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Abstract 
 
This experimental study aims to determine the effect of limestone filler on concrete expansion due to 

delayed ettringite formation (DEF). Different mortars made with different sizes and percentages of 

limestone filler and Portland cement CEM I 52.5N are conserved in water. The expansion of the 

specimens is measured. Results show that DEF is not inhibited by limestone filler. The kinetics and 

the amplitude of the swelling depend on the size of the limestone filler. The volume fraction of 

aggregates changes only the kinetics: the relation between swelling and water uptake depends only 

on the size of the aggregates 
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1 introduction 
 
Delayed ettringite formation (DEF) in concrete structures is a pathology that can develop in concrete 

where temperature at early age is high. It is mainly found in structures that are in contact with a 

moist environment for several years [7] but also in the case of endogenous conditions [2]. The 

binder’s composition is a major parameter of this phenomenon: DEF could be prevented when a part 

of the cement is replaced by pozzolanic or latent hydraulic additions,[9, 11]. In case of using 

limestone filler, the results are more contrasted: Silva et al. [12, 13] have shown that DEF was not 



inhibited by this type of additions (in fact they found a larger swelling when at least 10% of the 

cement was replaced by limestone filler), while Kurdowski and Duszak [15] have found that 

limestone presents the same efficiency as fly ash. Silva states that this belongs to a chemical effect: 

when slag is used, the consumption of portlandite by the pozzolanic reaction or the lower created 

quantity of portlandite affect the alkalinity of the interstitial water, thus inhibiting the formation of 

ettringite. This effect is not present in case of using limestone filler. In the work of Kurdowski, the 

temperature cycle was representative  to that  used  in prefabrication (6 hours at 90°C), while in  

Silva’s work it was representative  to that  occurring in a massive structure (temperatures above 70ºC 

during 3 days). In addition, the duration of the plateau at high temperatures (larger than 65°C) is a 

major parameter for the magnitude of swelling due to DEF [6]. 

 
The aggregate size seems to be an important parameter as well: Fu et al. [16] have shown that the 

smaller the aggregate size, the larger the concrete swelling. Grattan-Bellew et al. [17], with siliceous 

aggregates (quartz), observed that the expansion is inversely proportional to the aggregate size and 

that the rate of expansion increased rapidly as the mean particle size decreased. In addition, Heinz et 

al. [18] have shown that the latency time decreases when the size of the aggregates increases. The 

explanation is mechanical: in case of aggregates with large dilation coefficient and when concrete is 

subjected to high temperatures at early age, cracks are induced thus leading to foster the swelling. 

These cracks are larger when the size of aggregates increases. But this seems to be only a delayed 

effect because in case of pure cement paste, DEF was also observed but with a very long latency 

time [14]. It should be noted that in the work of Kurdowski, the size of the limestone filler was not 

indicated while in Silva’s work the mean diameter of the limestone aggregates is 7 µm. 

 
In this work, two questions were discussed by using limestone filler with different size of aggregates 

and a temperature cycle representative to a massive structure: we discuss the effect of the 



replacement of cement by limestone filler and the influence of the size of the aggregates on the 

magnitude of swelling of mortar samples. 

  
2 experiments 
  
2.1 materials 
 

The compositions of the mortars used in this study are given in Table 1. The mortars are made with 

different sizes and percentages of limestone filler and Portland cement CEM I 52.5N. The chemical 

and mineralogical compositions of the cement are given in Tables 2 and 3. This cement was selected 

because of its large sulfate and alkali contents, which are major factors for DEF [19]. It was already 

used in a previous study [2]. 

 
Four sizes with mean diameter of 20 µm, 45 µm, 510 µm and 2800 µm, and three percentages of 30, 

40 and 50% were selected for this study. The nomenclature used for the mortar samples was dxpy 

where x and y correspond to the mean diameter and the percentage of filler respectively. The 

chemical composition of the aggregates is the same (table 4) and the only difference between them is 

the mean diameter (Figure 1).  

 
The quantity of water of each mortar was adjusted in order to obtain the same workability (slump 

between 7 and 10 cm by using the mini cone test).  It should be noted that the water-cement ratio for 

the filler having a size of 20 and 45 µm is considered as an approximation due to fact that the water 

absorption measurement of these materials is not accurate. 

 

 

 

 

 



 

 

 

 

 
Reference Cement (g)  Limestone  

filler (g)  

Total  

water (g)  

Absorbed  

water (g)  

W/C  

d20p30  19319  16200  12426  4698  0,40  

d20p40  16114  21600  13032  6264  0,42  

d20p50  12908  27000  13639  7830  0,45  

d45p30  20750  16200  10827  3564  0,35  

d45p40  17786  21600  10977  4752  0,35  

d45p50  13799  27000  11460  5940  0,40  

d510p30  20218  16200  7582  65  0,37  

d510p40  16726  21600  6691  86  0,39  

d510p50  10900  27000  6540  108  0,59  

d2800p30  20218  16200  7582  65  0,37  

d2800p40  16726  21600  6691  86  0,39  

d2800p50  13030  27000  5863  108  0,44  

Table 1. Mortars compositions (dosage for 20 L). 

