for two or three angles
of incidence 
=0, 
=� /6 and 
=� /3. The results are shown
in Fig. 6.

D. Simultaneous reconstruction of two profiles

The reconstruction of several material property profiles

of the noise level. Each row shows the reconstructed profile of the porosity
er of iterations was set to 50. The added noise is Gaussian, with a standard
�a� and filtered in panel �b�. The other parameters are constants from Table
ction
umb
panel
simultaneously is more difficult to carry out. Since our aim is



ideally to retrieve five profiles, several records of reflected
signals are necessary. Two very different angles of incidence
are chosen, 
1=0 rad and 
2=� /3 rad.

The porosity and the tortuosity are two parameters with-
out dimensions, that have an important influence on the re-
flection coefficient. For continuous profiles, the simultaneous

FIG. 4. Reconstruction of �a� the tortuosity ��, �b� the viscous characteristic
A small amount of Gaussian noise with a standard deviation of 0.01 is
reconstruction procedures are gathered in Table III. For each reconstruction

TABLE III. Convergence of the reconstruction proc
computation time. Simulations are performed with or
at normal or oblique incidence. N.A. stands for No
when there are giant values at jump positions. Fail
the initial guess. “. . .” means that no computation wa

ZL=Z0

Niter CPU time Niter

��x� 20 6 min 31 s 13
���x� 24 5 min 31 s 22
��x� 58 91 min 26 s 20

N.A. N.A. 19
���x� 21 67 min 38 s N.A.

6 2 min 38 s N.A.

. . . . . . 12

. . . . . . 11
Rf�x� Fails . . . Fails

8 13 min 26 s 32
49 96 min 41 s . . .
. . . . . . 31
11
reconstruction of these two parameters is quite satisfactory,
as depicted in Fig. 7. The reconstruction is obtained after 41
iterations and a bit more than 1 /2 h of computation time.
The backing is such that ZL=Z0.

Attempts of simultaneous reconstruction of other
couples of material parameters were also made. It was

h �, �c� the thermal characteristic length ��, and �d� the flow resistivity Rf.
to the data employed for each reconstruction. The performances of the

other parameters are constants from Table I.

as a function of the number of iterations Niter and
ut a rigid wall backing, with or without scaling, and
curate, when reconstructions oscillate too much, or
signates reconstructions that do not vary much from
e.

L=� Scaling 
 �

CPU time �rad�

4 min 37 s No 0 5e−7

8 min 11 s No 0 5e−7

43 min 12 s Yes 0 5e−7

19 min 52 s No 0 5e−7

N.A. Yes 0 1e−7

N.A. No 0 5e−7

23 min13 s Yes � /3 5e−7

9 min 53 s No � /3 5e−7

. . . Yes 0 5e−7

91 min 40 s No 0 5e−7

. . . No 0 1e−7

99 min 44 s No � /3 5e−7
lengt
added
, the
edure
witho
n Ac
s de
s don

Z



pointed out previously that the characteristic lengths � and
�� require more computation time to sufficiently diminish
the cost function J. Moreover, as noticed for the reconstruc-
tion of the porosity-tortuosity couple, the computation time
needed to retrieve several profiles simultaneously increases
drastically. The way to cope with this problem is to decrease

FIG. 5. Reconstruction of �a� the tortuosity �� after 30 iterations and 10 m
iterations and 26 min, 41 s, �c� the thermal characteristic length �� after 80
55 min, 11 s. For each reconstruction, a small amount of Gaussian noise wi
other parameters are constants from Table I.
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FIG. 6. Reconstruction of ���x� with the use of two angles of incidence
�
=0 and � /3� or three angles of incidence �
=0, � /6 and � /3� with a
rigid backing. The number of iterations is respectively 10 and 11, which
required 15 min, 2 s and 17 min, 3 s. The data included a small amount of
Gaussian noise with a standard deviation of 0.01. The other parameters are

constants from Table I.
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the number of points Nx from 800 to 400 for discretizing the
material thickness, and decreasing the higher bound of the
frequency range. Thus, only 150 frequency points with a
logarithmic spacing are chosen to describe the frequency
band �400 Hz, 400 kHz�. In Fig. 8 is presented the simulta-
neous reconstruction of the porosity � and the viscous char-
acteristic length � when the medium is backed by a rigid
wall �ZL= � �.

44 s of computation time, �b� the viscous characteristic length � after 30
ions and 48 min, 55 s, and �d� the flow resistivity Rf after 30 iterations and
tandard deviation of 0.02 is added to the data. For each reconstruction, the
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FIG. 7. Simultaneous reconstruction of the porosity and the tortuosity. The
number of frequency points is 200, the number of depth points is 800. The
reconstruction is given after 40 iterations that took 30 min, 11 s. Addition of
a weak Gaussian noise with a standard deviation of 0.01. The other param-
in,
iterat
th a s
eters are constants from Table I.



