
HAL Id: hal-01330258
https://hal.science/hal-01330258v1

Submitted on 21 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Aspect of Assembly: From Theory to Performance
Jean-Yves Tigli, Stéphane Lavirotte, Gaëtan Rey, Nicolas Ferry, Vincent

Hourdin, Sana Fathallah Ben Abdenneji, Christophe Vergoni, Michel Riveill

To cite this version:
Jean-Yves Tigli, Stéphane Lavirotte, Gaëtan Rey, Nicolas Ferry, Vincent Hourdin, et al.. Aspect of
Assembly: From Theory to Performance. Transactions on Aspect-Oriented Software Development IX,
7271, , 2012, Transactions on Aspect-Oriented Software Development IX, �10.1007/978-3-642-35551-
6_2�. �hal-01330258�

https://hal.science/hal-01330258v1
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Aspect of Assembly:
from Theory to Performance

Jean-Yves Tigli1, Stéphane Lavirotte1, Gaëtan Rey1, Nicolas Ferry1,2,
Vincent Hourdin1, Sana Fathallah Ben Abdenneji1,

Christophe Vergoni1,3, and Michel Riveill1

1 Université de Nice - Sophia Antipolis (Laboratoire I3S - UNS/CNRS) 930 route des
Colles - B.P. 145 06903 Sophia-Antipolis Cedex - France

{firstname.lastname}@unice.fr
2 CSTB (French Scientific and Technical Centre for Building), 290, route des

Lucioles, B.P. 209 06904 Sophia-Antipolis Cedex - France
3 GFI Informatique, Emerald Square - Batiment 2, Avenue Evariste Galois - B.P. 199

06904 Sophia Antipolis Cedex - France

Abstract. Ubiquitous computing systems raise numerous challenges in
software engineering. Among these, the dynamic variation of open ubiq-
uitous computing environments requires continuous adaptation of appli-
cations. Aspect-Oriented Programming is a well-adapted technique to
bring together independence of concerns and extensibility for dynamic
adaptation. However, the dynamic adaptation has to occur within a rea-
sonable timeframe, which requires a detailed knowledge of the weaving
duration. In this paper, we introduce “Aspect of Assembly”, an aspect-
oriented approach to develop services- and components-based applica-
tions. Then we study the response time of the adaptation process by
decomposing the weaving process. The model of the duration of the adap-
tation process enables us to define a priori constraints to meet temporal
requirements for real-world applications. Throughout this paper, we il-
lustrate our work with an actual industrial use case to provide service
continuity for a hydrant worker in the water industry.

Keywords: AOP, runtime adaptation, ubiquitous computing, CBSE,
consistency, performance

1 Introduction

The miniaturization of computer hardware makes the Ubiquitous Computing
vision[37] come true, as many objects with computational capabilities are ap-
pearing in our daily lives. This set of smart devices can be viewed as a new kind
of dynamic software infrastructure on top of which applications can be built.
Most devices are not continuously used by applications, either due to their spo-
radic usefulness, their mobility, or their frequent failures. In order to manage
the dynamic variability of this new kind of architecture, applications have to be
adapted in reaction to these variations. In such task, the whole set of adapta-
tions that may be applied to an application cannot be anticipated at design-time

[7]. The ability to extend at runtime the set of adaptations deals with this issue.
However, it can be complex for a designer to modify the set of adaptation rules,
because they can be numerous and may require expertise in many domains. For
example, in a smart home application, rules can be related to security, energy
consumption, presence recognition, and so on. We can take advantage of this
natural separation of specific expertise in ubiquitous applications by introduc-
ing the independence of concerns in the design of the adaptation process. It is
very close to separation of concerns addressed by aspect-oriented approaches, as
long as it manages interactions [19], interferences [22] or even conflicts [32] that
may appear in the weaving process.

All these features make more complex the whole adaptation mechanism. Nev-
ertheless, the time required to adapt the system to variations of the infrastructure
must be taken into account in order to enhance the user experience and make
applications well suited and consistent with their actual software infrastructure.
In this context, the challenge we address in this paper is the control of
the duration of such adaptation process.

For this purpose, after presenting our aspect-oriented approach to implement
adaptations capabilities, we propose a model and an evaluation of the duration
of the weaving process. Our approach, called ”Aspects of Assembly”, targets a
model of applications based on service and component assemblies. The weaving
process implements adaptations of applications through compositional modifica-
tions. AOP approaches aim to modularize crosscutting concerns to modify the
behavior of software. Aspect-oriented methodology is now more generic and can
be applied on various kinds of targets, even structural, always using three key
concepts: joinpoints, pointcuts and advice [6]. Interactions between aspects are
managed by a merging mechanism embedded in the weaver ensuring the symme-
try property of the weaving operation. In this context, the contribution of this
paper is to present a formal description of Aspects of Assembly and their weaver,
including models and experiments on the duration of the various processes in-
volved in the weaver, enabling us to understand and control the duration of the
Aspect of Assembly weaving process.

To detail our approach, we start by presenting a motivating scenario (Sec-
tion 2) from the field of ubiquitous computing that illustrates the needs for low
response time. This use case then serves as support to describe the internal
mechanisms brought into play by Aspects of Assembly (Section 3). Then, these
mechanisms are formally described with mathematical models and algorithms,
and their performance evaluated in the context of the example application (Sec-
tions 4 and 5). We then discuss the results and comment on our approach (Section
6), present the related work (Section 7) and finally conclude (Section 8) with
the main contribution of this work and its perspectives.

2 Foundations and motivating scenario

Before presenting Aspects of Assembly (AA), we will characterize the applica-
tions to be adapted (2.1) and present a case study that will highlight features
and benefits of AAs (2.2).

2.1 Designing applications in ubiquitous environments

Composing services of the infrastructure. Software services are often
used to encapsulate functionalities provided in ubiquitous environments [29, 36],
whether they are device-based or purely software services. Indeed, they provide
the required capabilities for these environments such as loose coupling, auton-
omy, discoverability, and composability [34].

The software infrastructure that we consider is a dynamic set of services.
Users’ mobility, and then devices’ mobility, lead to frequent disconnections and
network changes of device-based services. Web services for devices [33] such as
UPnP (Universal Plug and Play) or DPWS (Device Profile for Web Services)
address this issue by providing a dynamic decentralized discovery mechanism.
Accordingly, we will consider software services as well as device-based services.
Applications should then be created as compositions of the available services of
the infrastructure.

Component assemblies have proven to be a good solution to dynamic com-
position of services in ubiquitous computing [33, 17]. In particular, components
can be instantiated when services appear and destroyed when services disappear,
thanks to service discovery announcements [34]. Obviously, applications have to
be based on dynamic component models, providing application’s dynamic ex-
tensibility thanks to compositional adaptation [25].

The implementation of the compositional adaptation mechanism presented
in this paper is the Aspect of Assembly weaver of our WComp4 framework,
which is based on the dynamic and lightweight component model SLCA (Ser-
vice Lightweight Component Architecture) [34]. The example below is based
on this implementation. However, AA are a generic compositional adaptation
mechanism which can rely on other implementations of SLCA or on other com-
ponent models, as long as they make explicit the links between components and
they provide an entity that can be used as an external interface for dynamic
reconfiguration of the component assembly.

Temporal properties of adaptations. As we have seen, adaptation allows
us to cope with the changing software infrastructure. However, this adaptation
process can be time consuming, especially when it must comply with constraints
of the field of ubiquitous computing such as independence of concerns or dy-
namic modification of the set of adaptation rules. In particular, our adaptation
mechanism, the AA weaver, will have to manage, automatically and at runtime,
interferences arising between adaptation rules. We will present in Sections 4 and

4 http://www.wcomp.fr/

5 response times provided by AA. Below, we will explain why providing low
response time is important illustrating the problems that may arise with high
response times.

Adaptive applications are always in one of the three states depicted in Fig-
ure 1. State (1) is the normal execution state of the application, where it is
consistent with its environment. State (2) is reached when a change happens
in the infrastructure, whilst the application is still in the same state as before
the infrastructure change. The time spent in this state is the latency to trigger
an adaptation. During state (3) the application is in its adaptation phase and
unavailable for other adaptations, and may be only partially available. Applica-
tions are considered in an inconsistent state in states (2) and (3), because the
application is not in line with its environment.

End of
adaptation

Application
consistent

with its
environment

(1)

Application
 inconsistent

 with its
environment

(2)

Adaptation
of the

 application
(3)

Starting the
adaptation's process

Occurrence of a
change in the environment

Fig. 1: States of adaptive applications [15]

The time spent in state (2) and (3) is the response time of the adaptation.
It must be low in order to adapt application’s functionalities consistently with
available entities (services or devices) that may appear or disappear. The latency
(2) must not be too high, in order to prevent the use of outdated or unavailable
services. Moreover, if the system is not available for too long while adapting (3),
the application can become unusable. And if new variations occur in the software
infrastructure during an adaptation, the application would be continuously re-
adapting and never reach state (1). Such phenomena is denoted in Figure 1
by the cycle that appears between states (2) and (3). Introducing such lag in
applications could divert the user from using the system [24]. These temporal
properties will motivate our scenario.

2.2 Example application

We will now present the case study that will be used throughout the paper
to present our approach. We first explain the scenario, then we describe some
adaptation rules and how they integrate in the application.

The Scenario. The scenario is taken from the Continuum project5 from the
French national research agency. It takes place in the context of a hydrant worker
whose task is to close various valves in a water pipeline network, for the purposes
of maintenance operations on the network. When undertaking the action of
closing valves, our mobile worker is surrounded by a constellation of devices to
help him in his task. For example, GPS and compass information from his helmet
are used to guide him towards the location of the valve he needs to operate. In
case several valves are in proximity, he can use his smartphone or tablet to get
information about which one is to be operated. When he does not find a valve,
he has an augmented-reality helmet providing him location information. When
he operates a valve, sensors located on the pipe or the valve allow the hydrant
worker to know if there is a pressure problem and if he needs to stop before a
burst happens. His car is also fully equipped to interact with the information
system of the company and creates a local area network for all the devices. In
case of emergency, a hydrant worker can be helped by a better equipped working
truck embedding new devices and adaptations.

This scenario illustrates the properties emphasized in the introduction:

• Response time requirements appear as the hydrant worker moves in the
physical environment. He will discover or activate new devices that he wants
to use readily. He does not want to wait for the system to detect that he
has activated or deactivated some functionality of his wearable computer.
The system must comply with the user, not the opposite. Moreover, if the
hydrant worker starts to operate valves and the system has not yet taken
into account the valves’ sensors, alert systems will not be on-line, possibly
not letting the worker know about potentially dangerous situations. Those
sensors are powering up when the valve wrench is near or touching the valve
to save energy, making response time particularly important in this scenario.

