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We study the crossover between the diffusive and quasi-ballistic regimes of random lasers. In
particular, we compare incoherent models based on the diffusion equation and the radiative transfer
equation (RTE), which neglect all wave effects, with a coherent wave model for the random laser
threshold. We show that both the incoherent and the coherent models predict qualitatively similar
thresholds, with a smooth transition from a diffuse to a quasi-ballistic regime. The shape of the
intensity distribution in the sample as predicted by the RTE model at threshold is also in good
agreement with the coherent model. The approximate incoherent models thus provide useful ana-
lytical predictions for the threshold of random lasers as well as the shape of the random laser modes
at threshold.

I. INTRODUCTION

Random lasers are probably among the most exotic
sources of coherent light studied so far [1–5]. As their
name already suggests, random lasers get their optical
feedback not by external mirrors or through a resonator,
but rather by the random scattering of light in a dis-
ordered medium. Even though this operational prin-
ciple makes a deliberate tuning or selection of desired
laser modes and output frequencies technically rather
involved [6–10], first promising applications of random
lasers are recently emerging for which these cost-efficient
devices are ideally suited [11, 12]. From the fundamental
point of view, random lasers offer an exciting research
area at the interface between mesoscopic physics non-
Hermitian optics and laser physics [2, 3, 13]. Particularly
exciting in this context is the hypothesis, first put for-
ward by Lethokov [14], that random lasers may actually
be occurring also on a natural basis in stellar gases, since
both multiple scattering and amplification are present in
such media [15–17]. Such hitherto unobserved “astro-
physical random lasers” would have a spatial extension
many orders of magnitudes larger than the micron-sized
random lasers that are meanwhile routinely fabricated in
the laboratory [18].

The vastly different length scales on which random las-
ing may occur, and the many different physical systems
in which they have been realized, have triggered the de-
velopment of different theoretical approaches to describe
this phenomenon [19–26]. Whereas it might appear rea-
sonable that a radiative transfer approach, which does
not incorporate interference effects, may be appropriate
for astronomical length scales with long amplifying paths
and few scattering events, and a diffusive model may be
suitable to describe strongly scattering media in the dif-
fusive limit [27], it has so far remained unexplored how

∗Electronic address: william.guerin@inln.cnrs.fr

to describe the crossover between such different regimes.
An important aspect that is also missing in the literature
is a global perspective on random lasing in which all the
possible random lasing regimes are charted and properly
identified.
The aim of this paper will be to take such a bird’s eye

perspective on random lasing and to connect different
approaches with each other. In particular, we will focus
on the general question which size a medium with a cer-
tain amount of gain and disorder needs to have such that
it reaches the random lasing threshold. To address this
problem we employ approximative tools such as the ra-
diative transfer equation (RTE) (for the low-scattering,
or quasi-ballistic, limit) as well as a diffusive model (for
the strongly scattering limit) and compare them with a
full solution of the scalar wave equation that encompasses
both of these limits just as well as the crossover region in
between. While the latter model includes diffraction and
interference effects and relies on heavy numerical simu-
lations, the diffusive and radiative transfer models are
“incoherent” in the sense that they neglect all wave ef-
fects. Their advantage is to provide simple analytical
results.
Our paper is organized as follows. In Sec. 2 we first

briefly recall Letokhov’s seminal results on the threshold
of random lasers based on the diffusion equation [19]. In
Sec. 3 we present a theory of the random laser threshold
based on the RTE. In Sec. 4 we introduce the employed
coherent wave model. Finally, in Sec. 5 we compare the
results from these different models and discuss the con-
clusions that can be drawn from them. A short summary
is presented in Sec. 6.

II. RANDOM LASER THRESHOLD FROM THE

DIFFUSION EQUATION

We summarize here the well-known results of Letokhov
on the random laser threshold [19]. The presentation is
inspired by the one given in the review [1]. We start from
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the diffusion equation for light with a gain term,

∂W (r, t)

∂t
= D∇2W (r, t) +

vE
ℓg

, (1)

whereW is the energy density, vE is the energy transport
velocity inside the medium, ℓg is the gain length and D
is the diffusion coefficient. At 2D or 3D, it reads

D2D =
vE ℓsc
2

, D3D =
vE ℓsc
3

, (2)

where ℓsc is the mean free path. For simplicity, we con-
sider only isotropic scatterers such that the mean free
path is equal to the transport length [1].
Using the modal decomposition

W (r, t) =
∑

n

anΨn(r)e
(DB2

n
−vE/ℓg)t , (3)

with appropriate boundary conditions, one can show that
the threshold of a random laser is reached when