Satisfactory reconstructions can be obtained in a reason-
able amount of time with reduced sets of points to discretize
the frequency range as well as the material thickness. How-
ever, the optimization procedure is sensitive to these discreti-
zations. The initial guesses of the minimizer are also very
important to accelerate the convergence. The reconstructions
are faster when they are closer to their true values.

E. Simultaneous reconstruction of more than two
material parameter profiles

Employing the reflection data from acoustical excita-
tions at only three different angles of incidence, 
1=0 rad,

2=� /6 rad and 
3=� /3 rad, a rigid wall at x=L and a
wide-enough frequency band �400 Hz, 400 kHz�, only 150
frequency points and 400 equally spaced points along the
material thickness are needed to reconstruct three profiles
simultaneously, as is shown in Fig. 9. The chosen parameters
are the porosity, tortuosity, and viscous characteristic length.
They are the most sensitive parameters with respect to the
reflection coefficient. Moreover, they are also the parameters
of interest in the high frequency asymptotic model for rigid
frame porous plastic foams.7,18,20 The flow resistivity Rf�x�
has such a small influence that it vanishes, and the thermal
characteristic length ���x� is chosen such that ���x�
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FIG. 8. Simultaneous reconstruction of the porosity � and the characteristic
viscous length � after 100. The computation time was 55 min and 11 s. The
number of points was reduced and the upper bound of the frequency band
set to 400 kHz. A small amount of Gaussian noise with a standard deviation
of 0.01 was added to the synthetic data. The other parameters are constants
from Table I.
=3��x� or ���x�=2��x� according to the foam.
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The computation time exceeds 1 h, but is reasonable for
such a type of optimization. The results are presented after
100 iterations. Nevertheless, the main variations of the ma-
terial parameters are already visible after 50 iterations. With
experimental data, the expected precision of the reconstruc-
tions can be expected to be much less satisfactory.

The result of an attempt to simultaneously reconstruct
the same three parameters for a material with strong discon-
tinuities, i.e., a three-layered material, is depicted in Fig. 10.
The reconstruction is carried out by minimizing data pertain-
ing to four reflection coefficients. The “measured” ones are
obtained by the recursive method from Eqs. �47� and �48�.
Three of them are simulated without backwall �ZL=Z0� at
three different angles of incidence �
=� /6 rad, � /4 rad and
� /3 rad� and the fourth one is simulated with a backwall
�ZL= � � at the angle 
=� /4 rad. The frequency band is
�1 kHz, 400 kHz�, discretized into N	=300 equispaced
points. The depth is discretized into Nx=400 points. The re-
construction took 5 h, 49 min, 47 s and 105 iterations. The
result is a bit less accurate and is more difficult to carry out
than with a continuous profile. There is a good enough re-
productibility but not as satisfactory as with continuous pro-
files �due to the directions taken by the CG iterations�.

The reconstruction of more than three profiles simulta-
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FIG. 9. Simultaneous reconstruction of the porosity �, tortuosity �� and
characteristic length � after 100 iterations that took 118 min and 19 s. 150
frequency points and 400 equally spaced points were employed in a fre-
quency band �500 Hz, 500 kHz�. A small amount of Gaussian noise with a
standard deviation of 0.01 was added to the synthetic data. The other pa-
rameters are constants from Table I.
neously can be achieved in a similar way. To improve con-



vergence, one can use more sets of data than the number of
parameters we aim to reconstruct. For instance, to satisfac-
torily reconstruct four profiles simultaneously, it can happen
that four reflections coefficient spectra at four different
angles of incidence are not sufficient. One can then employ
data relative to more than four angles of incidence, or one
can add measurements with air for all x�L instead of a rigid
wall, or one can also impose a rigid wall at x=0 while acous-
tically exciting the sample at x=L.

VI. CONCLUSION

An optimization approach to the frequency domain in-
verse problem is described in this paper in order to recon-
struct simultaneously the profiles of several material param-
eters such as the porosity, the tortuosity, the viscous and
thermal characteristic lengths, and the flow resistivity in any
unidimensional rigid frame macroscopically inhomogeneous
porous materials.

The method is based on the minimization of a suitable
objective function, chosen such that its gradient can be ana-
lytically obtained. From this amount of information the di-
rect problem is solved iteratively by replacing at each step
the values of the parameters to reconstruct by their optimized
values. The direct solver is based on the wave splitting and
invariant imbedding methods. The optimization approach is
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FIG. 10. Simultaneous reconstruction of the porosity �, tortuosity �� and
characteristic length � after 105 iterations that took 5 h, 49 min. and 47 s;
300 frequency points and 400 equally spaced points were used in a fre-
quency band �1 kHz, 400 kHz�. The data were noiseless. The other param-
eters are constants from Table I.
based on the conjugate gradient method. Reconstructions of
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one, two, and even three profiles are obtained with accuracy
after only few iterations. The computation time is reasonable
in most of the cases. The simultaneous reconstruction of the
five profiles is also discussed. The use of several impedances
at one end point �x=L� and the use of several angles of
incidence helps to carry out simultaneous reconstructions
based on the reflection data only.