• Dynamicity of the software infrastructure is the major concern in the Con-
tinuum project. The hydrant worker moves from a situation to another,
making use of different sets of devices. In his car, he will not use the same
devices than when he’s walking to find a valve, and the same is true when
he’s operating a valve. The main goal of the project is in fact to provide
service continuity while devices change, meaning that the user should be
offered appropriate functionalities whatever the devices surrounding him.
Thus adaptations have to be triggered according to software infrastructure
changes.

• Dynamic modifications of the set of adaptations arises first when new or
updated devices are given to the workers. In that case, the company also
delivers them new AAs without necessarily verifying their integration with
already existing ones. Then, at runtime, the ability to modify the set of
adaptations is also required when a special emergency and a better equipped
working truck arrives. It embeds devices unknown by the worker’s computer
system, because they are developed by another branch of the company, and

5 http://continuum.unice.fr/

are mostly used by workers other than hydrant men. For example, they
provide large screen displays enabling hand-free visualization of alerts or of
the state of the water network at the current location.

Example of Aspects of Assembly. To explain AA mechanisms and evaluate
their response time, we focus in this paper on a small though relevant part of the
application, which makes use of interference management between adaptation
rules. This will allow us to evaluate, subsequently, the impact in terms of response
time of this mechanism. First, an AA is written to provide a connecting logic
from the water pipe pressure sensors to an alert system (Fig. 2).

Software infrastructure: available services

Pressure
Sensor1

Overflow
Smartphone

Display

Flash

Link created by AA
pressure_alert

HIGH
PRESSURE

ALERT

Application container (component assembly)

Service availability reflected
in the component assembly

Fig. 2: Illustration of the resulting application from AA pressure alert weaving
and the underlying software infrastructure

Another AA describes that the pressure alert should be audible instead of
visual when the brightness is too high (Fig. 3). A similar example in the scenario
is the selection of the display device based on the battery level of the handheld
device.

2.3 Reconfiguration description language

The reconfiguration descriptions used in AA are based on three types of rules
corresponding to structural modifications: component creation, link creation and
link rewrite. In this paper we will use the ISL4WComp [9] language, but other
domain specific languages can be created by applications designers if needed. As
an example, we have developed another language based on graphs transformation
[13]. ISL4WComp is based on the Interaction Specification Language (ISL) [3]
that describes patterns of interactions between independent objects, adapted
to consider interactions based on messages or events between components. This

Pressure
Sensor1

Overflow

Smartphone
Display

Flash

Link created by AA
pressure_alert

Application container (component assembly)

Helmet
Audio

Beep

SmartPhone
LightSensor

LightLevel

IF
(operator)

Then

Else

Input

Cond

Links created by AA
alert_redirect_audio

SEQ
(operator)

Output1

Output2

Input

TextBox
(COTS)

set_Text

Threshold
(COTS)

IsReachedInput

Fig. 3: Illustration of the resulting application from AAs pressure alert and
alert redirect audible weaving, with interference managed

language has been used in several national projects, including the RNTL Faros6

project and the ANR Continuum project.

The keywords and tokens of the language are presented in Table 1. Black-
box component creation rules are identified by the “:” token; link-based rules
are identified by the “->” token. As in the reconfiguration to link the pres-
sure sensor to the visual alert system , a simple link is created with the port
PressureSensor1.^Overflow as source.

PressureSensor1.^Overflow -> (SmartphoneDisplay.Flash)

other reconfiguration, to redirect the alert on an audio device when the bright-
ness is too high, can be written as in Figure 4. Lines 1 and 2 are component
creation rules, with optional parameters, here the threshold for the light level
considered too bright for visual interaction. Lines 4 and 6 are respectively a link
creation and a link rewrite rule, distinguished by the fact that the rule at line 6
contains the call operator that allows rewriting existing links. The PressureSen-
sor1.ˆOverflow port is thereby rewritten in the else branch of the if operator.
The resulting application does not integrate the direct link specified by the first
AA because of the if operator, as shown in Figure 3. Using language operators,
such as call or delegate, a designer can control the manner in which rules
are composed. The sequence operator, denoted by the “;” token, is also used in
Figure 4, in order to create two links from the same output port.

In the next section, we will present the main features of Aspects of Assembly.
The weaving process will be described to better understand how applications are
adapted according to existing AAs.

6 http://www.lifl.fr/faros – retrieved Sept. 2011

1 threshold : ’WComp.BasicBeans.Threshold’ (threshold=500)
textbox : ’System.Windows.Forms.TextBox’

4 LightSensor1.ˆLightLevel −> (threshold.Input ; textbox.set Text)

PressureSensor1.ˆOverflow −> (if (threshold.IsReached)
7 { AudioHelmet1.Beep }

else { call })

Fig. 4: Reconfiguration describing the adaptation logic replacing the visual alert
of the pressure monitoring by the audible alert when the brightness is too high.

Table 1: ISL4WComp simplified grammar, with keywords and operators
Advice rules / Operators Description

Port types
comp.port

‘.’ separates the name of a component
instance from the name of a port. It
describes a provided port.

comp.ˆport
‘ˆ’ at the beginning of a port name
describes a required port.

Rules for
structural
adaptations

comp : type To create a black-box component

comp : type (prop = val, . . .)
To create a black-box component and
to initialize its properties.

provided port→ (required port)
To create a link between two ports.
The keyword → separates the right
part of the rule from the left part.

required port → (required port)
To rewrite an existing link by chang-
ing the destination port.

Operators
(symmetry
property,
interference
resolution)

. . . ; . . .
To describe a sequence between two
links.

. . . || . . . To describe that there is no order
(parallelism).

if (condition) {. . . }
else {. . . }

The condition is evaluated by a
black-box component

nop The link is discarded, take no action.

call
To allow the left part of a rule to be
reused in a rewriting rule.

delegate

To specify that a link must be unique
in case of shared joinpoint interfer-
ence.

3 Aspect of Assembly Overview

Aspects of Assembly [33] consist of a model based on AOP [23] for adaptation
schemes, and a weaving process with logical merging. They are described using
the concepts of pointcut and advice from AOP with some deviations. Advices de-
scribe the structural reconfiguration of a component assembly, whereas pointcuts

match joinpoints from the assembly on which changes will take place. Joinpoints
are all entities of the assembly that structurally represent the application: com-
ponents and their ports. We define AAs as follows:

AAi = (pointcuti, advicei)

They permit the structural reconfiguration of component assemblies at run-
time, whilst keeping the “black-box” property of existing components and of
off-the-shelf components (COTS) that they may instantiate. The component as-
sembly is thus not a black-box, as well as composite components since their
structure is modified.

Figures 5 and 6 are the two AAs presented in our scenario: pressure Alert

(Fig. 2) and alert redirect audible (Fig. 3). We can see in the definition the
keyword advice separating the pointcut definition from the advice definition.

1 pressure = Press∗.ˆOverflow
flash = ∗.Flash

4 advice pressure alert(pressure, flash) :

pressure −> (flash)

Fig. 5: AA pressure alert describes the simple adaptation logic connecting the
pressure device to the flashing alert device.

brightness = ∗.ˆLightLevel
pressure = Press∗.ˆOverflow

3 sound alert = ∗.Beep∗

advice alert redirect audible(brightness, pressure, sound alert) :
6

threshold : ’WComp.BasicBeans.Threshold’ (threshold=500)
textbox : ’System.Windows.Forms.TextBox’

9
brightness −> (threshold.Input ; textbox.set Text)

12 pressure −> (if (threshold.IsReached) { sound alert } else { call })

Fig. 6: AA alert redirect audible describes the adaptation logic replacing the
visual alert of the pressure monitoring by the audible alert when the brightness
is too high.

In the next sections we will present the main features of AAs: the pointcut
(3.1) and advice (3.2) parts of their definition and what they allow in terms of
adaptation; state-diagram management of AAs in the weaver by selecting them
or not for adaptation (3.3); the symmetry property of advice rule operators
enabling independency between AAs (3.4); and the weaver’s main algorithm
(3.5).

3.1 Pointcuts

The pointcut part of an AA i, pointcuti, is a set of filtering rules on the join-
point’s meta-data (port name, types, . . .), each associated with a variable that
identifies them and receives their result. The pointcut matching process uses
these filters to identify and then to fill each variable with a list of joinpoints in
the component assembly. The occurences of the variable in the advice of the AA
will be replaced by these actual joinpoints. Such approach allows us to special-
ize the generic adaptation they describe to an adaptation targeting an actual
application. It allows AAs to be reused, and apply to real applications despite
their configuration being unknown at design-time. The AA weaver (3.5), which is
the mechanism responsible of the adaptation evaluation and enforcement, has to
maintain a list of available joinpoints in the application to allow such matchings.
A pointcut is defined as follows:

pointcuti = {Rule1, . . . , Rulej}

Pointcut rules can take various forms, such as syntactic matching using regu-
lar expressions on component or port names or other information like the ports’
types. In the two example AAs above, filters are defined as simple syntactic
expressions containing wildcards, and they filter component and port names,
separated by a dot. The “ˆ” token is used at the beginning of a port name to
denote that it is a required port, generally an event. Variables, the left part of a
rule, are associated with each of these filters, for example pressure and flash in
the first AA (Fig. 5). Simple wild-cards are used in this example but more com-
plex pattern matching algorithms based on full regular expressions can be used.
Component instances’ names and component ports’ names can both be wild-
carded in the same rule, like in line 3 of the second AA (Fig. 6). For example,
line 6 of AA pressure alert:

pressure -> (flash)

will be replaced at runtime by real component ports such as (see also Figure 2
representing the application’s component assembly):

PressureSensor1.^Overflow -> (SmartphoneDisplay.Flash)

Moreover, an AA can be applied several times on the same component as-
sembly when a pointcut rule identifies several joinpoints. In the case of our
scenario, AA pressure alert will be duplicated if there are several pressure

sensors or flashing displays available. For the pointcut rule at line 3 of the
example, the result would typically be: sound alert = {HelmetAudio.Beep,
SmartPhone1.BeepWarning}.

Beyond allowing joinpoints from the actual application to be used in the
advice’s adaptation rules, pointcuts are used as a prerequisite for weaving an
aspect. In our example, if no component with audio capabilities is found, the
AA will not be woven at all.