DB2
1 − vE

ℓg
= 0 , (4)

where B1 is the smallest eigenvalue, corresponding to the
longest-lived mode. For a 3D sphere of radius R, B1 =
π/R and for a 2D disk of radius R, B1 = j0,0/R, where
j0,0 ≃ 2.40 is the first root of the Bessel function J0.
Finally it leads to the following critical radius

R3D
cr = π

√

ℓsc ℓg
3

, R2D
cr = 2.40

√

ℓsc ℓg
2

. (5)

Note that the numerical factors in front of (ℓscℓg)
1/2 dif-

fer from each other by only a few percents. Note also that
we have neglected here the “extrapolation length” [28–
30], which is a small correction in the diffusive limit that
we consider in this section. The diffusive, or multiple-
scattering regime, is reached when R≫ ℓsc, which corre-
sponds to the validity range of this threshold condition.

III. RANDOM LASER THRESHOLD FROM

THE RADIATIVE TRANSFER EQUATION

In a regime of low scattering, transport of light is no
longer governed by a diffusive equation, but is well de-
scribed by the radiative transfer equation (RTE). The
RTE is used in many different fields dealing with trans-
port in complex media, such as astrophysics [31–33], neu-
tron physics [34], or biological imaging [35]. The diffusion
equation can be derived from the RTE with supplemen-
tary approximations (see, e.g., Refs. [29, 35]). The RTE
is thus more general and has been shown to be valid from
the ballistic regime to the diffusive one [36]. It neglects,
however, all wave effects like interference and diffraction.
The basic quantity of the RTE is the “radiance” or

“specific intensity” L(r,u, t), which describes the photon
density at point r, propagating along direction u at time

t. In a system exhibiting absorption and scattering, the
RTE reads

1

c

∂L

∂t
(r,u, t) + u·∇L(r,u, t) = −(α+ χ)L(r,u, t)

+
χ

4π

ˆ 4π

0

p(u,v)L(r,v, t) dΩ ,

(6)

where α is the linear absorption coefficient, χ = ℓ−1
sc and

p(u,v) describes the scattering angular diagram. For
a medium with gain, α < 0 and we can also use the
linear gain coefficient g = −α = ℓ−1

g > 0. The RTE can
be derived from Maxwell equations [37] but can also be
found by simple energy conservation arguments, since it
is a Boltzmann-type equation.
From the specific intensity one can define two other

useful quantities, the radiative flux q(r, t), which is iden-
tical to the Poynting vector, and the energy density
W (r, t), which is the quantity entering into the diffusion
equation:

q(r, t) =

ˆ

4π

L(r,v, t)udΩ , (7)

W (r, t) =

ˆ

4π

L(r,v, t)

c
dΩ . (8)

A. Random laser threshold

For a slab geometry, the random laser threshold was
found from the RTE using a modal decomposition [22],
and applied to the case of a random laser based on cold
atoms [38, 39]. For a sphere geometry, Letokhov et al.

have also derived the random laser threshold from the
RTE [14, 40, 41]. The detailed derivation can be found in
Ref. [42], we only recapitulate the result here. Moreover,
for a better comparison with the data obtained from the
coherent wave model (Sec. IV), we have extended these
results to the case of a 2D disk. We also give only the
result in this section, a detailed derivation is provided in
Appendix A.
For a 3D sphere one obtains a critical radius for the

random laser threshold Rcr given by [14, 40–42]

tan(qRcr) =
2gqRcr

2g − q2Rcr
, (9)

with

q2 = 3g(χ− g) =
3

ℓg

(

1

ℓsc
− 1

ℓg

)

. (10)

For a 2D disk, the threshold condition is

J0(βRcr)

J1(βRcr)
=
π

2

g

β
, (11)

where J0, J1 are Bessel functions of the first kind, and
with

β2 = 2g(χ− g) =
2

ℓg

(

1

ℓsc
− 1

ℓg

)

. (12)
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FIG. 1: Critical radius for the random laser threshold as a
function of the gain coefficient g = ℓ−1

g and the scattering co-
efficient χ = ℓ−1

sc , as given by the numerical solution of Eq. 9.
Note the log scales. The dotted lines are iso-Rcr contours.

These threshold equations can easily be solved numer-
ically and give results which are very close to each other.
We show in Fig. 1 the result for the 3D case. It shows
a smooth transition from the diffusive regime (upper-left
part) to the quasi-ballistic regime (lower-right part).

