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Abstract—When a robot has to execute a shared plan with
a human, a number of unexpected situations and contingencies
can happen due, essentially, to human initiative. For instance,
a temporary absence or inattention of the human can entail
a partial, and potentially not sufficient, knowledge about the
current situation. To ensure a successful and fluent execution of
the shared plan the robot might need to detect such situations and
be able to provide the information to its human partner about
what he missed without being annoying or intrusive. To do so,
we have developed a framework which allows a robot to estimate
the other agents mental states not only about the environment
but also about the state of goals, plans and actions and to take
them into account when executing human-robot shared plans.

I. INTRODUCTION

In robotics, one of the current research interests is to create
robots able to work jointly with humans or to help them in
everyday life. To do so, robots need to perform joint actions
with humans. They are already capable of computing shared
plans [1], not only for themselves, but also for other agents
(humans or robots) involved in a joint task ([2], [3]). They can
execute their part of the plan while monitoring the activity of
the other agents. However, when working with humans, the
global execution of these shared plans is not always simple.
Indeed, unexpected situations and contingencies can happen
due essentially to human initiative and robots need to correctly
interpret them and act accordingly.

One of these unexpected situation is the temporary absence
or inattention of a human. If it happens, when the human
comes back, he can lack information about what happened dur-
ing his absence. Some of the facts are observable while others
are not, leading the human to have a partial, and potentially
not sufficient, knowledge about the current situation. To ensure
a successful and fluent execution of the shared plan, the robot
needs to inform the human about what he missed. However,
systematically informing him about all missing information
can quickly lead to an intrusive and annoying behaviour of the
robot. Consequently, the robot needs to be able to distinguish
which information the human really needs and which he does
not. To do so, the robot needs to estimate correctly and take
into account the mental state of its human partner.

The ability to reason about other people perception, beliefs
and goals and to take them into account is called Theory of
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Mind (ToM) ([4], [5]). In robotics, previous work in ToM
focused mainly on perspective taking and belief management:
robots are able to reason about what humans can perceive or
not, and then construct representations of the world from their
point of view ([6], [7], [8]). They can use this knowledge to
learn tasks, solve ambiguous situations or understand humans
behaviour. However, there is still a gap between such repre-
sentations and those necessary to permit an effective shared
plan action execution.

In order to fill this gap, we present, as a first step, a
framework that allows the estimation by the robot of its human
partner mental state related to collaborative task achievement.
Such mental states contain not only the state of the world but
also the state of the goals, plans and actions. They are based on
the capability of the robot to permanently compute the spatial
perspective of its partners and to track their activity. As a
second step, we present how the robot uses these mental states
to perform joint actions with humans and more particularly to
manage the execution of shared plans in a context of humans
and robots performing collaborative objects manipulation. As
a result, the robot is able to adapt to humans decisions
and actions and to inform them when needed without being
intrusive by giving (unnecessary) information that the human
can observe or infer by himself.

We first present the global architecture in §III and then
briefly situate, in §IV, our work relatively to the joint action
literature. The formal definition of what we call a goal, a plan
and an action are described in §V and we define more precisely
the representation of the mental state used by our robot in §VI.
These definitions are then used in §VII to explain how the
mental states are estimated and updated. §VIII shows how the
robot uses this information to manage shared plans execution.
Finally, we evaluate our system in §IX and conclude.

II. BACKGROUND

Previous work on ToM in robotics mainly concern per-
spective taking and belief management. One pioneer work
is [9] where two models from social sciences are analysed
conducting to a first architecture integrating ToM for robots.
Trafton et al., based on the Polyscheme architecture, com-
pute spatial perspective taking to help the understanding of
instructions in dialogue between astronauts [6]. Based on the
ACT-R architecture, [10] models the mechanisms used to take



decisions during the Sally and Anne test ([11]). ACT-R is
also used in [12] to explain, with the help of perspective
taking, unexpected behaviours from a human partner. Breazeal
et al. use perspective taking to learn tasks from ambiguous
demonstrations [13]. Gray et al. simulate the outcomes of
actions from other agents point of view to predict the actions
effects in others’ mental states [14]. Milliez et al. propose
a belief management that enables a robot to pass the Sally
and Anne test [8]. This reasoning is used in [15] to solve
ambiguous situations in dialogue and in [3] to compute human-
aware plans taking into account potential divergence of beliefs
between the human and the robot or lack of information in the
human knowledge about the current world state.