3.2 Advices

The advice part of an AA i, advicei, is not a piece of code to be woven into the
base application code like in traditional AOP. It can be considered as component
assembly factory. To do this, an advice is composed of a set of rules. They define
which components or bindings between components have to be instantiated. The
advice’s rules can use the variables defined in the pointcut part of the AA, so
that the generated assemblies are based on joinpoints from the pointcut. Advices
are based on three types of rules: 1) instantiation of black-box components, 2)
rewriting of existing links between components of the assembly, and 3) creation
of new links. Rewriting a link involves specifying a destination component port,
and all existing links connected to that port are forwarded to the new input
port described in the rule. Another type of link rewrite is what we saw in the
example, using the call operator in a link creation rule. An advice is defined as
follows:

advicei = {ARule1, . . . , ARulew}

An advice rule cannot remove a component, because if this component is
used by another aspect, changing the order of application of the two aspects
would result in different adapted applications and in the loss of the symmetry
property. Removal of components or bindings can thus happen only if an AA
is withdrawn. An AA is withdrawn when a component (corresponding to a ser-
vice that disappears in the software infrastructure for example) required for its
weaving disappears or when it is removed from the weaver. In our two AA from
the scenario, advices are written using ISL4WComp. The next section presents
details on the various states in which an AA may be.

3.3 AA selection for adaptation and state diagram

Inputs of a weaving process are 1) the assembly of the original application, called
the base assembly, and 2) a set of AAs.

The base assembly is required in order to be synchronized with the weaver’s
own model of it on which all adaptations will be computed and interferences
managed before being projected on the running assembly. The set of aspects is
not static and can be dynamically extended. The single result of the weaving
process is the final assembly corresponding to the adapted application. The
final assembly is projected in terms of elementary modifications - add, remove

components, bind, unbind ports. The underlying adaptive execution platform is
in charge of achieving these modifications. Each weaving operation is processed
on the base assembly, free of any previous AA adaptation. We will describe the
various processes involved in a weaving operation in the next section (3.5), but
we can still explain how it is triggered:

– Selection or deselection of AAs given as inputs. An AA registered in the
weaver can be activated or not, depending on its selection status. If a new AA
is selected or if an already applied AA is deselected, a new weaving process
is triggered. Selection can be done by users if they know what functionalities
they want to use or by external applications, generally based on the users’
preferences or context.

– Appearance or disappearance of joinpoints in the base assembly. This is
typically caused by a new service appearing or disappearing in the software
infrastructure of the application. Only AAs that can be applied to this new
assembly (i.e. which satisfy pointcut matching) will be woven.

WovenRelevantSelectedUnselected

Waiting for a successful
pointcut matching

Joinpoints have been
identified for the
pointcuts

Instances of advices
have been composed
in the application graph

The AA is not in the
set whose pointcuts
will be evaluated

Initial
state

Fig. 7: AA state diagram

Therefore, the state diagram of an AA goes through several states (Figure 7).
Originally, when the weaver loads it, an AA is in an unselected state. In that case,
its pointcuts are not even evaluated in weaving processes. When it is selected, its
pointcuts are evaluated in weaving processes and a process is started. As long as
it stays selected, it will be evaluated on each following process. If some joinpoints
satisfy all the pointcut rules of the AA, it becomes relevant before being woven.
AAs that were initially not relevant can thus become relevant only when a new
component appears in the application assembly. Similarly, those that have been
woven can become disapplicated when a joinpoint matched by their pointcut
disappears, in which case they will still be selected, waiting for their relevance
to change.

3.4 Symmetry property

More than a simple mechanism for compositional adaptation of assemblies, the
AA weaver allows managing interferences that may occur when several AAs are
applied simultaneously to the same assembly. Interference appears when two

(or more) adaptations target a shared port, hence its name, shared joinpoint
interference. Moreover, during the application of several AAs, the weaver guar-
antees the property of symmetry of the weaving operation, namely idempotency,
commutativity, and associativity [9].

Classically, aspect languages provide mechanisms for adding behavior to
pointcuts, by means of the operators after, before and around. These mechanisms
represent an externalized way of managing interferences between aspects. With
AAs, this is no longer necessary. As an example, the merging mechanism using
ISL4WComp [9] is based on language operators with a well-known semantics
(Table 1). Their composition ensures a consistent result, as well as the property
of symmetry between AA’s weaving operation. Section 5.2 will present more
details on how the merging operation of adaptation rules works. Interferences
between AAs are then managed internally. Thanks to the merging mechanism,
all AAs are provided at the same time, without giving any order to the weaver,
and are superimposed (section 5.1).

This non-ordered weaving and symmetric merging addresses the issue of
the combinatorial explosion of generated assemblies introduced in [27]. With-
out these properties, the adaptation system would need to compute all possible
combinations between AAs based on the weaving order of each AA, and then
choose the best combination according to a given situation. With these proper-
ties, for a given set of AAs and an assembly given as input to the weaver, the
result will be the same (deterministic) and there is no history of AA applica-
tion. This is particularly important in ubiquitous computing, since we cannot
know the order in which components will appear or disappear from the assembly,
and thus the order of application of adaptation rules. Thus, the major point is
that when this property is combined with the merging mechanism, it improves
aspect’s independence since there is no order and no relations between aspects.

Now that we have presented AAs principles, we will present the various pro-
cesses used in a weaving operation, and for each of them we will study their
response time in the following sections.

3.5 Weaving process: Weaver’s Internal Operations

The weaver and a weaving process are described in Figure 8. The first step of a
weaving process is the pointcut matching À for selected AAs. It takes as input
the pointcut section of an AA (pointcuti) and the list of joinpoints (Jpoint =
{port00, . . . , portnz} where z is the identifier of the port from component n)
from the base assembly. It produces a list of results for pointcuts LJPoint =
{l1, . . . , lj}, and each result lk is a set of joinpoints satisfying the rule Rulek. This
list of joinpoints can then be filtered Á, for instance to prohibit weaving on some
ports. In our example, matching ports with Beep* could lead to BeepNbMSec

being matched; however we would filter it out because it takes a beep length
argument that we are unable to provide here. The result of this filter is a new
list of joinpoint lists with a cardinality of internal lists smaller or equal to that
of the original lists.

PointCuti

Advicei

Composition

Interference
Identification

Interference
Resolution

AdviceFactory

Reverse
Transformation

Transformation

Process based on AAs

Process based on assemblies

Joinpoint
Filtering

PoincutMatching

Combination
Filtering

Joinpoint
Combination

PoincutMatching

Joinpoint
Combination

AdviceFactory

Joinpoint
Filtering

Combination
Filtering

PoincutMatching

Joinpoint
Combination

AdviceFactory

Joinpoint
Filtering

Combination
Filtering

Fig. 8: AA Weaver description

To be instantiated, each advice requires at least one matched joinpoint for
each pointcut rule. If many joinpoints satisfy the same rule, the advice can be
applied to all combinations of joinpoints from the various lists. These combi-
nations, that will impact the scope of the aspect, are calculated by the join-
point combination mechanism Â. This mechanism can be implemented using
various algorithms, as we will see in Section 4.2. From the list of joinpoints ob-
tained during the pointcut matching, each algorithm must produce a new set
of lists JPointComb. The cardinality of a combination is equal to the number
of pointcut rules. Any combination with different cardinality cannot be applied.
To illustrate this, the first AA of our case study cannot be woven unless both
pointcut rules pressure and flash are matched. With the application depicted in
Figure 2, one combination will be returned by the joinpoint combination mech-
anism: {{PressureSensor1.^Overflow, SmartphoneDisplay.Flash}}.

The set of joinpoint combinations, JPointComb, can also be filtered Ã to
remove some joinpoint combinations. This is useful when an AA should be dupli-
cated for all combinations but one. We don’t use it in the hydrant man scenario
though. The resulting list is the input of the advice factory.

The advice factory Ä generates instances of advices, from advice definitions
and joinpoint combinations. Instantiation is done by replacing the pointcut vari-
ables used in an advice by actual joinpoints from a combination. There are thus
as many instances of advices as joinpoint combinations. Instantiation transforms

an abstract description of an adaptation into a concrete one. In fact, it will later
be shown that there is an equivalence between an instance of advice and a com-
ponent assembly (Section 5).

These first five operations from pointcut matching to the advice factory,
referred to as AA processing flow, are duplicated for each AA given as input
to the weaver. This ensures a high degree of modularity and allows any step of
the flow to be changed, according to the AA being processed. For example, by
modifying step Â, it is possible to modify the scope of an AA, by modifying
step À, the pointcut definition language can be modified. AA processing flows
can be seen as a single composite operation, taking AA definitions and a base
assembly, and returning a list of adaptation rules. The response time of the five
operations of the processing flows will be evaluated in Section 4.

Subsequently, all results of these processing flows are superimposed. In par-
allel, the base assembly is transformed into an instance of advice G0 (a model of
the base assembly) to be composed with those created by the advice factories.
We call this process the reverse transformation. The composition mechanism
takes the set of instances of advice and produces a single instance of advice
GF representing the adapted assembly. There are two steps in the composition
engine: the first step is used to superimpose instances of advice and to identify
potential interferences Å, and the second step, the merging engine Æ, is used to
resolve these interferences. These two operations’ response time will be evaluated
in Section 5.

Each operation will be described both algorithmically and in terms of com-
plexity. Since response time is our main concern, we will compare the mathe-
matical models derived from the algorithms with values from experimentation.
These experiments were conducted on a standard laptop computer (Athlon X2
1.6 GHz, 512MB RAM). The weaver has been implemented using the WComp
adaptive execution platform as a component assembly, one component for each
functionality presented above. The execution platform is in charge of imple-
menting the elementary modifications provided by the weaver at the end of the
weaving process.

4 Aspect processing

In the weaver, the processes ranging from pointcut matching to the advice factory
are executed independently, for each AA. They form what we call AA processing
flows. Their purpose is to produce instances of advices from the AAs definitions,
which will then be seen as components assemblies in the composition process.

4.1 Pointcut Matching

Pointcut matching can be seen as a function parameterized by the pointcut
rules defined in the AA, and produces lists of joinpoints that satisfy each rule
(Figure 9) from the list of joinpoints of the current application. If one of these
lists is empty, it ends the AA processing flow for this AA.