B. Limiting cases

1. Diffusive limit

For the 3D case, one can recover the diffusive threshold
given by Eq. (5) from Eqs. (9-10) by supposing that there
is much more scattering than gain, χ ≫ g, so that q2 ≃
3gχ, and also that χRcr ≫ 1 (diffusive regime). One
can then easily show that the r.h.s. of Eq. (9) is very
small. Then Eq. (9) simplifies to qRcr ∼ π, which gives
Rcr ∼ π/q ∼ π(ℓgℓsc/3)

1/2 as expected.
For the 2D case, supposing also that χ≫ g, then β2 ≃

2gχ, and the threshold equation reduces to

J0(βRcr)

J1(βRcr)
=
πg

2β
≃ π

2

√

g

2χ
≪ 1 . (13)

We can thus take the zero of the function J0(z)/J1(z),
which is the zero of J0(z), i.e., j0,0 ≃ 2.40. Thus βRcr ∼
2.40 and we recover Rcr ∼ 2.40(ℓgℓsc/2)

1/2.

2. Ballistic limit

Interestingly, one can also simplify the threshold equa-
tions in the opposite limit of very low scattering and high
gain..
For the 3D case, if χ ≪ g, we have the simplification

q ≃ ±ig
√
3 and tan(qRcr) ≃ tan(±i

√
3gRcr). For gRcr >

1 it gives tan(qRcr) ≃ ±i. Then Eq. (9) is easily solved

to [43].

Rcr ∼
1

(√
3− 3/2

)

g
≈ 4.31ℓg . (14)

At 2D, if χ ≪ g, β2 ≃ −2g2, β ≃ ±i
√
2g, and the

threshold equation reduces to

±i
√
2J0(±i

√
2gRcr)

J1(±i
√
2gRcr)

=
π

2
. (15)

The solution is

Rcr ≈ 3.76ℓg . (16)

In both cases, we obtain a finite critical radius that
does not depend on the scattering χ, corresponding to
the vertical asymptotes in Fig. 1. Very surprisingly, this
result suggests that a threshold exists even without scat-
tering, a conclusion that seems clearly unphysical, sug-
gesting that some of the approximations made to derive
the RTE threshold (see Appendix A) break down in the
ballistic limit. We discuss in more detail the nature of
the employed approximations in Appendix B.

C. Shape of the energy density at threshold

The shape of the intensity distribution at threshold can
be obtained by solving Eq. (38) (or its 3D equivalent).
In 3D one finds [42]

W0(r) ∝
sin(qr)

r
, (17)

while in 2D we obtain

W0(r) ∝ J0(βr) . (18)

In both cases, if there is more scattering than gain,
χ > g, β and q are real and W0(r) is bell-shaped with its
maximum at r = 0. On the contrary, if χ < g, β and q
are purely imaginary andW0(r) increases from the center
(Fig. 3). This is consistent with what could be expected
in a quasi-ballistic regime, where photons farther from
the center have been in averaged more amplified.

IV. RANDOM LASER THRESHOLD FROM

COHERENT WAVE CALCULATIONS

In order to compare the predictions of the RTE with
a more complete model, we use coherent wave calcula-
tions of the lasing threshold, which account for the effects
of finite wavelengths and wave interference. Due to the
computational difficulty of performing such calculations
on disordered media, we restrict the comparison study to
2D, using the scalar wave equation

[

∇2 + ǫ(r, ω)
(ω

c

)2
]

ψ(r) = 0. (19)
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This describes a 2D electromagnetic mode in the trans-
verse magnetic (TM) polarization, where ψ(r) is the
complex scalar wavefunction corresponding to the out-
of-plane component of the electric field, ω is the mode
frequency, ∇2 is the 2D Laplacian, and ǫ(r, ω) is the di-
electric function.
The wave equation (19) introduces an extra length

scale, the wavelength λ ∼ 2πc/ω. For comparison to
the RTE, we shall be interested in the regime where
the wavelength is shorter than the other length scales,
i.e., c/ω ≪ {R, ℓsc, ℓg}.
We model the random laser by uniformly distribut-

ing N delta-function scatterers at positions {r1, . . . , rN},
within a circular region of radius R. This region also con-
tains a uniform background of gain material, with sus-
ceptibility χg ∈ C. Thus,

ǫ(r, ω) =

{

1 + χg + a
∑N

j=1 δ
2(r − rj), r ≤ R

1, r > R.
(20)

The parameter a, which has units of area, determines
the strength of each scatterer. The use of independent
delta-function scatterers allows us to relate the model
parameters to the mean free path. The density of scat-
terers is ρ = N/πR2, and the 2D scattering cross section
of an individual scatterer in the first Born approximation
is σ = a2(ω/c)3/4. Thus,

ℓsc =
1

ρσ
=

4πR2

Na2(ω/c)3
. (21)