Better optimized results might be obtained when a pre-
conditioner M is used.33 The latter is a diagonal matrix
whose components are those of the main diagonal of the
Hessian matrix H= ��2J�p�x�� /�pi�pj�, where pi, i=1. . .5,
refers to the five material parameters to reconstruct. When a
preconditioner is used, the direction search D�i� in the conju-
gate gradient algorithm is replaced by MD�i�. When the sig-
nal to noise ratio is weak and the variations in the properties
to reconstruct are important �i.e., jumps�, the optimization
problem can become highly ill posed and regularization
methods such as Tikhonov regularization40 might be applied.

In a further work, some questions about the reconstruc-
tion of material profiles from measured data need to be
solved. For instance, the frequency bandwidths of most of
the transducers are not as large as the frequency band used to
reconstruct profiles in this article. Therefore, in order to ap-
ply the technique detailed in the present paper, numerical
methods to extract the necessary large band reflection coef-
ficient are under study.
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APPENDIX A: ITERATIVE SOLUTIONS OF LINEAR
FIRST ORDER DIFFERENTIAL EQUATIONS

While the Riccati Eq. �13� is solved with a Runge–Kutta
method, the other first order differential Eqs. �14�, �35� are
linear and then easier and faster to solve. An analytical solu-
tion of Eq. �14� is easy to carry out. Nevertheless, it may be
not the faster way to compute the solution, because for each
x, an integral is evaluated. A fast and easy to compute itera-
tive method extracted from the analytical solution is
preferred.28 The technique is general and just a detailed ex-
ample is given for Eq. �14�. The equation is separated as
follows in order to have only dx on the right hand side:

dT

�A+ + A−R�T
= dx . �A1�

Integrating from x to x+dx, and denoting xi=x, x+dx
=xi+1, f�x�= f i and f�x+dx�= f i+1, with f any function of x,
one gets

�
Ti

Ti+1 dT

�Ai
+ + Ai

−Ri�T
= �

xi

xi+1

dx , �A2�

�ln T�Ti

Ti+1 = �Ai
+ + Ai

−Ri��x , �A3�

Ti = Ti+1e
−�Ai

++Ai
−Ri��x, �A4�
where �x=xi+1−xi.



The recurrence relation to solve Eq. �35� is

ui+1 = uie
−2�Ai

++Ai
−Ri��x. �A5�

APPENDIX B: NONLINEAR TRANSFORMATION TO
ADD BOUNDS TO THE UNCONSTRAINED
MINIMIZER

Instead of performing an unconstrained minimization,
the addition of bounds on the model parameters may help the
optimizer to converge faster to the desired profiles. The
bounds in the present case must at least force the algorithm
to seek positive real values for each component of the vector
p�x�. This gives a lower bound vector pmin. Higher bounds,
in pmax, can be guessed according to the physics of porous
materials in the rigid frame assumption. However, they
should be taken large enough to ensure the accounting of
unexpected values to inhomogeneities.

Calling pi, i=1, . . . ,5, the ith component of the vector
p�x�= ���x� ,���x� ,��x� ,���x� ,Rf�x��T, an unconstrained
vector of components �i in �− � , � � is defined such that

pi = f��i,pmini
,pmaxi

�

=
pmaxi

+ pmini

2
+

pmaxi
− pmini

2
sin��i� , �B1�

with

pi → pmini
, as sin��i� → − 1,

pi → pmaxi
, as sin��i� → + 1.

The conjugate gradient algorithm is applied to the trans-
formed unconstrained vector �. At the kth iteration, the real
values of the parameters must be used int the model, and

pi
�k+1� =

pmaxi
+ pmini

2
+

pmaxi
− pmini

2
sin��i

�k� − �kDi
�k�� ,

�B2�

with �k a positive real value minimizing the objective func-
tion J�p�, the gradient of which, in terms of �i, is linked to
the search direction Di

�k�. Straightforwardly, the components
of the gradient are

�J

��i
= ��pmaxi

− pi��pi − pmini
�

�J

�pi
. �B3�

Remark: In Eq. �B3�, it is obvious that the initial guess
cannot be set equal to one of the bound. This avoids a non-
desired null gradient that implies errors in the Polak–Ribière
direction update �45� in the CG algorithm.
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