 

CEM I 52.5 

N 

Wt.% 
SiO2 19.19 
Al2O3 5.03 
Fe2O3 2.06 
TiO2 0.31 
MnO 0.04 
CaO 62.68 
MgO 0.92 



SO3 3.39 
K2O 1.03 
Na2O 0.12 
P2O5 0.25 
Na2Oeq 0.77 
S2- 0.03 
Cl2- 0.02 

Table 2. Chemical composition of the Portland cement 

 

CEM I 52.5 
N 

Wt.% 
C3S 67.4 
C2S 11.3 
C3A 10.7 
C4AF 7.3 

Table 3. Mineralogical composition of the Portland cement 

 
 

Figure1. Granular distribution of the aggregates. 

 
2.2 specimens curing and conservation 
 
Cylindrical samples with diameter of 11 cm and height of 22 cm were casted for each mortar. After 

casting, the samples were tightly covered to prevent evaporation of water and then cured in their 
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moulds according to the heat treatment presented in Figure 2. The specimens were placed in a drying 

oven equipped with a temperature/humidity controller. The treatment is divided into four steps. 

Firstly, the samples were stored at 20°C for 2 hours. Then, the temperature was increased at a rate of 

2.5°C/h in order to reach 80°C. The temperature was maintained at 80°C for 3 days. Finally, the 

temperature was decreased at a rate of -1°C/h in order to reach 20°C. So the total duration of the heat 

treatment is 7 days. This treatment is representative to the temperature cycle in a massive concrete 

structure due to the heat generated by the cement’s hydration (see [1] as an example of the case of a 

nuclear power plant raft foundation). After the heat treatment, the specimens were demoulded and 

then stored at 20°C in a box filled with tap water (there was no immersion of different mortars in the 

same box). 

 

 
Figure2. heat treatment applied to the mortar samples 
  
 2.3 measurements 
 
Mass uptake and swelling evolution were measured for each sample. Water uptake was monitored by 

weighting the specimens while the axial expansion was monitored with a digital extensometer by 

measuring the length change using steel studs glued on three locations placed at 120 degrees from 

each other around the diameter. These studs are aligned per pair along the height of the specimen. 
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The initial distance between two studs is 10 cm, and the variation of this distance over time assesses 

the expansion of the specimen.  

These measurements were completed by Scanning Electron Microscope (SEM) observations of 

polished sections. Total porosity measurement and a quantitative analysis of the crack pattern were 

also conducted for the samples having the largest swelling. Water porosity measurements were 

carried out according to the norm NF P 18-459. The cracks analysis was conducted by impregnation 

of samples with fluorescent resin which increases the contrast between cracks and plain mortar. 

Slices (11cm of diameter and 2cm of thickness) were examined at 28 days and at 280 days by using a 

picture analysis program developed at Ifsttar. Figure 3 presents an example of this treatment. In order 

to minimize the effect of variability 100 images (size of each image 3mmx4mm) were treated for 

each slice. This analysis was performed at 28 and 280 days for the mortars d2800p30, d2800p40 and 

d2800p50. The quantification of the microcracking is made firstly by the means of the specific 

length of the cracks then using the secant method: the image is covered by a grid of parallel lines (so 

called directed secants) and the intersections with the cracks are counted for several directions of the 

secant lines [20]. This measurement allows the quantification of orientation of the cracks. 

a.            b. 

   
 

c.           d. 



  
 

 
Figure 3: example of image analysis (size of the image = 3mm x 4mm): a. direct view of the slice 
under the fluorescence microscope b. grayscale image c. reversed grayscale image d. segmented 
image after application of a level set method. 
 
3 Analysis of the experimental results 
  
3.1 Mass uptake and swelling 
 
Figure 4 shows the expansion evolutions for all the mortars (except for specimen d20p50 for which 

the measurements were stopped after one year because of a removal of the studs; at that time no 

swelling was observed). The results show that all the samples present swelling and that the larger the 

aggregate size the larger the swelling. Expansion was also increased with the limestone filler 

percentage. In addition, expansions versus weight variations showed a unique hydrous behaviour for 

each aggregate size (Figure 5 and 6; the curves are too much perturbed for the smallest aggregates to 

be presented due to the low swelling). 

This indicates that the mortars behaviour is only affected by the size of the limestone filler 

aggregates, the percentage of limestone playing a role on the swelling kinetic only. 



 
Figure 4. Evolution of swelling of all specimens (except specimen d20p50) 
 

 
Figure 5. Evolution of the swelling with the mass uptake – case of 510µm aggregates. 
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Figure 6. Evolution of the swelling with the mass uptake – case of 2800µm aggregates. 
 