From this setup, the lasing threshold calculation pro-
ceeds as follows: for a fixed lasing frequency, scatterer
distribution, and scatterer strength, we find a complex
value of χg that satisfies Eq. (19) with purely-outgoing
boundary conditions. The detailed procedure is de-
scribed in Appendix C. Essentially, we perform a partial-
wave expansion on ψ(r), which reduces Eq. (19) to a
non-Hermitian eigenproblem whose eigenvalues are the
values of χg for which the solution is purely-outgoing in
the external region r > R. Out of these possible values
of χg, we choose one with sufficiently small Re[χg] (i.e.,
negligible index shift), and the smallest value of −Im[χg]
(i.e., least gain needed to reach threshold). This mode’s
refractive index is

ng ≈ 1 +
i

2

(

Im[χg]
)

. (22)

By repeating this procedure for many realizations of the
scatterer distribution, we compute

g = ℓ−1
g ≡

〈

− 2Im[ng]ω/c
〉

=
ω

c

〈

− Im[χg]
〉

. (23)

As in the RTE, ℓg represents the average path length
traveled by a photon before an amplification event. By
changing the individual scatterer strength a and using
Eq. (21), we can find the dependence of ℓg on ℓsc, and
compare the result to the predictions of the RTE.

We perform two sets of calculations, for ω = 30c/R
and ω = 60c/R; as we shall see, these two frequencies
give qualitatively similar results. For each case, we take
N = 250 scatterers, and tune a so that the mean free
path varies over 10−1R . ℓsc . 102R, ranging from the
diffusive to the quasi-ballistic regime.

V. COMPARISON

In this section we compare the results of the different
models for the threshold and for the intensity distribution
at threshold.

A. Threshold

We use the different models to plot gR at threshold as
a function of χR = R/ℓsc or 1/(χR). We show in Fig. 2
the comparison between the data of the coherent wave
model (previous section) and the analytical results of the
diffusion (sec. II) and RTE thresholds (sec. III).
Overall, looking at Fig. 2(a), we can observe that the

wave-model and the RTE thresholds are quite close to
each other. Moreover, the wave-model threshold becomes
very close to the diffusive ones for large optical thickness
χR. The fact that fully incoherent models provide here
very good estimates was not obvious from the outset,
such that this observation constitutes the main result of
this paper.
Looking more closely (Fig. 2b), one can observe that

the discrepancy between the different models increases

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 

 

Diffusion, Eq. (5)

RTE, Eq. (11)

wave, ω = 60c/R

wave, ω = 30c/R 

0.01 0.1 1 10
0.1

1

  

Ballistic, Eq. (16)

Diffusion, Eq. (5)

RTE, Eq. (11)

wave, ω = 60c/R

wave, ω = 30c/R 

χR    = R/lsc 1/(χR)    = lsc/R

g
R
    =

 R
/l

g

g
R
    =

 R
/l

g
(a) (b)

FIG. 2: (a) Comparison of the thresholds computed from the
different models. Points are numerical solutions of the wave
model for two different frequencies. The dashed blue line is
the diffusive threshold computed from Eq. (5). The red solid
line is the RTE threshold computed from Eq. (11). Its asymp-
totic behavior in the ballistic regime (Eq. 16) is indicated by
the green dotted line. Note the logarithmic scales. (b) Zoom
into the diffusive and intermediated regimes (linear scales and
inverted x-axis).
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as the optical thickness (∝ χR) decreases. In partic-
ular, the incoherent models predict larger gain thresh-
olds. This may be explained by the fact that the co-
herent model selects the “best” mode at each realization
(see Fig. 4), while the incoherent models are expected
to describe transport properties averaged over the dis-
order configurations. The incoherent models are thus
“pessimistic” in their threshold predictions. This is also
consistent with the experimental threshold observed in
the random laser based on cold atoms [44].
Another important observation is that the RTE thresh-

old is significantly more accurate (closer to the wave
model) than the threshold from the diffusion equation.
For example, in the intermediate regime R ≈ ℓsc, the
wave model predicts a gain threshold gR ≈ 1.1, while
the RTE threshold is gR ≈ 1.5 and the diffusive one is
gR ≈ 2.9. Thus, as soon as the random laser is not
deeply in the diffusive regime, the RTE theory provides
a significant improvement.
However, in the limit of very low scattering (ballistic,

or empty disk), the RTE model predicts a scattering-
independent finite threshold. As already mentioned, this
indicates a breakdown of the approximations used to
derive the threshold in the RTE model. On the con-
trary, the scattering-independent threshold of the coher-
ent model can have a clear physical interpretation: the
disk boundary creates an index mismatch with the sur-
rounding vacuum due to the gain coefficient, and thus
reflects some light, which induces some coherent feed-
back. In this regime, the laser is not “random” and is
based on whispering gallery modes. The corresponding
gain threshold depends on the wavelength because the
index mismatch depends on the wavelength for a fixed
gain coefficient. The coherent model is thus able to de-
scribe the transition from a diffusive random laser to a
“ballistic”, cavity-based one. The partial reflection due
to the index mismatch is not included in the incoherent
models.