Concerning shared plans execution, to our knowledge, only
a few contributions integrate the consideration of the human
partner mental state. Human activities can be fairly well
monitored ([16], [17]), robot actions can be executed taking
into account the humans in the environment ([18], [19]) and
human-aware plans can be computed ([2], [3]). However,
very few architectures track and take into account the human
partner state during the execution of a joint task. Clodic et
al. present SHARY, a supervision system which enables to
execute human-aware plans [20]. In this system, the execution
can be stopped and a new plan computed in case of unexpected
situations. Fiore et al. extended this work in a more robust way
that includes new aspects of joint action like reactive action
execution [21]. Fong et al. present HRI/OS, a system able to
produce and schedule tasks for different agents based on their
capacities [22]. However, the agents act mostly in a parallel
and independent way. Shah et al. present Chaski, a task-level
executive that allows to choose when to execute the robot
actions adapting to the human partner [23]. However, none of
these architectures explicitly takes into account the humans
mental state when executing a shared plan with him.

Previous work has also been conducted in order to model
shared plans [24] or agent intentions [25]. Researchers in
Artificial Intelligence (AI) developed Beliefs, Desires and
Intention (BDI) theories to model rational agents for multi-
agents activities ([26], [27]). Frameworks have been devised to
model multi-agents joint activities and shared plans execution
in a robust way with regards to joint intention and beliefs about
joint intention of agents but without taking into account other
agents knowledge about the state of the plans and actions nor
spatial perspective taking ([28], [29]).

III. OVERALL ARCHITECTURE

In this paper, we place ourselves in a context where an
assistant or team-mate robot has to work jointly with other
agents (humans or robots). They share an environment and
mutually observe each other. Fig. 1 illustrates the implemented
architecture on the robot. It is composed of:

o A Situation Assessment module [8]: which takes as
input the sensor data and maintains the current world
state from the point of view of all agents based on spatial
perspective-taking. It also computes a set of symbolic
facts that represent the observable world state from

Symbolic
Planner
. (HATP) |

Dialogue

ToM Manager Manager

4 Agents mental & Agpareq  Dialogue
states
) Pl t

Symbolic| | Goals, Plans,——¥ 120 e
Observable Actions —————
World States ; ; . Motion Planning
information SUpEI’VISOI’ EEEE—

Situation \ J Geometric
assessment [Human Actions Planner

Monitoring

(SPARK)

Sensor Data

- (MHP)

Motion execution‘

Geometric World Model

Sensorimoter layer (Sensors + Actuators) ]

Fig. 1: The implemented architecture. The work presented here
concerns the ToM Manager and the Supervisor.

the different agents point of view. These facts concern
relations between objects (e.g. (mug isOn table)) or
agents affordances (e.g. (mug isVisibleBy human), (book
isReachableBy robot)).

e A ToM Manager: which takes the symbolic world
models computed by the Situation Assessment module
and information from the supervisor about the execution
of goals, plans and actions in order to estimate and
maintain the mental state of each agent involved in the
cooperation. These mental states contain not only world
state information but also an estimation of the agents
beliefs about the tasks and the other agents capacities.
More details concerning this module are given in §VIL

o A high-level task planner [3], [30]: which allows the
robot to synthesize shared plans containing the actions
of all agents involved in a given task. It is an HTN task
planner which bases its reasoning on the symbolic rep-
resentations of the world from the Situation Assessment
module and on the agents abilities on the current context
(for example which agent can reach which object). It
searches for the best possible plan to achieve the shared
goal by taking into account human-aware costs in order
to come up with highly acceptable plans. An example of
such a plan is given in Fig. 3(b).