PointcutMatching

Rule0=A*.a

Rule1=B*.e

pointcuti = {Rule1, …, Rulej}

PointcutMatching(JPoint, pointcuti) = LJPointi

List of joinpoints
JPoint = {port00, …, portnz}

List of list of joinpoint
LJPointi = {li1, …, lij}

lij = {portij00, …, portijnz}

Fig. 9: Pointcut Matching

Model. In a first step, the weaver retrieves all ports of the base assembly and
builds the set of joinpoints, called JPoint. It then retrieves all the pointcut
sections of the AAs. For each AA, all the rules are evaluated on all ports of the
assembly, in order to build a list of joinpoints component.port satisfying each
rule. Figure 10 presents an example of pointcut matching based on our scenario.
This operation is described more formally, as written in Algorithm 1, whose
complexity is given by:

O(j × card(JPoint) × cost of the satisfy function)

The evaluation of a port with respect to a rule depends on how the rules
are defined. An implementation example is the definition of pointcut rules using
regular expressions (3.1). In that case, the complexity of a rule evaluation is
O(ml), where m is the size of the expression and l the size of the word. The
complexity of the Pointcut Matching function will thus be:

O((j × card(JPoint)×O(ml)) = O(j × card(JPoint)×m× l)

From this complexity, we can deduce the following mathematical model (Fig-
ure 11).

Experiments. Our experiments involved a pointcut consisting of three rules,
and a set of joinpoints ranging from 0-300 elements. All joinpoints are matched
by one of the three rules. Several experiments were made, and the curve of Figure
12a shows the average of these series, and the standard deviation of the values
obtained. Figure 12b provides a comparison between the mathematical model
and the experimental values. We identify from these experiments the following
values to the model: a1 = 10−6 and a2 = 1, 4× 10−6. We can conclude that the
pointcut matching process is not significantly time consuming since it generally
takes less than a millisecond to compute.

4.2 Joinpoint Combination

Joinpoint combination combines joinpoints that satisfy pointcut matching rules
according to various policies, in order to define how and where the AA will

LJPointi = {li0, li1, li2} = { {LightSensor1.^LightLevel};
 {PressureSensor1.^Overflow, PressureSensor2.^Overflow};
 {AudioHelmet1.Beep} }

brightness = *.^LightLevel
pressure = Press*.^Overflow
sound_alert = *.Beep*

Pointcut

JPoint = { LightSensor1.^LightLevel, LightSensor1.on, …
 SmartPhone1.Flash, SmartPhone1.Call, …
 AudioHelmet1.Beep, …

 PressureSensor1.^Overflow, …
 PressureSensor2.^Overflow, … }

Base
Assembly

Fig. 10: Pointcut Matching Example

D : duration of the Pointcut Matching process
a1; a2 : model parameters
c : number of joinpoints
i : number of AAs

j : number of rules in the pointcut section of an AA

D = a1×
∑i

k=1(jk.c) + a2

Fig. 11: Duration of the Pointcut Matching process

Algorithm 1 PointcutMatching(JPoint, PointCuti)

lij : a list of ports (joinpoints) where lij = portij00, . . . , portijnz and j is the number
of lists, which is equal to the number of rules in pointcuti
LJPointi : a set of joinpoint lists where LJPointi = {lio, . . . , lij}
JPoint : the set of ports from the base assembly port00, . . . , portnz y

create LJPointi
for s = 0 to j do

Add a new list lis to LJPointi
for t = 0 to card(JPoint) do

if JPoint[t] satisfy the rule Ruleis then
Add JPoint[t] to the list lis

end if
end for

end for

(a) Average response time and deviation (b) Average response time and model

Fig. 12: Pointcut Matching process response time.

be duplicated. Indeed, an advice requires all variables defined in pointcuts to be
associated to a joinpoint in order to be woven into the application. Combinations
containing a value for each pointcut variable are thus created. An AA can be
applied as many times as there are combinations of joinpoints computed from
the joinpoint lists. The JPCombination mechanism can be seen as a function
which builds a new set of lists JPointComb = {Combi1, . . . , Combij} from the
joinpoint list LJPoint (Figure 13).

Joinpoint
Combination

List of list of joinpoints
LJPointi = {li1, …, lij}

lij = {portij00, …, portijnz}

JPCombination(LJPointi) = JPointCombi

JPointCombi = {Combi1, …, Combij}

Fig. 13: Joinpoint Combination

The joinpoint combination function computes all the places in the assembly
where AAi’s advice can be applied. This mechanism and pointcut matching
allow the AAs to take benefits from AOP by providing high reusability, and
minimizing the dispersion of code.

An important point is that various combination algorithms can be designed.
It would make no sense to build all possible combinations for some adaptations,
for example we may want to duplicate our second AA (Figure 6) for all existing
pressure sensors, but not for all existing light sensors. Another example combi-
nation algorithm is to combine joinpoints according to their names, by firstly
sorting each list of joinpoints, and then combining a joinpoint from each list
according to their index in the list. Moreover, since AA processing flows are
duplicated for each AA in the weaver, they can use a different algorithm. Thus,
a designer can manage part of the scope of an AA by associating it to a specific
combination algorithm.

LJPointi = {li0, li1, li2} = {{LightSensor1.^LightLevel};
{PressureSensor1.^Overflow, PressureSensor2.^Overflow};
{AudioHelmet1.^Beep}}

JPointCombi = {Combi0, Combi1} =
 { (LightSensor1.^LightLevel, AudioHelmet1.^Beep, PressureSensor1.^Overflow) ,
 (LightSensor1.^LightLevel, AudioHelmet1.^Beep, PressureSensor2.^Overflow) }

LightSensor1.^LightLevel

PressureSensor1.^Overflow PressureSensor2.^Overflow

AudioHelmet1.^Beep

LightSensor1.^LightLevel LightSensor1.^LightLevel

Number of combinations:
Product = 121 = 2

Number of lists with LightSensor1.^LightLevel :
Product/Card(LJPoint [0])=2/1=2

Number of lists with LightSensor1.^LightLevel
and SmartPhone*.Flash :
Product/Card(LJPoint [1])=2/1=2

Number of lists with LightSensor1.^LightLevel,
 SmartPhone1.Flash and PressureSensor1.^Overflow :
Product/Card(LJPoint [2])=1

LightSensor1.^LightLevel

PressureSensor1.^Overflow

LightSensor1.^LightLevel

PressureSensor2.^Overflow

LightSensor1.^LightLevel
AudioHelmet1.^Beep

PressureSensor1.^Overflow

Number of lists with LightSensor1.^LightLevel,
 SmartPhone2.Flash and PressureSensor2.^Overflow :
Product/Card(LJPoint [2])=1

LightSensor1.^LightLevel
AudioHelmet1.^Beep
PressureSensor2.^Overflow

Fig. 14: Example of joinpoint combination

Figure 14 presents combination processing for our case study, based on the
algorithm providing all the possible combinations. The input data of the com-
bination function in this example are those obtained in the previous example
(Section 4.1). In that case, two combinations are created, since two joinpoints
are associated with the variable flash.

Model. This algorithm of joinpoint combination calculating all possible com-
binations is presented as Algorithm 2. The complexity of this algorithm is:

O(card(JPoint)j).

The computational cost of this function depends on the algorithm used. It
may be lower, since calculating all possible combinations is the worst case. From
this complexity, we can deduce the mathematical model described in Figure 15.

Experiments. Our experiments involved the algorithm providing all combi-
nations, a pointcut consisting of three rules, and a set of joinpoints ranging
from 0-300 elements. All joinpoints are matched by one of the three rules. Sev-
eral experiments were made, and the curve of Figure 16a shows the average
of these series, and the standard deviation of the values obtained. Figure 16b
provides a comparison between the mathematical model and the experimental
values. We identify from these experiments the following values to the model:

C : duration of the joinpoint combination process
a1; a2 : model parameters
JPoint : set of joinpoints

i : number of AAs
j : number of rules in the pointcut section of an AA

C = a1×
∑i

k=1(card(JPoint)jk) + a2

Fig. 15: Duration of the joinpoint combination process

Algorithm 2 JPCombination(LJPoint)

ACombination : list of joinpoint
Product : Integer : number of possible combination
mult : Integer : number of combination using the joinpoint
lcomb : list of combination

mult=1;
create JPointComb
for i = 0 to card(LJPoint) do

Create lcomb
ACombination.Clean
product = product/(card(LJPoint[i])− 1)
for j = 1 to card(LJPoint[i]) do

for k = 0 to product do
ACombination.Add(LJPoint[i][j])

end for
end for
for j = 1 to mult do

lcomb.Add(ACombination)
end for
JPointComb[i]= lcomb
mult = mult× (card(LJPoint[i])− 1)

end for
return JPointComb

a1 = 0.45 × 10−6 and a2 = 1 × 10−6. We can conclude that the joinpoint com-
bination process can be time consuming when it involves the generation of all
possible combinations, with computing times up to 120ms for 300 joinpoints.

4.3 Filters

Before instantiating advices using joinpoint combinations, some of the combi-
nations may be removed from the list, because they don’t fit user’s preferences,
because they are not relevant to the application, or even because they are known
to be semantically conflicting. Another filter can be placed on the list of join-
points matched by the pointcut matching operation, in order to prevent some

(a) Average response time and deviation (b) Average response time and model

Fig. 16: JoinPoint combination processing response time

joinpoint from being part of adaptations at all. This process is described more
formally, according to algorithm 3. The complexity of this algorithm is:

O(j × card(JPoint)× cost of the filter function).

Algorithm 3 Filter

j : number of combinations
bool filter(joinpoint) : the filtering function

for s = 0 to j do
for t = 0 to card(LJPointi[j]) do

if filter(lis[t]) then
lis.remove(t)

end if
end for

end for

The cost of the filter function can be constant if it matches a simple joinpoint
name, thus making the filtering operation O(j×card(JPoint)). If filter matches
the current joinpoint with a list of joinpoint names, the complexity is multiplied
by the length of this list. Because filters are not mandatory in weaver operations,
these components will not be further investigated in this paper.

4.4 Advice Factory

The Advice Factory builds instances of advice from the list of joinpoint combi-
nations (Figure 17). It links an advice, which is an abstract representation of an
assembly, to the base assembly. It thus creates as many instances of advice as
possible, according to the list of combinations. It consists in replacing variables
from advice rules, with the joinpoints from each of the combinations.

AdviceFactory

ARule0

ARulew

…

Advicei = {ARule1, …, ARulew}

JPointCombi = {Combi1, …, Combij} iAdviceListi = {iadvice1, …, iadvicek}

AdviceFactory(JPCombi) = iAdviceListi

Fig. 17: Advice Factory Example

Model. The Advice Factory produces a list of instances iAdviceListi of advice
advicei. This process is described more formally in Algorithm 4. The complexity
of the replace function is constant after grammar parsing of the rules, making
the complexity of the instantiation operation as follows:

O(k × w)

Algorithm 4 AdviceFactory(JPointCombi)

k : number of combinations
w : number of advice rules

for s = 0 to k do
for t = 0 to w do

Replace variable from ARule[t] using JPointComb[s]
end for

end for

From this complexity, we deduce the mathematical model described in Fig-
ure 18.