B. Intensity distribution

We can also compare the averaged intensity distribu-
tion of the lasing mode at threshold obtained from the
wave model and the analytical profile predicted by the
RTE model (see Eq. 18). We show in Fig. 3 the in-
tensity profile computed in the wave model at threshold
for ω = 60c/R, averaged over 100 disorder configura-
tions and over the radial angle, for two different scat-
terers strengths (solid lines). For highly scattering sam-
ples (ℓsc = 0.2R), we observe that the energy is confined
near the center, as it could be expected in the diffusive
regime. On the contrary, for weakly disordered samples
(ℓsc = 20R), the averaged intensity increases from the
center (this can also be see in the Fig. 4 of Ref. [25]).
These qualitatively different behaviors are well captured
by the RTE prediction (dash-dotted lines). The agree-
ment is even quite good in the diffusive regime. Differ-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5
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3

 

 

r/R
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sc

(a
.u

.)

FIG. 3: Intensity distribution at threshold averaged over the
disorder and over the radial angle. The solid lines are com-
puted with the coherent wave model and the dash-dotted lines
with the analytical results of the RTE model [Eq. (18)]. The
vertical scale has been chosen such that 〈I〉 ∼ 1 at the center.
In the diffusive regime (ℓsc = 0.2R), the energy is confined
near the center, while in the quasiballistic regime (ℓsc = 20R)
it increases from the center towards the edge.

ences are more important in the quasiballistic regime.
First, the gain at threshold is higher in the RTE model
[Fig. 2] and thus the intensity increases faster than in the
wave model. Second, oscillations appear in the coherent
model, which are a signature of interference effects due to
the partial reflection at the boundary, creating an oscil-
latory pattern in the lasing mode. This partial reflection
also contributes to increasing the intensity at the center,
reducing the difference between the center and the edge.

VI. CONCLUSION

In this article, we have studied the threshold of ran-
dom lasing in a 2D disk in the crossover from the dif-
fusive to the quasi-ballistic regimes, and we compared
different models to describe this transition. The more
accurate, coherent model is able to describe this system
in all regimes, at the cost of computational complexity,
which, in particular, limits the size and dimensionality of
the system under study. In the diffusive limit, the diffu-
sion equation, which provides a fully incoherent descrip-
tion, predicts the threshold quite accurately, although
interference and wave effects are neglected. Moreover,
an incoherent model is also available beyond the diffu-
sive regime. This model, based on the radiative trans-
fer equation, also provides analytical results, which agree
with the full coherent model on a qualitative level, and
even show quantitative agreement in the crossover regime
on a level superior to the diffusive model. The radiative
transfer equation also correctly predicts the global shape
of the averaged intensity distribution at threshold.
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Surprisingly, even though the incoherent model is ex-
pected to break down deep in the ballistic limit because
the boundary conditions cannot be treated rigorously, it
predicts a random laser threshold as well as a modal in-
tensity distribution in qualitative agreement with the co-
herent model. At the other extreme, the diffusion model
should also break down when the mean-free path becomes
comparable to the wavelength. Despite these limitations,
the incoherent models are very efficient in predicting the
good order of magnitude for the random laser threshold
in a large range of parameters.
The comparison with experimental data would also

be very interesting. In most experimentally accessible
systems, however, the polydispersity of the samples and
the complicated geometry due to the scattering of the
pump [45] makes a quantitative comparison very hard.
These problems are reduced with cold atoms and the ob-
served threshold reported in Ref. [44] was not very far
from Letokhov’s diffusive threshold, showing that such
simplified models can be useful guides to experimental-
ists.
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APPENDIX A: Derivation of the RTE threshold at

2D

We present here a detailed derivation of the random
laser threshold (Eq. 11), as well as the shape of the inten-
sity distribution at threshold (Eq. 18), from the radiative
transfer equation for a 2D disk.