o A geometric action and motion planner [31]: which
allows to compute trajectories as well as objects place-
ments and grasps in order to perform actions like Pick
or Place while taking into account the human safety and
comfort.

o A dialogue manager [32], [33]: which allows to ver-
balize information to the human and to recognize basic
vocal commands.

o A Supervisor [21]: in charge of collaborative activity. To
do so, it takes the human partner mental state into account
to decide when to perform actions or to communicate
with him. It also interprets the information coming from
the Situation Assessment module in order to recognize
human actions like Pick or Place. More details concerning



this module can be found in §VIII.

IV. OUR WORK IN THE JOINT ACTION CONTEXT

The first step during a joint action is to share a goal. This
implies a number of issues related to agent commitment. In
order to focus on the paper contribution, we consider here that
the joint goal has already been established: we consider that
the robot and its human partners have a commitment following
the definition of weak achievement goal [34]. Consequently,
we assume that none of the humans will abort the goal unless
he knows that the goal is not achievable any more.

Once the joint goal had been established, the involved agents
need to share a plan. This plan can come from multiple
sources: it can be imposed by a human, negotiated through
dialogue or the robot can compute it. To focus on the execution
of the shared plan, we choose, for this paper, to let the robot
compute the plan. However, the processes presented in this
paper hold even if the plan comes from a different source.
Moreover, as the symbolic planner used in the architecture
takes into account human-aware costs, we assume that the
computed plan will be close enough to human expectations to
be accepted by him. This plan is automatically shared by the
robot at the beginning of the interaction (by displaying it on
a screen near the robot or by verbalization). In this paper, we
will discuss about the processes used during the execution of
shared plans, and, we will not focus on issues linked to the
computation or the communication of these plans.

The execution of shared plan is based on agent capacities.
We distinguish between humans and robots capacities. We
consider that a human has the capacities to:

o Perform high level actions: He is able to perform a
set of high level actions like Pick or Place. The shared
plan is then computed based on this assumption. In order
to know what a human can do in a given situation,
the Situation Assessment module computes, based on
geometry, an estimation of his ability to reach the objects
of the environment.

o Perceive: The Situation Assessment module computes an
estimation of what the human can see in the environment.
This information added to a belief management algorithm
allows the robot to estimate, at any moment, what the
human knows about the environment. Concerning actions,
we make the assumption that a human will see and
understand an action of another agent (mainly robot
actions) when he is present and looking at the agent.

o Communicate: The dialogue manager allows the human,
at any moment, to ask the robot to perform an action. We
also assume that when he is present, the human is able
to hear and understand the information verbalized by the
robot.

We also consider that the robot has the following capacities:

o Perform high level actions: like Pick, Place, Drop,
Handover, etc... Similarly to the human, we consider a
set of high level actions that the robot is able to perform
and that are taken into account to build the shared plan.

Likewise, reachabilities are computed for the robot in
order to decide which action it is able to perform at each
time.

o Perceive: The Situation Assessment module allows to
keep an estimation of the current state of the environment:
the robot is able to detect and localize objects and agents.
The robot is also able to recognize simple high level
actions performed by a human like Pick, Place or Drop.

o Communicate: Thanks to the Dialogue module, the robot
is able to ask to a human to perform an action and to
inform him about the state of the environment, the goal,
a plan or an action. The robot is also able to share a
plan through speech synthesis (plan verbalization) or by
displaying it on a screen.

V. REPRESENTATIONS

Let’s define the goal which the robot needs to perform with
other agents, the plans computed to achieve this goal and the
actions which compose these plans.