A : duration of instance of advice generation
k : number of combinations
w : number of advice rules

i : number of AAs
a1; a2 : model parameters

A = a1×
∑i

p=1(kwp) + a2

Fig. 18: Duration of instance of advice generation

(a) Average response time and deviation (b) Average response time and model

Fig. 19: Advice Factory processing response time

Experiments. Our experiments involved a number of combinations of three
joinpoints ranging between 0 and 100. Several experiments were made, and the
curve in Figure 16a shows the average of these series, and the standard deviation
of the values obtained. Figure 16b provides a comparison between the mathemat-
ical model and the experimental values. From these experiments, we identified
the following values for the model: a1 = 3 × 10−6 and a2 = 1 × 10−6. We can
conclude that the AdviceFactory process does not have a strong impact on the
response time, since it instantiates advices in less than 2ms in these inflated
conditions.

Overall, among the processes performed on AAs, the production of joinpoint
combinations may be the most expensive. However, according to the combination
algorithm associated with an AA, considerable improvements can be achieved. As
an example, in the field of ubiquitous computing, we generally use an algorithm to
combine joinpoints according to their meta-data (for instance to combine devices
that are in the same room), whose complexity is lower. We thus conclude that the
AA processing flows inside the weaver have a small impact on the adaptation’s
response time. We will now study the composition of the instances of advices
with the base assembly and the result of the adaptation.

5 Assembly processing

Once the instances of advices have been generated, the AAs are no longer used
in the weaving process. The weaver then works on instances of advice which are
regarded as component assemblies to be composed with the base application. In-
deed, an instance of advice iAdvicei is composed of a set of components C and
a set of bindings L. A binding connects an input and an output port together.
Since all the joinpoints and the ports from instantiated components are refer-
ences to actually existing ones, an instance of advice is a component assembly
without open connections iAdvicei = (C,L). It can be considered as a graph
instead of a language [14].

The composition mechanism considers a set of instances of advices, in order
to generate a new instance of advice that will be applied to the application to
adapt it. This process consists of superimposing them one after the other. The
single advice GT is built, containing all the modifications to be applied to the
base assembly (5.1). This operation may make interferences appear between the
rules included in the final iAdvice. A second operation is thus required to resolve
such interferences, using a merging mechanism, and return the new assembly GF
(5.2).

5.1 Superimposition

The superimposition is an operation that builds a unique assembly from several
intermediate component assemblies (instances of advice). The inputs of the Su-
perimpose function are a set of instances of advice (iAdviceList) generated by
the Advice Factory of each AA, and the instance representing the base assembly
G0. It produces the instance called GT = {GRule1, . . . , GRulea}, which is an ag-
gregation of all of the rules from all of the instances of advice. Starting from this
point, interferences may appear in the GT assembly. Figure 20 gives an example
of superimposition of four instances of advice instantiated from the AAs from
our case study, with combinations from Figure 14. The first five rules of the new
instance of advice represent the base assembly G0 before being adapted. The
following rules are added by superimposition. Note that the variables present
in the advice part of each AA have been correctly replaced in their bodies by
joinpoints.

Model. This process is described more formally in Algorithm 5. The complexity
of this algorithm is: O(y ×max(Card(iAdvisei))× card(G0)). It iterates on all
rules from all instances of advice and check if they are not already contained in
G0. From this complexity, we can deduce the mathematical model described in
Figure 21.

Algorithm 5 Superimpose(iAdviceList)

y : number of instances of advice

GT = G0

for d = 0 to y do
for t = 0 to card(iAdvised) do

if iAdvised[t] /∈ GT then
Add iAdvised[t] to GT

end if
end for

end for

iA
d

vi
ce

1

iA
d

vi
ce

2

Su
p

e
ri

m
p

o
se

d

in
st

an
ce

 o
f

ad
vi

ce

G
T

In
st

an
ce

 o
f

ad
vi

ce
 li

st

iA
d

vi
ce

Li
st

 =
 {

iA
d

vi
ce

1
, i

A
d

vi
ce

2
,

 iA

d
vi

ce
3
, i

A
d

vi
ce

4
}

th
re

sh
o

ld
 :

'B
as

ic
B

ea
n

s.
Th

re
sh

o
ld

' (
th

re
sh

o
ld

=5
0

0
)

te
xt

b
o

x
: '

Sy
st

em
.W

in
d

o
w

s.
Fo

rm
s.

Te
xt

B
o

x‘

 P
re

ss
u

re
Se

n
so

r1
.^

O
ve

rf
lo

w
 →

 (

if

 (
th

re
sh

o
ld

.I
sR

ea
ch

ed
)

{A
u

d
io

H
el

m
et

1
.^

B
ee

p
}

el

se
 {

ca
ll}

)

 L
ig

h
tS

en
so

r1
.^

Li
gh

tL
e

ve
l →

 (

th

re
sh

o
ld

.s
et

_V
al

u
e

 ;
 t

ex
tb

o
x

.s
et

_T
ex

t
)

th
re

sh
o

ld
 :

'B
as

ic
B

ea
n

s.
Th

re
sh

o
ld

' (
th

re
sh

o
ld

=5
0

0
)

te
xt

b
o

x
: '

Sy
st

em
.W

in
d

o
w

s.
Fo

rm
s.

Te
xt

B
o

x‘

 P
re

ss
u

re
Se

n
so

r2
.^

O
ve

rf
lo

w
 →

 (

if

 (
th

re
sh

o
ld

.I
sR

ea
ch

ed
)

{A
u

d
io

H
el

m
et

1
.^

B
ee

p
}

el

se
 {

ca
ll}

)

 L
ig

h
tS

en
so

r1
.^

Li
gh

tL
e

ve
l →

 (

th

re
sh

o
ld

.s
et

_V
al

u
e

 ;
 t

ex
tb

o
x

.s
et

_T
ex

t
)

In
st

an
ce

 o
f

ad
vi

ce
 r

u
le

 li
st

iA
d

vi
ce

3

Sm
ar

tP
h

o
n

e1
: ‘

W
co

m
p

.U
P

n
P

D
ev

ic
e.

Sm
ar

tP
h

o
n

e’

P
re

ss
u

re
Se

n
so

r1
:

‘W
co

m
p

.U
P

n
P

D
ev

ic
e.

P
re

ss
u

re
Se

n
so

r’

P
re

ss
u

re
Se

n
so

r2
:

‘W
co

m
p

.U
P

n
P

D
ev

ic
e.

P
re

ss
u

re
Se

n
so

r’

Li
gh

tS
en

so
r1

:
 ‘W

co
m

p
.U

P
n

P
D

ev
ic

e.
Li

gh
tS

en
so

r’

A
u

d
io

H
el

m
et

1
: ‘

W
co

m
p

.U
P

n
P

D
ev

ic
e.

H
ea

d
se

t’

 th
re

sh
o

ld
 :

'B
as

ic
B

ea
n

s.
Th

re
sh

o
ld

' (
 t

h
re

sh
o

ld
 =

 5
0

0
)

th

re
sh

o
ld

 :
'B

as
ic

B
ea

n
s.

Th
re

sh
o

ld
' (

 t
h

re
sh

o
ld

 =
 5

0
0

)

 te
xt

b
o

x
: '

Sy
st

em
.W

in
d

o
w

s.
Fo

rm
s.

Te
xt

B
o

x'

te
xt

b
o

x
: '

Sy
st

em
.W

in
d

o
w

s.
Fo

rm
s.

Te
xt

B
o

x'

 P
re

ss
u

re
Se

n
so

r1
.^

O
ve

rf
lo

w
 →

 (

if

 (
th

re
sh

o
ld

.I
sR

ea
ch

ed
)

{A
u

d
io

H
el

m
et

1
.^

B
ee

p
}

el

se
 {

ca
ll}

)

 P
re

ss
u

re
Se

n
so

r2
.^

O
ve

rf
lo

w
 →

 (

if

 (
th

re
sh

o
ld

.I
sR

ea
ch

ed
)

{A
u

d
io

H
el

m
et

1
.^

B
ee

p
}

el

se
 {

ca
ll}

)

 Li
gh

tS
en

so
r1

.^
Li

gh
tL

ev
el

 →
 (

th
re

sh
o

ld
.s

et
_V

al
u

e
; t

ex
tb

o
x

.s
et

_T
ex

t
)

 Li
gh

tS
en

so
r1

.^
Li

gh
tL

ev
el

 →
 (

th
re

sh
o

ld
.s

et
_V

al
u

e
; t

ex
tb

o
x

.s
et

_T
ex

t
)

 P
re

ss
u

re
Se

n
so

r1
.^

O
ve

rf
lo

w
 →

 (
Sm

ar
tP

h
o

n
e1

.F
la

sh
)

 P
re

ss
u

re
Se

n
so

r2
.^

O
ve

rf
lo

w
 →

 (
Sm

ar
tP

h
o

n
e2

.F
la

sh
)

iA
d

vi
ce

4

 P
re

ss
u

re
Se

n
so

r2
.^

O
ve

rf
lo

w
 →

 (
Sm

ar
tP

h
o

n
e1

.F
la

sh
)

B
as

e
as

se
m

b
ly

G
0

 P
re

ss
u

re
Se

n
so

r1
.^

O
ve

rf
lo

w
 →

 (
Sm

ar
tP

h
o

n
e1

.F
la

sh
)

Fig. 20: Superimposition Example

Experiments. Our experiments involved a set of instances of advice, with their
cardinality ranging from 0-100. These instances were composed of 7 rules, and
relied on three joinpoints. Several experiments were made, and the curve pre-
sented in Figure 22a shows the average of these series, and the standard devia-

S : duration of the instance of advice superimposition
y : number of instances of advice

w : number of advice rules
g0 : number of rules in the base assembly’s instance of advice

a1;a2 : model parameters

S = a1×
∑y

i=1(wi.g0) + a2

Fig. 21: Duration of the superimposition of the instances of advice

(a) Average response time and deviation (b) Average response time and model

Fig. 22: Superimposition processing response time

tion between the values obtained. Figure 22b provides a comparison between the
mathematical model and experimental values. From these experiments, we iden-
tified the following values for the model: a1 = 1.3×10−6 and a2 = 1×10−6. The
superimposition operation is quite simple, and as we can see on the graphs, it
takes generally less than 0.1ms to compute the superimposed instance of advice.

5.2 Interference management

The aim of interference resolution is to manage interferences occurring when
several instances of advice are being woven on the same joinpoint, making what
we call a shared joinpoint. To preserve the symmetry property of the weaving op-
eration of AAs, it has been seen that AAs are always applied on a base assembly
G0 which is free of any adaptation. We have also seen that they cannot remove
a component from an assembly and an AA cannot prevent another AA from be-
ing woven. This greatly reduces the potential for interaction between AAs. The
main type of interaction is in fact the interference on a shared joinpoint. We
address the automatic resolution of this kind of interference with the symmetry
property of the merging operation. Consequently, the result of the weaving of
several AAs is deterministic, whatever the order of their weaving.