Threshold condition from the RTE

We start from the RTE written at 2D,

1

c

∂L

∂t
(r,u, t) + u ·∇L(r,u, t) = −(α+ χ)L(r,u, t)+

χ

2π

ˆ 2π

0

p(u,v)L(r,v, t) dθ′ ,

(24)

where θ′ = (r,v) is the plane angle between r and v. In
the following, we suppose isotropic scattering: p(u,v) =

1. Then the last integral reads
´

L(r, θ, t)dθ where θ is in
the following the angle between r and u. In cylindrical
coordinate the gradient is

∇L =
∂L

∂r
er +

1

r

∂L

∂θ
eθ (25)

and we have u · er = cos θ and u · eθ = − sin θ. We thus
obtain

1

c

∂L

∂t
+cos θ

∂L

∂r
− sin θ

r

∂L

∂θ
= −(α+χ)L+

χ

2π

ˆ 2π

0

L dθ.

(26)
We now look for a separable solution in the form

L(r, θ, t) = Lt(t)× Lsp(r, θ) , (27)

where “sp” means “space”. Injecting Eq. (27) into
Eq. (26) we obtain

1

c

∂Lt

∂t
=

Lt

Lsp

×
[

− cos θ
∂Lsp

∂r
+

sin θ

r

∂Lsp

∂θ
− (α+ χ)Lsp +

χ

2π

ˆ 2π

0

Lsp dθ

]

.

(28)

This is an equation in the form ∂Lt/∂t = cSLt, which
induces an exponential increase when S > 0. The thresh-
old condition is thus S = 0, i.e.,

cos θ
∂Lsp

∂r
− sin θ

r

∂Lsp

∂θ
= −(α+χ)Lsp +

χ

2π

ˆ 2π

0

Lsp dθ .

(29)

The Eddington approximation

Unfortunately this equation is still hard to solve and
we need an approximation. Following Letokhov et al. [14,
40, 41], we use the derivation of Sobolev [32] based on the
so-called Eddington approximation [46, 47]. It consists
in supposing that the second moment of the luminance
Lsp respective to the cosine of the propagation angle is
proportional to the zeroth one. It is equivalent to writing

Lsp(r, θ) = a(r) + b(r) cos(θ) . (30)

We can then derive several useful relations:

L0(r) =
1

2π

ˆ 2π

0

Lsp(r, θ)dθ = a(r) , (31)

L1(r) =
1

2π

ˆ 2π

0

Lsp(r, θ) cos θdθ =
b(r)

2
, (32)

L2(r) =
1

2π

ˆ 2π

0

Lsp(r, θ) cos
2 θdθ =

a(r)

2
=
L0(r)

2
,

(33)

∂Lsp

∂θ
= − sin(θ) b(r) . (34)
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We can use these relations to simplify the θ dependency
in the threshold equation (29). For this, we first integrate
Eq. (29) over θ and, using Eq. (32) and Eq. (34), we
obtain

dL1

dr
+
L1

r
= −αL0 . (35)

Then we integrate again Eq. (29) over θ after multiplica-
tion by cos(θ) and we obtain

dL2

dr
= −(α+ χ)L1 . (36)

Next we multiply Eq. (35) by −(α+χ) and use Eq. (36)
to obtain

d2L2

dr
+

1

r

dL2

dr
= α(α+ χ)L0 . (37)

Finally, since L2 = L0/2 [Eq. (33)],

d2L0

dr
+

1

r

dL0

dr
= 2α(α+ χ)L0 . (38)

At this stage, we get a single differential equation on
the quantity L0(r), which is the intensity distribution,
with only one variable. Note that in the derivation at 3D,
small differences appear because we integrate each time
over the full solid angle, which makes a supplementary
sin(θ) appear in the integrals. We get at the end a very
similar equation, with the factor 1/r replaced by 2/r and
the 2 in the r.h.s. replaced by 3.
Another expression that will be useful in the following

is obtained by combining Eqs. (31, 33, 36) into Eq. (30):

Lsp(r, θ) = L0(r)−
1

α+ χ

dL0

dr
cos(θ) . (39)

Shape of the mode

If we solve Eq. (38) we get the shape of the intensity
distribution L0(r) at threshold. The solution of Eq. (38)
that has no divergence at r = 0 is

L0(r) = CJ0(βr) , (40)

with β2 = −2α(α+χ) = 2g(χ− g), where g = −α is the
gain coefficient, and J0 is the Bessel function of the first
kind of order 0.

Boundary conditions

Since the random laser threshold obviously depends
on the size of the medium, it comes from the boundary
condition that should be applied to Eq. (38).
The medium has a finite radius R. The physical

boundary condition should be that there is no ingoing
intensity, i.e., Lsp(R, θ) = 0 for all θ such that cos θ < 0.