Let’s G be the set of all goals. A goal g € G is defined as:

g = (namey, AGG,4, Oy)

Where name, is used to identify the goal, O, is a set of facts
representing the desired world state and AGG, is a set of
agents' involved in the goal

Let’s P be the set of all plans. A plan p € P is defined as:

b= <idp7 9p ACPp, L;D>

Where id,, is used to identify the plan and g, is the goal
that the plan allows to achieve. AC'P, is a set of actions (see
below) that compose the plan and L, is a set of links defining
actions order and causal links.

A link [ is defined as | = (previous., after.) where
previous, is the id of the action which needs to be achieved
before the action with the id after. is performed.

Let’s ACT be the set of all actions. An action ac € ACT
is defined as:

ac = (idge, namege, AGCuey, PRoc, PREq., EFF,.)

Where id,. is the action identifier and name,. represents its
name (e.g. pick, place, etc...). AGC,. is a set of agent names
representing the actors of the actions and PR, a set of entities
(objects or agents) which allows to define precisely the action
(e.g. the name of the object to pick). PRE,. and EF'F,. are
sets of facts representing respectively the action preconditions
and effects.

VI. MENTAL STATES

Let’s also define how the robot represents other agents. Let’s
A be the set of all agents, an agent ag € A is defined as:

ag = (nameqg, typeag, CAPy, MSaq, AGag)

Where name,y is used to identify the agent and type,q
represents if the agent is a human or a robot. CAP,,, the set of

Often only the robot and a human partner, but other robots and humans
can be concerned



i
0, = W5,

Il inform(g) DONE || ag.isinformed(p) DONE
Ve ™ s - ~ ~
| PROGRESS UNKNOWN )—>| PROGRESS
g.SI’&J’I’ﬂ \7} /— v \ _}.'\/-—
g.no_plan() & ag=r|| ABORTED p.isComputed) ~ rshare(p.ag)ll  ag.no_actionfo) || ABORTED
ag.isinformedyg) " ag=r  agisinformed(p) i

Wac SACP, <id,. . DONE> SACS,,

(a) Evolution of the state of a goal g in agent ag mental state

(b) Evolution of the state of a plan p in the mental state of an agent ag

-

Ve €L, |follow,=id,, <previous, DONE> € ACS
& PRE, c WS

FLANNED

r.share(p, ag)||

NEEDED

UNKNOWN PRE, = WS,

p.isComputed() READY

ag=r
Ve €L, |follow, =id,, <previous, DONE> € ACS
\ & PRE_, ¢ WS,

ask(ac) * see_end(ac) || ™

¥ ag.sinformed(ac)
SENED EFFapﬁv DONE

ag.seefac) ||
ag.perform(ac)

dg.see_end(ac) | ag.perform(ac) ||
(ag.see_actorfac) & AGC_ perform(ac))

PROGRESS FAILED

ag.see_end(ac) ||

ag.see(ac) || 20 perorm(ac)

see_end(ac) ||
ag. perform(ac)

ag.isinformed(ac) i

(c) Evolution of the state of an action ac coming from a plan p in the mental state of an agent ag

Fig. 2: Goal, plan and action evolutions.

high level action names, representing the actions that the agent
is able to perform, is used by the symbolic planner to produce
plans. M S, is the mental state of the agent (see below) and
AG,q is a set of agents containing all agents excepting ag:
AGyy C A| AGay = {A\{ag}}. These agents are defined in
the same way as ag and model how the given agent represents
them. Accordingly, these agents will also contain other agents
and so on in order to model high-order ToM [35].
The mental state M S,, of ag is defined as:

MSaug = WSy, GSag, PSag, ACS,g)

Where WS, is a set of facts representing the current world
state from the agent point of view.

GS,4 represents the state of the goals from the agent
point of view. The state of a goal g is represented as
(namegy, statey) where state, can be either PROGRESS if
the agent thinks the goal is in progress, DONE if the the agent
thinks the goal has been achieved or ABORTED if the agent
thinks the goal has been aborted.

PS4 represents the state of the plans from the agent point
of view. The state of a plan p is represented as (id,, state,)
where state,, can be either PROGRESS, DONE, ABORTED
or UNKNOWN if the agent is not aware of the plan.