The interference management requires first to locate the interferences on
shared joinpoints. The superimposed advice GT is browsed and modified by

introducing a specific component noted ⊗ as source component of link-based
rules that interfere.

The merging mechanism then acts by replacing these components with com-
ponents of well known semantics. Thanks to this mechanism, we can guarantee
the application’s consistent behavior. The merging operation can be achieved by
means of various techniques, for example based on graph transformations [14],
or on languages with specific operators, as ISL4WComp [8] that we present in
this paper. Basically, the algorithm used to resolve interferences browses all ⊗
components in order to run a merging engine on them. The resulting assembly
is GF . This process is described more formally as follows (Algorithm 6):

Algorithm 6 InterferenceResolution(iAdvice)

for s = 0 to card(List⊗) do
Merge(List⊗ [s])

end for

We will now present the merging mechanism associated with the ISL4WComp
language, and describe how operators are merged when they interfere.

ISL4WComp merging mechanism. The shared joinpoint interference reso-
lution mechanism is based on the operators listed in Table 1. Interfering rules
are expressed in the form of semantic trees for destinations of links. Operators
are the nodes of these trees and ports are their leaves. The merging of two trees
consists in merging the operators, according to predefined rules as shown for
some operators in Figure 23. These rules are defined in [8]. Their symmetry is
the key of the symmetric merging of ISL4WComp’s operators [8, 33]. The merg-
ing operation is then propagated to the leaves, solving the interference on each
node.

This propagation is depicted in Figure 24, using the case study AAs as exam-
ple, with the interference appearing on the pressure port. First, the ⊗ is merged
with the if operator, by propagating in its two branches, the then and the else.
In this example, there is a simple port expression in the then branch, with no
operator. In that case, the merging stops and returns the port in the leaf. In
the other case, like in the else branch, the merging is propagated and this has
to be done recursively. The merging between the call and the port results in
the port. It allows rewriting the existing link between pressure and flash (or any
other) ports.

When two rules for the addition of two bindings do not use operators and
are interfering, the result of the merging operation consists in adding a parallel
operator between the two bindings. This also ensures the symmetry property of
the merging operation. Finally, a rule which adds a black-box component cannot
result in an interference, since an AA cannot reuse a component instantiated
by another AA. Once the trees have been merged, they are transformed into

Fig. 23: Operators merging sample matrix [33]

Rule 1:
pressure -> (flash)

Rule 2:
pressure -> (if (threshold.IsReached) {
 sound_alert
 } else {
 call
 })

Merging:
pressure -> (flash if (threshold.IsReached) { sound_alert } else { call }) (step 1)
pressure -> (if (threshold.IsReached) { sound_alert } else { call flash }) (step 2)
pressure -> (if (threshold.IsReached) { sound_alert } else { flash }) (step 3)

Fig. 24: ISL4WComp merging result

elementary instructions (add/remove component/binding), and the operators
are then represented in the assembly by COTS with a well known semantics.

Model. Figure 25 defines the mathematical model representing the duration of
the interference resolution mechanism.

Experiments. Experiments on the merging mechanism are based on the imple-
mentation presented in [8], featuring the ISL4WComp language. They allowed
us to define M as being proportional to the minimum height between the two
trees to merge: M = k0.min(h0;hi) where k0 is a model parameter depending
on the underlying system [8], like a1 or a2 in our previous models.

Our experiments involved a set of instances of advice ranging from 0 to 50
elements. The curve shown in Figure 26a shows the experimental results of the
interference resolution mechanism, with an interference probability of approxi-

F : duration of instance of advice merging
go : number of rules in the base assembly

y : number of instances of advice
wi : number of advice rules
a1 : model parameter
pi : merging probability
M(h0, hi) : tree heights

F = a1.g0 ×
∑y

i=1 wi.pi.M

Fig. 25: Duration of instance of advice merging

(a) Average response time and model (b) Average response time with p = 33%
and p = 50%

Fig. 26: Interference resolution processing response time

mately 0.33 between two instances of advice. It also compares the mathematical
model with the experimental values. From these experiments we identified the
following value to the model: a1 = 1 × 10−6. The curves shown in Figure 26b
describe the experimental results of the interference resolution mechanism, with
interference probabilities about 0.50 and 0.33. These evaluations highlight the
high cost of the merging mechanism, which represents approximately 85% of
the total cost of the weaving process. The probability of interference between
several instances of advice thus also plays a major role in the duration of the
interference resolution mechanism.

6 Discussion of Results

We have presented models for each operation involved in processing and compo-
sition of adaptation rules in the AA weaver. The following formula (Figure 27)
is the summary of the models presented in the two preceding sections. It models
the time required to perform a complete weaving cycle. The algorithm chosen for
joinpoint combinations in the model computes all possible combinations, which
is the worst case since it creates the highest amount of duplications of each AA.

∆adapt : duration of a weaving cycle
go : number of rules in the base assembly
wi : number of advice rules from AAi

a1; a2 : model parameters
pi : merging probability
M(h0, hi) : tree heights
c : number of joinpoints
i : number of AAs

ji : number of rules in pointcut from AAi

pkj : probability that a joinpoint satisfy a pointcut rule

W = a1.g0 ×
∑i

k=1[(jk.c) +
∑jk

z=1(pkj .c)
jk +NBComb.wk +

∑NBComb
l=1 wk.pk.M] + a2

NBComb =
∏jk

r=1(2(pkm.c)−1)

Fig. 27: Duration of the weaving process

When required, the merging process duration encompasses most of the weav-
ing duration. The duration of a weaving cycle is equal to the sum of the durations
of the various processes involved in the weaving mechanism. The AA processing
flow (Section 4) is independent for each AA and can consequently be paral-
lelized. The total AA processing time could then get closer to the time required
to process a single AA processing flow. It again emphasizes the importance of
the merging mechanism, which takes most of the time of a weaving cycle.

Figure 28 was calculated using the mathematical models described above. It
shows the duration of a weaving cycle, according to the number of joinpoints
present in the base assembly, for the two AAs of our case study. We consider
all these joinpoints to satisfy the pointcut matching, and the combinations to
be generated according to the affinity of the joinpoint’s meta-data. The merging
engine is involved in 33% of cases. These evaluation conditions are not represen-
tative of our complete scenario, because of the number of AAs involved, which
is generally approaching 20 depending on the situation, and because there won’t
be so many joinpoints matching the same pointcut rules. However, we can use
the results of our models, derived from evaluation conditions that are easier to
measure, to give response times relevant to our scenario. The weaving of 20 AAs,
having an average of 3 pointcut rules and 2 advice rules instantiated one time,
with interferences appearing less than for a third of them, takes approximately
0.5s.

The response time of the AA weaver (∆adapt) presented in this paper is
only the time spent to calculate the adaptation. It is surrounded by the time
required to monitor or detect a change in the infrastructure (∆infra) and the
time required for the actual reconfiguration of the application once the resulting
assembly GF is calculated (∆reconf). The sum of these three times (∆), being
the time spent from infrastructure change to the application adapted to this
change. It has to be low enough to prevent the application from using unavailable
services, and to prevent adaptation loops from occuring with a higher frequency

Fig. 28: Duration of weaving cycle, calculated from our model

than can be computed. During a loop, the application is not stalled for ∆, since
∆infra and ∆adapt can be executed by entities external to the application, in
our case the AA weaver. The application may even not be completely stalled for
its reconfiguration, for example parts not being reconfigured may still execute,
which is the case with our component model SLCA.

∆ = ∆infra +∆adapt +∆reconf

∆ < Tmax

In order to validate our approach, we must evaluate the conditions in which
∆ is lower than the maximum acceptable response time Tmax, and provide values
for Tmax depending on the application’s domain. We were not able to find re-
sponse time evaluations in other adaptation mechanisms, so we cannot directly
compare our results to existing research. In the field of human computer in-
teractions, the user latency is considered to be at most 100ms. Bérard [10] thus
proposed that the latency for highly tied interactive systems should be two times
smaller than the user latency: 50ms. These systems are not distributed, and in-
frastructural changes triggering an adaptation are local, for example, the user
enabling a new functionality on his mobile phone. ∆infra is thus negligible, so we
have to evaluate the conditions in which Tmax = 50ms =⇒ ∆adapt +∆reconf <
50ms.

∆reconf has already been evaluated for our component platform SharpW-
Comp [34]. The instantiation of a component takes close to 3ms and the creation
of a link between them takes around 4ms. When GF is computed by the weaver
to become the new assembly, chances are that a large part of it has already been
created by previous weaving cycles. If we fix the application’s reconfiguration to
the adding of a component and three links, we get ∆reconf = 15ms, which leaves
us with ∆adapt ≤ 35ms. During that time, our model above allows us to state

that the AA weaver can process adaptations for an application of approximately
25 components.

On the other hand, ubiquitous computing does not necessarily require such
low response times. A comparable field is home automation, in which the gener-
ally accepted latency is about 1 second. In this distributed environment, the time
required to detect changes in the software infrastructure may already take a large
part of that time. We thus have: Tmax = 1s =⇒ ∆infra+∆adapt+∆reconf < 1s.
We have done experimentation with the UPnP service discovery, which is the
protocol currently used in our SharpWComp platform. For a device providing
one service, 180ms, with a 8.5ms standard deviation, are required to detect its
appearance on a low traffic Wi-Fi network. It can be easily higher if the network
suffers from lot of errors, or if there are more than one service in each UPnP
device. To this value, we must add the time required to reflect the infrastructure
change in the component assembly, by instantiating or destroying components.
The first time a service is encountered, it may take up to 260ms to create the
proxy component and load it in the application, but when a service disappears
or a service appears again, it takes less than 10ms. It is thus difficult to evalu-
ate ∆infra properly. In good conditions it can be as low as 190ms, and in bad
conditions it can be more than 2s, which is already higher than the expected ∆.