However, it is not possible to fulfill this condition con-
sistently with the Eddington approximation (30) (except
for the trivial case of Lsp = 0 everywhere). We thus
have to use an approximate boundary conditions, which
is that the total ingoing flux is zero:

ˆ

cos θ<0

Lsp(R, θ) cos(θ)dθ = 0. (41)

Note that the same problem appears with the use of the
diffusion equation and the same approximate condition
is used, leading to the extrapolation length (see, e.g.,
Ref. [29], p. 179).
We thus apply Eq. (41) to Eq. (39) to obtain

−2L0(R) + πL1(R) = 0. Using Eqs. (33,36),

L1(R) = − 1

α+ χ

dL2

dr
|R = − 1

α+ χ

1

2

dL0

dr
|R , (42)

and we obtain the approximate boundary condition

L0(R) = −π
4

1

α+ χ

dL0

dr
|R . (43)

Note that the boundary condition for the 3D case is simi-
lar, the factor π/4 being replaced by 2/3 (and is the same
as in the diffusion approximation).
Using the intensity profile (40) we finally get a thresh-

old condition

J0(βR) =
π

4

β

α+ χ
J1(βR) . (44)

We can simplify β/(χ − g) = 2g/β and, since we use
quantities that are normalized to the medium size, it is
better to write the threshold condition in the following
way:

βRJ0(βR)

J1(βR)
=
π

2
gR with β2 = 2g(χ− g) . (45)

APPENDIX B: Discussion on the approximations

used in the incoherent models

From the initial RTE, there are several ways of finding
a random laser threshold.
The first one is to derive first the diffusion equation,

and then investigate the random laser problem. This ap-
proach gives the well-known results of Sec. II. The deriva-
tion of the diffusion equation from the RTE needs two
approximations (see, e.g., Ref. [35] for a complete deriva-
tion, and Ref. [48] for a discussion on various possible
approximations). The first one is called the P1 approxi-
mation, it consists in decomposing the specific intensity
on the basis of Legendre polynomials of cos θ and keeping
only the first order. At 3D, using the definitions of the
radiative energy density and flux [Eqs. (7,8)], it reads

L(r,u, t) =
c

4π
W (r, t) +

3

4π
q(r, t) · u . (46)
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This approximation is good if the radiation is “nearly”
isotropic. For this, photons need enough scattering
events to randomize their directions, i.e., one needs
R ≫ ℓsc and, in case of absorption, ℓa ≫ ℓsc. The sec-
ond approximation consists in neglecting the time deriva-
tive of the flux compared to the time scale associated to
transport. This condition is usually said to be fulfilled if
ℓa ≫ ℓsc, where only absorption is considered. However,
in case of gain, it adds the condition ℓg ≫ ℓsc, which may
be a limitation for the random laser problem, because it
excludes the regime of parameters where there is more
gain than scattering. Finally, to determine the random
laser threshold from the diffusion equation, the bound-
ary conditions due to the finite size of the medium are
treated with an approximation that makes the extrapola-
tion length appear [28–30]. Because of these approximate
boundary conditions, the diffusion equation is known to
be bad near the borders of the medium (meaning at a
few ℓsc).

In the approach presented in Sec. III, we first find a
complicated threshold equation directly from the RTE,
and then, on this threshold equation, we make approxi-
mations. The Eddington approximation (Eq. 30) is ex-
actly the same as the P1 approximation (note the simi-
larity between Eqs. (46) and (39)), and the approximated
boundary conditions (Eq. 41) are also exactly the same
as those used with the diffusion equation [28, 29]. The
only condition that is relaxed is the one about the deriva-
tive of the flux. It relaxes the condition ℓg ≫ ℓsc, which
increases the validity range of the threshold condition
to the case where the gain is similar or larger than the
scattering. It is thus a significant improvement over the
traditional Letokhov’s threshold. However, the condition
R ≫ ℓsc, necessary for the isotropization of the flux, and
for the approximate boundary conditions, is a priori not
relaxed, although the RTE in itself is also valid in the
ballistic regime.

However, we find in the astrophysics literature (radia-
tive transfer in stellar or planetary atmospheres) that the
Eddington approximation is very good for isotropic scat-
tering and extends to the optically thin regime [46, 47].
Nevertheless, the boundary conditions are not discussed
and, to our knowledge, there is no other method to treat
the boundary conditions within the Eddington approxi-
mation. Following Letokhov et al. [14, 40, 41], we have
used the method usually applied with the diffusion equa-
tion. It is known that these approximate boundary condi-
tions lead to an extrapolation length proportional to the
scattering mean-free path [28–30]. In the limit of vanish-
ing scattering, this extrapolation length goes to infinity,
and so does the effective size of the medium. This may
explain the appearance of a finite random laser threshold
in the ballistic limit of the RTE (Eqs. 14,16).