Finally, AC'S,, represents the state of the actions from the
agent point of view. The state of an action ac is represented
as (idq., stateq.) where state,. can be either PROGRESS,
DONE, FAILED, ASKED (an agent asked for the action to
be done), PLANNED (need to be done later according to the
current plan), NEEDED (need to be done now according to the
current plan but not possible), READY (need to be done now
according to the current plan and possible) or UNKNOWN.

2An agent is not aware of a shared plan if it has not contributed to its
synthesis or has not been informed by the agent(s) who has elaborated it

At each moment, goals, plans and actions can only have
one state in each agent mental state.

VII. THE TOM MANAGER

The ToM Manager allows the robot to estimate and maintain
the mental states of each agent interacting with the robot
and is limited here to a first-order ToM the robot has its
own knowledge and a representation of the other agents and
their knowledge. However, these last agents do not have
representations of other agents. In order to do that, we use
an agent r € A which represents our robot. As defined
previously, r contains a representation of the other agents
AG,. However, the agents in AG, do not contain further
other agents representation (Vag € AG,, AG., = (). We
will present here how the robot estimates and maintains the
mental state of an agent ag € AG, but these processes are
the same for all agents in AG, and for the mental state of the
robot 7.

A. World state

The representation of the world state by an agent is com-
posed of two types of facts:

o Observable facts: these facts are computed and main-
tained by the Situation Assessment module. They concern
what the agent can observe about the world state. These
facts represent the affordances of all agents (e.g. isVisi-
bleBy, isReachableBy) and the relations between objects
(e.g. isOn, isln) visible to them.

« Non-observable facts: they can not be computed by the
Situation Assessment module. They concern information
that the agent can not observe (e.g. the fact that an object
is into a closed box). There are two ways for an agent to
be aware of a non-observable fact, it can be informed by



another agent or it can perform or see an action that has
this fact in its side effects (when the robot estimates that
an agent considers an action DONE, it considers that the
agent is aware of all the effects of the action).

B. Goals

The evolution of the state of a goal g € G in the mental
state of an agent ag is described in Fig. 2(a). As said before,
we consider that the agent already commits to the goal. Con-
sequently, when the robot starts to execute a goal (g.start())
the goal is considered in progress. The agent considers a goal
achieved when all the facts belonging to the objective of the
goal are known to it (accordingly to its knowledge, the desired
world state has been reached). As we do not focus on issues
relative to shared intention, we consider that the agent will
not abort the goal on his own. The robot will abort the goal
when no more plan can be found to achieve it (g.no_plan()).
Finally, the agent can be informed about the result of a goal
(ag.isInformed(g)).

C. Plans

The evolution of the state of a plan p € P in the mental
state of an agent ag is described in Fig. 2(b). Each time the
robot computes a plan (p.isComputed()) to achieve a goal, it
shares it with the other agents (r.share(p,ag)). Accordingly,
if the agent is present, it considers the plan in progress. The
agent considers a plan achieved when he considers each action
included in it performed. If, at any time, the agent considers
that there is still actions from the plan to be performed but
there are no action in progress or action to be done that
are possible, the agent considers that the plan is aborted
(ag.no_action(p), Alg. 1). Finally, the agent can be informed
about the result of a plan (ag.isInformed(p)).

Algorithm 1 ag.no_action(p)

if (3 (id, state) € ACS,, |state = PROGRESS
| state = READY)
& (3 (ida, states) € ACS,, | state; = PLANNED
| statea = NEEDED) then
(idy, ABORTED) € PS,,
end if