In good conditions, the scenario from the Continuum application has the
following values: ∆infra = 190ms, or 440ms when new services are met

∆adapt = 500ms as explained above
∆reconf= 120ms for 10 components and 20 links created

The sum fulfills the requirement ∆ < 1000ms most of the time. When the
network does not allow it, we probably have no control over it, but the response
time of the adaptation cycle still has to be very fast to not add even more
overhead to ∆. In fact, ∆adapt should have the following relation to ∆, to ensure
that the weaving cycle does not impact too much the overall response time:

∆
∆adapt

≥ 2⇐⇒ ∆infra +∆reconf ≥ ∆adapt

This ratio is most of the time respected, but again, it depends on a number
of environmental factors. Cases in which the weaving cycle may take the larger
part of the adaptation appear when the infrastructure has very good properties,
for example when using an Ethernet link, or when the reconfiguration of the
application is very small while there are numerous AA selected. Besides, the
temporal properties concern is well addressed only if ∆ � Tinfra, Tinfra being
the average period of infrastructure changes that trigger a new adaptation. If
the infrastructure relays on a slow physical channel, there should not be services
appearing or disappearing too often because it would adapt the application too
frequently. It is not a problem for the adaptation mechanism, but for the user,
if the application changes too often, it may not be properly usable.

7 Related Work

7.1 Dynamic Adaptation Using Aspects

Many studies propose to use aspects, with the aim of achieving dynamic adapta-
tions. Thus, Cheng et al. [39] propose a mechanism for the dynamic adaptation
of applications, which were not designed to be adaptable. To achieve this, a
two-stage process is implemented. The first stage is implemented at design-time,
with mechanisms which thereafter permit runtime adaptations of the application.
The second stage involves assessing, at runtime, when to adapt and then insert
(remove) code into (from) the application. Such a two-step approach would be
difficult to use in the field of ubiquitous computing. Indeed, to implement adap-
tations, some new unforeseen modifications would be required in order to repeat
the first step.

Greenwood et al. [18] also propose an approach for the adaptation of ap-
plications, based on AOP, but it is fully dynamic, based on policies contain-
ing ECA rules. Initially, some monitoring aspects are deployed and policies are
evaluated in order to trigger various action aspects. To achieve this, they use
AspectWerkz [35], and aspects are applied to objects in an invasive manner,
contrary to the approach used with AAs. The weaving condition of the policies,
which does not allow reactions to infrastructural changes, describes how the
adaptations must be triggered. Conversely, they can take background informa-
tion related to the hardware resources (CPU, memory) into account. These types
of policies could be used in combination with AAs, in order to condition their
selection. In this study, as for example in SAFRAN [11], the weaving process
can be triggered, unlike more conventional approaches such as in EAOP [12] or
Munelly [26], by events based on application control flow which are external to
the application. The adaptations can thus be triggered by events related to the
context of the application, referred to as exogenous events.

In [26], Munelly et al. propose to decompose the context into categories,
and to adapt an application, using aspects, according to these contexts. Aspects
are used on top of objects. Such a decomposition allows several contexts to be
considered separately. However, interactions between aspects are not managed,
and the contextual information is a parameter of the adaptation. Aspects are
thus triggered in a classical manner, and not according to changes occurring
in the context. AAs are triggered by the operational context of the application
to be adapted, or by the user. Other types of context could be considered by
adding context-awareness concerns to the application, or by adding a mechanism
to select AAs at runtime according to the context.

7.2 Ensuring The Component Blackbox Property

There are two major types of approach using aspects for adaptation: (1) in-
vasive approaches and (2) non-invasive approaches. When invasive aspects are
used, modifications are injected into the code of the target, which is seen as

a white-box. It is then possible to perform various parameterized or composi-
tional adaptations. Several studies, such as [18] have proposed various mech-
anisms to achieve invasive adaptations, or make use of Reflex [31], which is a
kernel for multi-language AOP in Java. Using Reflex, an aspect can add or re-
move a method, a field, an annotation, and so on. Adaptation capabilities are
finer-grained than those of AAs. Another example is that of Dynamic Service
Adaptation [21] whose aspects are used to integrate services or to correct mobile
communication services, but which are not used to make structural reconfig-
urations of service workflows. However, in the field of ubiquitous computing,
the entities composing the software infrastructure of an application are black-
boxes, since they are provided by devices and are not intended to be editable.
Moreover, they are not parameterized a priori for adaptation, and non-invasive
compositional adaptations are required.

Non-invasive compositional aspects describe adaptations that manipulate el-
ements of the target, and then change only the interactions between these enti-
ties. Among the studies having provided mechanisms used to achieve adaptations
with aspects, only some make use of non-invasive compositional aspects. Among
these, we cite FAC [28], or the Plugin Architecture of Charfi et al. [5]. The plugin
architecture is based on AO4BPEL [6], which is an aspect oriented workflow lan-
guage allowing dynamic adaptation of service compositions. Since these works
are applicable to workflows, they do not consider the dynamic evolution of the
software infrastructure. This is however a major feature for self-adaptive systems
in ubiquitous and mobile computing. In the Plugin Architecture, the problem of
managing interactions between aspects is not addressed dynamically. They are
handled by using the standard AOP operators: after, before...

7.3 Managing Aspect Interactions

In these previous approaches, the management of interactions between several
aspects occurs explicitly, and sometimes during implementation. However, many
works provide mechanisms to dynamically detect these interactions. In [31], three
types of interactions, specific to structural changes, are identified. A step-wise
approach is proposed to the designer, to identify these interactions and to then
give him the option of solving them explicitly. Among the existing interactions,
there is one particular case which can be a source of difficulties, occurring when
an aspect tries to change something that is in the pointcut of another aspect.
Using AAs, this type of interaction cannot occur, since the symmetry property
implies the absence of order between aspects, and all of the aspects are woven
onto the same base assembly. The proposed step-wise approach allows this type
of interaction to be solved in various ways. However, the explicit declaration of
dependencies remains difficult to imagine, in the field of ubiquitous computing.
Indeed, a designer cannot predict the order in which devices, which allow a
feature of the system to be provided, will appear.

Other studies also focus on the management and detection of interactions
between aspects, sometimes using approaches based on graph transformation,

and using critical pair analysis. Most of them are concerned with behavioral in-
teraction between aspects. As in EAOP [12], the authors propose mechanisms to
define aspects of aspects. This mechanism allows aspects to be applied to other
aspects, including a mechanism to manage recursive calls. This is done using a
monitor that applies aspects sequentially. The monitor observes events from the
execution of the application, and distributes them to all aspects. The architec-
ture is sequential, such that when the base application generates an event and
involves the monitor, it is stopped. Aksit et al. [1] suggest, for example, a mecha-
nism to identify interference issues, in particular those on shared joinpoints. This
approach is language independent. It consists of simulating and representing the
various states of a program in the form of a graph, and then identifying behav-
ioral interactions between aspects, in particular with respect to the execution
order of aspects. It provides a mechanism for the detection of interference, which
is more complex than that of AA’s. This is partly because AA pointcuts are not
concerned with the execution flow of the application but with the structure of
the component assembly to be applied. A further explanation arises from the
fact that compliance with the symmetry property reduces the number of differ-
ent types of interaction that can be reached. For example, an AA cannot remove
a component, and therefore cannot prevent the application of another AA.

This type of explicit approach to the resolution of interference between as-
pects is also proposed in many other studies: [18, 31, 38]. In the first, many
types of interactions are considered, and are addressed explicitly into policies.
Similarly, in most of the work dedicated to ubiquitous computing adaptation,
this is achieved by establishing at design-time the set of configurations which
can be attained by the system. As already discussed, this type of approach is
hardly imaginable in the context of ubiquitous computing. We thus proposed to
address the issues of order and interferences on a shared joinpoint automatically,
in a non-explicit way.

7.4 Self-adaptation using aspects

In SAFRAN [11] adaptation is identified as a crosscutting concern. SAFRAN is
an extension of the Fractal hierarchical component model, which was devised to
facilitate the design of adaptive applications. To do this, adaptation aspects are
used, which can be added or removed at runtime. The architecture of SAFRAN
is comprised of two parts: (1) an adaptation language (FScript) to reconfigure
a component assembly, where the ACID properties for dynamic reconfiguration
are guaranteed; and (2) a toolkit to observe the context, referred to as WildCAT.
An adaptation controller is integrated into the membrane, which controls non-
functional properties and interactions with Fractal components, allowing these
two parts to be linked together, according to the rules, and explicitly managing
adaptations dependencies.

In [2, 30], the authors propose an adaptation model which allows the selection
of aspects and components, in order to reconfigure ambient systems. This selec-
tion is based on the context of the application and on various QoS criteria. This
mechanism is planning based, and considers aspects as components. Although

the approach is platform independent, the aspects are intended to modify the
code of components. Such an approach implies that the designer is able to write
these configurations in the form of compositions of aspects and services, and
the composition mechanism must consider all such configurations. This selec-
tion process is time-consuming and again, requires knowledge about all possible
configurations.

In [16], Fleissner et al. propose to use aspects to link an application and a
reasoning mechanism used for self-recovery. Aspects make it possible to make the
application visible and controllable by the reasoning system. Aspects provide in-
formation concerning the application to the self-recovery system, and provide it
with various mechanisms which can be used to maintain and adapt the applica-
tion. To achieve this, they modify the structure of the application. However, they
are based on the existence of the reasoning mechanism and are not independent
adaptation entities.

7.5 Adaptation With Controlled Response Times

Response time is often ignored by projects requiring complex context process-
ing like ontologies, for which execution time is unbounded [4], and sometimes
requires several seconds to be processed [20]. This is often due to the use of
knowledge bases containing the contextual information. They involve expensive
and time-consuming processes to evaluate the context, whatever the type of
changes occurring in the context, whereas consideration of the operational con-
text is a prerequisite for the construction of any ubiquitous application. Indeed,
the changes occurring in the operational context generally have a major impact
(such as the loss of a service) on applications, and should take priority. On the
other hand, the use of independent adaptation entities allows each entity to
focus only on relevant information. This prevents them from having a context
exploiting mechanism that can become a bottleneck.

8 Conclusions

This paper describes the Aspect of Assembly approach applied on a motivating
scenario and a temporal model of the adaptation process. Aspects of Assembly
use a compositional approach for adaptation of component assemblies at run-
time in reaction to variations of the software infrastructure. The AA’s weaver
embeds a merging mechanism in order to manage shared joinpoint interferences
between AA and allows maintaining the symmetric property of the weaving op-
eration to deal with independence of concerns. The main contribution of the
paper consists in the definition of a model of the duration of the adaptation
process. A study of the weaver-time performance was achieved and the model
of the complete duration of the weaving process allows us to predict the re-
sponse time of an adaptation. We can thus predetermine limitations, in terms
of computational entities involved in our dynamic adaptation, to meet specific
and temporal requirements for real applications.

The weaver has been functionally decomposed and each process has been
formally presented, a model of the duration of their execution has been proposed
and compared to some experiments. This decomposition demonstrates that the
response time is largely dependent on the merging operation. To a lesser extent,
the joinpoint combination mechanism is also time consuming compared to other
processes. However these two treatments should be performed at runtime since all
the services from the infrastructure as well as the set of AA can vary dynamically
and cannot be anticipated at design-time.