Finding a better way to treat the boundary conditions,
and even including the partial reflection due to the index
mismatch, as can be done with the diffusion equation [28,
29, 35, 49–51], would certainly improve the validity range
and the precision of the RTE threshold.

APPENDIX C: Partial-wave calculation of lasing

thresholds

This Appendix describes the numerical method used
to calculate the laser threshold of a 2D disordered
system in Sec. IV. It relies on basis functions that
are purely-outgoing at infinity, called “constant flux”
(CF) states [52]. CF states were originally introduced
in the context of Steady-state Ab-initio Laser Theory
(SALT) [25, 52–55], a method for accurately calculating
above-threshold lasing solutions. In this work, however,
we will not draw upon the full machinery of SALT, since
our interest lies in threshold statistics. The CF states
we shall use are solutions to the wave equation (19), as-
suming (i) there are no scatterers, and (ii) the solutions
are purely-outgoing in the external region r > R. These
wavefunctions have the form

ump(r, φ) =

{

Amp Jm(qmpr)Θm(φ), r ≤ R
BmpH

+
m(ωr/c)Θm(φ), r ≥ R,

(47)

where (r, φ) are polar coordinates, (m, p) are azimuthal
and radial quantum numbers, H+

m denotes Hankel func-
tions of the first kind, and Θm(φ) are azimuthal basis
functions defined by

Θm(φ) =
1

2π







√
2 sinφ, m > 0

1, m = 0√
2 cosφ, m < 0,

(48)

which satisfy
´ 2π

0 dφ Θm(φ)Θm′(φ) = δmm′ . Matching
the wavefunction and its first radial derivative at r = R
gives

qmp J
′

m(qmpR)

Jm(qmpR)
=

(ω/c)H+′

m (ωR/c)

H+
m(ωR/c)

, (49)

which can be solved numerically to find a discrete set
of qmp values, corresponding to the different CF states.
With appropriate normalization (choice of Amp), the CF
states come to satisfy a self-orthogonality condition

ˆ

r<R

d2r ump um′p′ = δpp
′

mm′ . (50)

Note that the CF basis depends implicitly on the fre-
quency ω, which appears in Eqs. (47) and (49).
We now consider the disordered system with ǫ(r) given

by Eq. (20). Its modes can be expanded using the CF
basis states:

ψ(r) =
∑

mp

cmp ump(r). (51)

Such a superposition automatically satisfies outgoing
boundary conditions (with frequency ω), as required of
lasing modes. Plugging this into Eqs. (19)–(20), and us-
ing Eq. (50), gives

∑

m′p′







[

(

qmp

ω/c

)2

− 1

]

δpp
′

mm′ − a
∑

j

ump(rj)um′p′(rj)







cm′p′

= χg cmp. (52)
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FIG. 4: Numerical values of χg obtained for a disorder re-
alization with N = 250 scatterers and ℓsc = 0.15R, with
ω = 60c/R. The susceptibility eigenvalues are truncated to
those with sufficiently small real parts (solid circles), then
the eigenvalue with smallest |Im(χg)| (indicated by an arrow)
determines the laser threshold.

This is a non-Hermitian eigenproblem, whose eigenvalues
are the complex susceptibilities χg that would allow the
disordered structure to lase at frequency ω. Note that the
delta-function scatterers enter in the second term in the
matrix; their delta-function nature is handled “exactly”,

in the sense that we need not approximate them through
spatial discretization.

In order to solve the eigenproblem numerically, we
truncate to a finite CF basis set. For ω = 60c/R (see
Section IV), we take m ≤ 75 and Re(qmp) ≤ 180/R.
Essentially, these truncations limit the resolution of the
wavefunction in the azimuthal and radial directions, re-
spectively. There are 6098 CF states in the remaining
basis set. The matrix in Eq. (52) is non-sparse, so the
solution time increases with the basis size,M , as O(M3).

Fig. 4 shows the computed values of χg for a typi-
cal disorder realization. The eigenvalues with very large
Re[χg] are not the lasing modes we are interested in;
those are modes confined because of a large real uni-
form background susceptibility χg, rather than random
scattering. We filter out these solutions by truncating
the eigenvalues to those with sufficiently small real parts
(specifically, |Re[1/χg]| < 3|Im[1/χg]|). These remaining
eigenvalues form a random distribution in Im[χg], i.e., the
amplification provided by the gain medium. Their resid-
ual small but non-zero Re[χg] correspond to the index
shifts necessary to make each mode lase at frequency ω.
Varying ω moves these eigenvalues mostly sideways in
the complex plane, without much change in Im[χg]. As
described in Section IV, we then pick the smallest eigen-
value with the smallest value of |Im[χg]|, which deter-
mines the gain length ℓg.
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