D. Actions

The evolution of the state of an action ac € AC' belonging
to a plan p € P in the mental state of an agent ag is
described in Fig. 2(c). When a new plan is shared by the
robot (r.share(p,ag)), all the actions in this plan are considered
planned by the agent. The agent considers an action READY
if all previous actions in the plan (based on the plan links)
are considered done by the agent and if the agent considers
all the preconditions of the action true. If the agent does not
consider all the preconditions of the action true, it considers
the action NEEDED. When an action is executed, from an
agent perspective, if it performs it (ag.perform(ac)) or observes
another agent performing it (ag.see(ac)), it knows then that the

action is in progress. In a same way, we consider that, when
an action is over, if the agent performed it (ag.perform(ac)) or
observed the end of its execution (ag.see_end(ac)), it knows
the result of the action. When the agent is informed that an
action has been done, it also infers the effects of the action.
But an agent can also infer that an action has been done if
it knows that the action was in progress or on its way to be
done and it can see the effects of the action or if it knows that
the action was in progress and can see the actors of the action
(ag.see_actor(ac)) and that there are not performing the action
any more (lAGC,..peform(ac)). An agent can also be asked
(or ask to somebody else) to perform an action (ask(ac)) and
be informed about the result of an action (ag.isInformed(ac)).

VIII. THE SUPERVISOR

The supervisor manages shared plans execution. To do so, it
makes the robot execute its actions when it considers they are
needed and possible (action READY in the robot knowledge)
and, in parallel, the robot monitors the humans activities in
order to detect their actions. If the supervisor estimates that
the current plan is not feasible any more (plan ABORTED in
its knowledge) it tries to compute a new plan. If it succeeds,
it shares the plan and starts to execute it. If it fails, it aborts
the goal. Thus, when a human performs an unexpected action
or if an action fails, the supervisor is able to quickly produce
a new plan and adapt to the new situation.

In this paper, we will focus on the activity of the supervisor
which allows to manage divergent belief during the execution
of a shared plan. Indeed, when two humans share a plan,
they usually do not communicate all along the plan execution.
Only the meshing subplans of the plan need to be shared [36].
Consequently, the robot should inform humans about elements
of the shared plan only when it considers that the divergent
belief might have an impact on the joint activity in order to
not be intrusive by giving them information which they do not
need or which they can observe or infer by themselves.

A. Weak achievement goal

If we follow the definition of weak achievement goal in [34],
if the robot knows that the current goal has been achieved
or is not possible anymore, it has to inform its partners.
Accordingly, we consider that, when, in the robot knowledge,
the state of a goal is DONE (resp. ABORTED) and the robot
estimates that a human does not consider it DONE (resp.
ABORTED), the robot informs him about the achievement
(resp. abandoning) of the goal (if the agent is not here or
is busy with something else, the robot will do it as soon as
the agent is available). We extend this reasoning to plans: the
robot informs in the same way about the achievement (resp.
abandoning) of a plan.

B. Before human action

A divergent belief of a human partner can be an issue when
it is related to an action that he has to do. To avoid that a
human misses information to execute his part of the plan, each
time the robot estimates that a human has to do an action
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Fig. 3: Initial set-up of the Clean the table scenario. The human and the robot have to clean the table together. The computed
shared plan is to remove the three books lying on the table, sweep it and place back the books.

(action with the state READY in the robot knowledge and with
a human in its actors) it checks if the human is aware that he
has to and can perform the action (the state of the same action
should be READY in the estimation of the knowledge of the
human too). If it is not the case, there are three possibilities:

e The state of the current plan is not in PROGRESS in
the estimation of the agent knowledge: the human misses
information about the current plan, so, the robot shares
it with him.

o The state of the action is PLANNED in the estimation
of the human knowledge: the human misses information
about previous achieved actions to know that his action
has to be performed now according to the plan. The robot
checks the state of all actions linked to the first one with
the plan links and informs about the achievement of all
actions with a state different of DONE in the estimation
of the human knowledge.

o The state of the action is NEEDED in the estimation
of the human knowledge: the human misses information
about the world state to know that his action is possible.
In such case, the robot looks into the preconditions of the
actions and informs the human about all those the human
is not aware of.