3.2 Porosity 
 
Table 4 presents the total water porosity of the samples with the largest aggregates. It can be seen 

from figure 4 that samples with the same porosity at 28 days (like for instance d510p40 and 

d2800p40) have rather different behaviors. Porosity is certainly a parameter for the development of 

DEF but less important than the size of the aggregates. A small increase of the porosity could also be 

noticed between 28 and 280 days, indicating that the creation of new cracks after swelling is larger 

than the filling of the existing pores by ettringite. 

 
 d510p30 d510p40 d510p50 d2800p30 d2800p40 d2800p50 
28 days 25,5% 22,5% 24,0% 25,5% 22,3% 20,2% 
280 days 26,1% 23,7% 25,0% 25,5% 24,0% 21,0% 
 
Table4. Porosities of d510py and d2800py samples. 
 
 3.2 SEM observations and quantitative analysis of the crack pattern 
 
Despite the fact that SEM observations were only qualitative, ettringite was clearly visible in 

specimen d2800p50 and d510p50 (figure 7) at the interface between the aggregates and the cement 
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paste and within cracks in the cement matrix. In specimen d2800p30 and d510p30, ettringite was not 

visible at the interface and could only be seen in the form of nodules (figure 8). 

 
a 

 
b 

 
Figure 7: a) d2800p50 b) d510p50; ettringite is located in the area delimited by the red lines 
 

 
a 

 
b 

 
Figure 8: d2800p30 a) ettringite is not visible at the interface b) small nodules of ettringite visible 
within the matrix 
 
Figure 9 presents the evolution of the total length of the cracks. The increase of the microcracking 

due to DEF is clearly visible on all the assessed samples. The influence of the aggregate size is also 

noticeable. Concerning the orientation of the cracks, the obtained results show a rather isotropic 

distribution of the directions of the cracks. 



 
 
 

 
 

 
Figure 9: evolution of the total length of the cracks for 3 different mixes (in blue=at 28 days, just 
after heat treatment, in red=at 280 days). 
 
 3.3 Analysis and discussion of the results 
 
All the mortars that were studied have presented swelling. Despite a possible reaction of dissolved 

carbonate ions from the limestone filler with the aluminate phases of Portland cement which leads to 

the formation of carboaluminates as opposed to sulfoaluminates, and which stabilizes the ettringite 

that is produced at early ages  [4, 8], limestone filler clearly does not inhibit delayed ettringite 

formation.  

 
The size of the limestone aggregates is a major parameter for the swelling of our specimens.  When 

the size increases, the swelling increases and the latency time decreases. This could be explained on 

a chemical point of view and on a mechanical one. As mentioned previously, the consequence of a 

possible reaction between carbonate ions and aluminates will be the formation of carboaluminates 

and a lower quantity of aluminates available for the formation of ettringite. This effect is more 

important for the smaller particles because the surface area of limestone filler is larger [4]. The 
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quality of interfacial transition zone is also better [4] and this could influence the transfer properties 

of the mortar. 

 
On a mechanical point of view, cracking could be induced during the thermal treatment. This is due 

to different elastic characteristics and differential dilation coefficients between the cement paste and 

the limestone filler. When the thermal treatment is applied, tensile stresses are generated at the 

interface between the cement paste and the aggregates which lead to development of cracking. This 

initial cracking is visible (figure 9) and exists since the beginning. If we consider a single aggregate 

in a cement paste, the stress at the interface does not depend on the size of the aggregates [5]. But the 

perturbed zone depends on the size. This explains why the fracture process zone depends on the size 

of the aggregates [3] and why the crack opening is larger when the size of the aggregates increases. It 

finally facilitates the possibility of ettringite precipitation at the interface (figure 8). 

 
The evolution of swelling with the mass uptake (figures 5 and 6) shows that, for a given size of the 

limestone filler, same behaviors are noticed. However, for a smaller percentage of filler, the mass 

uptake is lower and thereby the swelling. A possible explanation for this phenomenon is the fact that 

the connection between the interfacial transition zones (ITZ) depends on the percentage of 

aggregates. Due to interaction between the aggregates and the cement paste, ITZ has a larger 

porosity and thus allows a faster diffusion of ions. In the case of DEF, diffusion of alkali ions is 

needed for ettringite precipitation. Garboczi [21] has shown that with 30% of aggregates the 

percentage of connected ITZ is low. He has also shown that when the size of the aggregates 

decreases a larger percentage of aggregates is needed in order to connect the ITZ. This could also 

explain the effect of the size on swelling. 

 
 
4 Conclusions 
 



In this study mortars made with limestone filler as aggregates were prepared. Different mean sizes 

and percentage of aggregates were used. After a heat treatment corresponding to the temperature 

cycle of a massive structure, the samples were immersed and their evolutions were followed. 

 
All the mortars that were studied have presented swelling: limestone filler clearly does not inhibit 

delayed ettringite formation. The kinetics and the amplitude of the swelling depend on the size of the 

limestone filler. The volume fraction of aggregates changes only the kinetics: the relation between 

swelling and water uptake depends only on the size of the aggregates. 

 
The formation of carboaluminates could explain this behavior and its relation to the surface area of 

the limestone filler. The thermo-mechanical behavior could also explain the occurrence of cracking 

at the interface between aggregates and cement paste which later favorites the formation of ettringite 

within the cracks.  

 
The results presented here could be used with a mesoscopic approach in order to model the delayed 

ettringite formation, see for instance [10]. 
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