Of course, the quality of the adaptation depends on the duration of the
reconfiguration of the application, but also on the relevance of its trigger. On
the one hand, future work will be devoted to improve the duration of the weaving
process and therefore the response time of adaptation. Secondly, we will study,
more relevant triggers for adaptation.

9 Acknowledgments

Thanks to Daniel Cheung-Foo-Wo7 for his early works on AA and evaluation
of performances in his PhD Thesis who initiated this paper. This work is part
of the Continuum Project (French National Research Agency) ANR-08-VERS-
005. We also thank Carlos A. Varela from University of Illinois for his comments
on earlier drafts.

References

[1] Aksit, M., Rensink, A., Staijen, T.: A graph-transformation-based simulation ap-
proach for analysing aspect interference on shared join points. In: Proceedings of
the 8th ACM international conference on Aspect-oriented software development.
pp. 39–50. ACM (2009)

[2] Alia, M., Beauvois, M., Davin, Y., Rouvoy, R., Eliassen, F.: Components and as-
pects composition planning for ubiquitous adaptive services. Software Engineering
and Advanced Applications, Euromicro Conference 0, 231–234 (2010)

[3] Berger, L.: Implementation of Interaction in Distributed, Compiled and strongly
typed Environments: the MICADO model. Phd thesis, University of Nice-Sophia
Antipolis (Oct 2001)

[4] Bouzeghoub, A., Taconet, C., Jarraya, A., Do, N., Conan, D.: Complementarity
of Process-oriented and Ontology-based Context Managers to Identify Situations.
In: Int. Workshop on Context Modeling and Management for Smart Environments
(CMMSE). pp. 222–229 (Jul 2010)

[5] Charfi, A., Dinkelaker, T., Mezini, M., Darmstadt, S., Darmstadt, G.: A plug-in
architecture for self-adaptive web service compositions. In: IEEE International
Conference on Web Services, 2009. ICWS 2009. pp. 35–42 (2009)

[6] Charfi, A., Mezini, M.: Aspect-Oriented Web Service Composition with
AO4BPEL. The European Conference on Web Services (ECOWS’04) (Sep 2004)

7 supported by CSTB during his Ph.D. in I3S laboratory

[7] Cheng, B., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker,
B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar, S.,
Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H., Kramer,
J., Litoiu, M., Malek, S., Mirandola, R., Müller, H., Park, S., Shaw, M., Tichy,
M., Tivoli, M., Weyns, D., Whittle, J.: Software engineering for self-adaptive
systems: A research roadmap. In: Cheng, B., de Lemos, R., Giese, H., Inverardi, P.,
Magee, J. (eds.) Software Engineering for Self-Adaptive Systems, Lecture Notes
in Computer Science, vol. 5525, pp. 1–26. Springer (2009)

[8] Cheung, D., Tigli, J., Lavirotte, S., Riveill, M.: Wcomp: a Multi-Design Approach
for Prototyping Applications using Heterogeneous Resources. In: Proceedings of
the 17th IEEE International Workshop on Rapid System Prototyping, Chania-
Crete (2006)

[9] Cheung-Foo-Wo, D.: Dynamic adaptation using aspect weaving. Ph.D. thesis,
University of Nice-Sophia Antipolis (2009)

[10] Crowley, J., Coutaz, J., Bérard, F.: Perceptual user interfaces: things that see.
Communications of the ACM 43(3) (2000)

[11] David, P.C., Ledoux, T.: An aspect-oriented approach for developing self-adaptive
Fractal components. In: 5th International Symposium on Software Composition
(SC’06). Lecture Notes in Computer Science, vol. 4089. Springer-Verlag, Vienna,
Austria (Mar 2006)

[12] Douence, R., Südholt, M.: A model and a tool for event-based aspect-oriented
programming (EAOP). Techn. Ber., Ecole des Mines de Nantes. TR 2(11) (2002)

[13] Fathallah, S., Lavirotte, S., Tigli, J.Y., Rey, G., Riveill, M.: MergeIA: A Service
for Dynamic Merging of Interfering Adaptations in Ubiquitous System. In: Pro-
ceedings of the Fifth International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies(UBICOMM). , Lisbon, Portugal (Nov 2011)

[14] Fathallah Ben Abdenneji, S., Lavirotte, S., Tigli, J.Y., Rey, G., Riveill, M.:
MergeIA: A Service for Dynamic Merging of Interfering Adaptations in Ubiq-
uitous System. In: Proceedings of the Fifth International Conference on Mobile
Ubiquitous Computing, Systems, Services and Technologies (UBICOMM). pp.
34–38 (Nov 2011)

[15] Ferry, N., Hourdin, V., Lavirotte, S., Rey, G., Tigli, J.Y., Riveill, M.: Models at
Runtime: Service for Device Composition and Adaptation. In: 4th International
Workshop Models@Run.Time at Models 2009 (MRT’09). pp. 51–60 (Oct 2009)

[16] Fleissner, S., Baniassad, E.L.A.: Epi-aspects: aspect-oriented conscientious soft-
ware. In: Proceedings of the 22nd annual ACM SIGPLAN conference on Object-
oriented programming systems and applications. pp. 659–674. OOPSLA ’07,
ACM, Montreal, Quebec, Canada (2007)

[17] Geihs, K., Reichle, R., Wagner, M., Khan, M.U.: Modeling of context-aware self-
adaptive applications in ubiquitous and service-oriented environments. In: Cheng,
B.H., Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering
for Self-Adaptive Systems, pp. 146–163. Springer-Verlag (2009)

[18] Greenwood, P., Blair, L.: A framework for policy driven auto-adaptive systems
using dynamic framed aspects. Transactions on Aspect-Oriented Software Devel-
opment II pp. 30–65 (2006)

[19] Greenwood, P., Lagaisse, B., Sanen, F., Coulson, G., Rashid, A., Truyen, E.,
Joosen, W.: Interactions in AO Middleware. In: Proceedings of the Workshop on
Aspects, Dependencies, and Interactions (2007)

[20] Gu, T., Pung, H., Zhang, D.: Peer-to-peer context reasoning in pervasive comput-
ing environments. In: Sixth Annual IEEE International Conference on Pervasive
Computing and Communications (PerCom 2008). pp. 406–411. IEEE (2008)

[21] Hirschfeld, R., Kawamura, K.: Dynamic service adaptation. Software: Practice
and Experience 36(11-12), 1115–1131 (2006)

[22] Katz, E., Katz, S.: Incremental analysis of interference among aspects. In: Pro-
ceedings of the 7th workshop on Foundations of aspect-oriented languages. pp.
29–38. FOAL ’08, ACM, Brussels, Belgium (2008)

[23] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: ECOOP. SpringerVerlag (1997)

[24] MacKenzie, I., Ware, C.: Lag as a determinant of human performance in inter-
active systems. In: Proceedings of the INTERACT’93 and CHI’93 conference on
Human factors in computing systems. pp. 488–493. ACM (1993)

[25] McKinley, P., Sadjadi, S., Kasten, E., Cheng, B.: A taxonomy of compositional
adaptation. Tech. Rep. MSU-CSE-04-17, Michigan State University (2004)

[26] Munnelly, J., Fritsch, S., Clarke, S.: An aspect-oriented approach to the modu-
larisation of context. In: Pervasive Computing and Communications, 2007. Per-
Com’07. Fifth Annual IEEE International Conference on. pp. 114–124. IEEE
(2007)

[27] Munoz, F., Baudry, B.: Validation challenges in model composition: The case of
adaptive systems. First International Workshop on Challenges in Model-Driven
Software Engineering (ChaMDE 2008) in MoDELS p. 51 (2008)

[28] Pessemier, N., Seinturier, L., Coupaye, T., Duchien, L.: A model for developing
component-based and aspect-oriented systems. In: Proceedings of the 5th Interna-
tional Symposium on Software Composition (SC’06). Lecture Notes in Computer
Science, vol. 4089, pp. 259–273. Springer Verlag, Vienna, Austria (Mar 2006)

[29] Romero, D., Rouvoy, R., Seinturier, L., Loiret, F.: Integration of Heterogeneous
Context Resources in Ubiquitous Environments. In: 36th EUROMICRO Interna-
tional Conference on Software Engineering and Advanced Applications (2010)

[30] Rouvoy, R., Eliassen, F., Beauvois, M.: Dynamic planning and weaving of depend-
ability concerns for self-adaptive ubiquitous services. In: Proceedings of the 2009
ACM symposium on Applied Computing. pp. 1021–1028. ACM (2009)

[31] Tanter, É.: Aspects of composition in the Reflex AOP kernel. In: Software Com-
position. pp. 98–113. Springer (2006)

[32] Tian, K., Cooper, K., Zhang, K., Yu, H.: A classification of aspect composition
problems. In: Proceedings of the 2009 Third IEEE International Conference on
Secure Software Integration and Reliability Improvement. pp. 101–109. SSIRI ’09,
IEEE (2009)

[33] Tigli, J.Y., Lavirotte, S., Rey, G., Hourdin, V., Cheung-Foo-Wo, D., Callegari, E.,
Riveill, M.: WComp Middleware for Ubiquitous Computing: Aspects and Com-
posite Event-based Web Services. Annals of Telecommunications (AoT) 64 (Apr
2009)

[34] Tigli, J.Y., Lavirotte, S., Rey, G., Hourdin, V., Riveill, M.: Lightweight Service
Oriented Architecture for Pervasive Computing. International Journal of Com-
puter Science Issues (IJCSI) 4, 1–9 (Sep 2009)

[35] Vasseur, A.: Dynamic AOP and Runtime Weaving for Java—How does As-
pectWerkz Address It? In: Proceedings of the 2004 Dynamic Aspect Workshop
(DAW’04). pp. 135–145 (2004)

[36] Wagner, M.: Context as a service. In: Proceedings of the 12th ACM international
conference adjunct papers on Ubiquitous computing. pp. 489–492. ACM (2010)

[37] Weiser, M.: The computer for the twenty-first century. Scientific American 265(3),
94–104 (Sep 1991)

[38] Whittle, J., Jayaraman, P.: Mata: A tool for aspect-oriented modeling based on
graph transformation. Models in Software Engineering pp. 16–27 (2008)

[39] Yang, Z., Cheng, B., Stirewalt, R., Sowell, J., Sadjadi, S., McKinley, P.: An aspect-
oriented approach to dynamic adaptation. In: Proceedings of the first workshop
on Self-healing systems. pp. 85–92. ACM (2002)