C. Preventing mistakes

A divergent belief of a human partner can also be an issue if
it leads him to perform an action that is not planned or not to
do now according to the plan. To prevent this, for each action
that the robot estimates the human thinks READY, the robot
checks if the action really needs to be done (action READY
in its knowledge too). If it is not the case, the robot corrects
the human divergent belief by two different ways:

o If the action is PLANNED in the robot knowledge: the
human thinks that a previous action has been achieved
successfully while it is not the case leading him to think
he has to perform his action. The robot looks in all actions
linked to the first one by the plan links and informs about
their state if it is different in the estimation of the human
knowledge and in the robot one.

o If the action is NEEDED in the robot knowledge: the
human has a divergent belief concerning the world state
that leads him to think that his action is possible while

it is not the case. The robot looks into the preconditions
of the action and informs about divergent beliefs.

D. Signal robot actions

When the robot has to perform an action, it looks if it
estimates that the humans are aware that it will act (the action
should be READY in the humans knowledge). If it is not the
case, the robot signals its action before performing it.

E. Inaction and uncertainty

Even if the robot estimates that the human is aware that he
has to act (the state of the action which he must perform is
READY in the estimation of his knowledge), it is possible that
the human still does not perform this action. If the human is
already busy by something else (there is an action in the robot
knowledge with the state PROGRESS and with the human in
its actors), the robot waits for the human to be available. If
the human is not considered busy by the robot, the robot first
considers that its estimation of the human mental state can
be wrong, and that, in reality, the human is not aware that he
should act. Consequently, the robot asks the human specifically
to do the action. If the human still does not act while the action
has been asked, the robot considers the action failed, aborts
the current plan and tries to find an alternative plan excluding
that action.

In order to avoid considering that the human is available,
and so to disturb him while he is busy doing something that the
robot can not recognize, we have added an action named busy
used when the robot estimates that the human is doing some-
thing without knowing what. The action busy when executed
by a human A can be defined as (id, busy, {h}, 0, 0, 0).

IX. EVALUATION
A. Scenarios

1) "Clean the table” scenario: In this example, a PR2
robot and a human have to clean a table together. To do so,
they need to remove all items from this table, sweep it, and
re-place all previous items. The initial world state is the one
in Fig. 3(a). We consider that the grey book is reachable only
by the robot, the blue book only by the human and the white
book by both agents. The actions considered during this task
are pick-and-place and sweep. To pick and place an object on a
support, the object and the support need to be reachable by the



Fig. 4: Initial set-up for the Inventory scenario. The coloured
objects need to be scanned by the robot and then, put into a
box of the same colour.

agent, and, to sweep a surface, it should not have any objects
on it and it should be reachable by the agent. The initial plan
produced to achieve the goal is shown in Fig. 3(b)’.

2) “Inventory” scenario: In this example, a human and
a PR2 robot have to make an inventory together. At the
beginning of the task, both agents have coloured objects near
them as well as a coloured box (initial world state in Fig. 4).
These coloured objects need to be scanned and then, stored
in the box of the same colour. The actions considered during
this task are placeReachable, pickanddrop and scan. We call
placeReachable the action to pick an object and to place it
such that it is reachable by the other agent. For an agent to
perform this action, the object needs to be reachable by it.
We call pickanddrop the action to pick an object and to drop
it on a box. To perform such action, the object and the box
need to be reachable by the agent. The scan action can only
be performed by the robot and consists of scanning an object
by orienting the head of the robot (assumed to be equipped
by a scanner) in the direction of the object placed such that it
is reachable.

B. Criteria and results

One objective of our contribution is to reduce unnecessary
communication acts from the robot during the execution of
a shared plan aiming at a more friendly and less intrusive
behaviour of the robot. Consequently, in order to evaluate our
system, we have chosen to measure the amount of information
shared by the robot during a shared plan execution where
the human misses some information. As it is not trivial to
create and control a lack of knowledge from a human subject,
we decided to evaluate our system in simulation. We ran
experiments in the two scenarios described previously where
a human and a robot have to perform a joint task together.
When the interaction starts, we consider that the joint goal is
already established and that both human and robot already
agreed on a shared plan. The robot executes the plan as
described in the presented work and the simulated human
executes the actions planned for him. We randomly sample

3This example has been fully implemented in a real robot. A detailed
execution can be found in the attached video

4More details about these two scenarios can be found in the attached video

a time when the human leaves the scene and another time
when the human comes back. While absent, the human does
not execute actions and cannot see anything nor communicate.

During the interaction, we logged the number of facts
(information chunks) given by the robot to the human. An
information concerns either a change in the environment, the
state of a previous action, the abortion of a previous plan or
the sharing of a plan. We compared our system (called ToM
system) to:

o a system which verbalizes any plan abortion, shares any
new plan and informs about each action missed by the
human (called Missed system).

o a system which verbalizes any plan abortion, shares any
new plan and informs about each action performed by the
robot even if the human sees it (called Performed system).

The obtained results are given in Table L.

Scenario Clean the table Inventory
System || Average [ Std Dev |[ Average | Std Dev
ToM 1.32 0.98 0.41 0.48
Missed 2.86 1.33 2.61 1.36
Performed 4.44 1.85 10.0 0.0

TABLE I: Number of information given by the robot during
the two presented scenarios for the three systems (TOM,
Missed and Performed).

We can see that our system allows to reduce significantly
the amount of information given by the robot. In the ”Clean
the table” scenario, depending on when the human leaves,
the robot might change the initial plan and take care of the
book reachable by both agents instead of the human. This
explains why the average number for the Performed system
is higher than the number of actions initially planned for
the robot: the robot performs more actions in the new plan
and can communicate about the new plan and the abortion
of the previous one. In this scenario, our system allows to
communicate about the plan abortion only if the human can
not infer it by himself and to not communicate about missed
pickandplace actions as the human can infer them by looking
at the objects placements. However, the robot will inform the
human if he missed the fact that the robot has swept the table
as it is not observable and it is a necessary information for the
human to know before he can put back objects on the table.

In the inventory scenario, as all objects and boxes are
reachable only by one agent, the robot does not change the
plan when the human leaves. This explains the fact that the
standard deviation is null for the Performed system: the number
of actions performed by the robot never changes and there is
no change in the plan. In this scenario, the pickanddrop and
scan actions have non-observable effects (the human can not
see an object in a box). However, we can see that our system
still verbalizes less information than the Missed system: the
robot communicates only the information which the human
really needs (as the fact that an object the human should drop
in a box has been scanned) and does not give information



which are not linked to the human part of the plan (as the fact
that the robot scanned an object it have to drop in its box).

X. CONCLUSION

In this paper, we have presented a system that allows to
estimate and maintain mental states of other agents concerning
not only the environment but also about the state of goals,
plans and actions in the context of human-robot shared plan
execution. This system takes these mental states into account
when executing human-robot shared plans by allowing the
robot to manage human-robot joint activities taking into ac-
count the human perspective and its knowledge about the task.
We have shown that this system allows to reduce the number
of unnecessary information given to the human while giving
the needed information to ensure a proper task achievement.

The novelty of this work is twofold: the estimated mental
states concern not only observable information about the
environment but also the state of current and previous goals,
plans and actions, and, these mental states are taken into
account during the execution of a shared plan in order to
reduce unnecessary communication to produce a less intru-
sive behaviour of the robot. Moreover, this work has been
implemented and run on a complete human-aware architecture,
enabling the robot to fluently perform joint tasks with a human.

We have presented here one relevant use of the computed
mental states. However, we strongly believe that they can also
be used to tackle other challenges during human-robot joint
actions. For example, another use could be to estimate the
possible lack of information of the robot in order to allow it
to ask for help or to ask information when needed. Another
aspect, that we plan to explore in the future, is to reason about
such mental states to better understand human “unexpected”
behaviours.
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