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Abstract

The present work focuses on effective thermal conductivity of oolitic lime-
stones, characterized by an assemblage of porous grains (oolites), mesopores
and solid grains. Two distinct scales of pores, micropores or intra oolitic
pores and mesopores or inter oolitic pores are taken into account. At the
first step, micropores are homogenized inside the oolites by using self con-
sistent homogenization scheme. The second homogenization step describing
transition from the mesoscale to the macroscale, is performed by using a re-
cent reformulation of the Maxwell homogenization scheme (see [1]). At the
mesoscale, porous oolitic inclusions are quasi spherical whereas two families of
mesopores are considered according to analysis of photomicrographs: (1) ran-
domly oriented oblate spheroidal pores and (2) concave pores. The proposed
model is compared to a simplified one when all the pores are of ellipsoidal
shape. The relevancy of the ellipsoidal approximation is then evaluated. In
particular, the influence of the shape of the mesopores on the overall thermal
conductivity is discussed. Comparisons between multi-scale model based on
Maxwell homogenization method and experimental data show that effects of
porosity and saturating fluids on overall conductivity are correctly predicted
when concave pores are taken into account.
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1. Introduction

The present work focuses on the determination of overall thermal con-
ductivity of oolitic limestone that is modeled as a heterogeneous material
composed by an assemblage of quasi-spherical porous grains (oolites, o),
mesopores (b) and solid matrix (sparitic cement c) (see [2], [3], [4], [5]). For
this goal, we use recently reformulated Maxwell’s homogenization method for
elastic composites [1] which was successfully applied to the estimate of effec-
tive elastic constants of oolitic. This method has also been explored in ([6],
[7] , [8]) for mechanical properties and in ([9], [10]) for conductivity. It must
be emphasized that Maxwell’s homogenization model has been presented in
[11] for the prediction of the thermal conductivity of fluid-saturated rocks. In
particular, it has been shown in [11] that this model allows to predict overall
thermal conductivity in a wide range of rock-microstructure type of sedi-
mentary or cristalline rocks, by considering randomly distributed spheroidal
pores.
One specific point related to the microstructure of heterogeneous oolitic
porous rocks is the multiscale structure of pore space. The complex realistic
pore structure can be simplified and the total porosity can be decomposed
into two scale separated classes of pores: intra oolitic pores or micropores,
at the micro scale, and inter oolitic pores or mesopores at the mesoscale.
The microstructural model presented in [12] is adopted in this paper. The
novelty of the model consists in the account for concave pores modelled by
superspherical ones. Reformulation of Maxwell’s homogenization method
in terms of the resistivity contribution tensors allows accounting for non-
ellipsoidal shape of such pores using the numerically evaluated contribution
tensors (see [13]) when no analytical solution can be obtained. This model
is then compared to a simple one in which the concave pores are replaced by
the best ellipsoidal approximates.
Extensive study of the effective properties of carbonate rocks taking into
account a multi-scale description, with applications to elasticity, electrical
conductivity, thermal conductivity and permeability in the context of a cross
property analysis have been presented by M. Markov and coauthors ([14],
[15], [16], [17], [18]). In these works, two distinct classes of pores are con-
sidered: primary small scale pores and secondary mesoscopic pores. Small
scale pores are similar to intra oolitic pores of oolitic rocks, and secondary
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pores similar to inter oolitic pores. A very complete description of the sec-
ondary (large scale) porosity is presented in [14] by introducing four types of
pores: vugs (quasi-spherical inclusions), quasi vugs (oblate ellipsoids), chan-
nels (prolate ellipsoids), and cracks (strongly oblate inclusions). The presence
of an interphase coating oolites, an Interfacial Transition Zone (ITZ ), is not
taken into account in this paper but it is certainly important in porous oolitic
rocks similarly to the cement based material (see for example [19] for a study
of the influence of Interfacial Transition Zone on effective conductivity).
Among many papers related to characterization of thermal conductivity of
porous heterogeneous rocks, [20] present an experimental characterization in-
cluding a large sensitive study of physical parameters, in a wide temperature
range. An extensive literature review on thermal conductivity measurements
in carbonate rocks may be found in [21]. Importantly, overall isotropy of ther-
mal conductivity is observed in most cases. The authors pointed out that
anisotropic single crystals, including calcite, show directional differences in
thermal conductivity, but randomly oriented polycrystalline aggregates pro-
duce an overall isotropic thermal effective conductivity. This result is consis-
tent with the developed approach in the present paper. Random distribution
of calcite phase mineral is accounted through averaging of the calcite mineral
thermal conductivity (see [22]) and by using equivalent isotropic conductivity.
A detailed review of thermal conductivity data sets for geomaterials made of
natural soil particles, crushed rock particles and sedimentary rock including
analysis of influence of particle shape, grains pore-size distributions, fluid
saturated (air and liquid water) is given in [23]. It may be noticed that [24]
have recently studied thermal conductivity of gas saturated porous materials
taking into account methods of statistical physics and rarefied gas dynamics.
They have shown that in the slip flow regime corresponding to low Knudsen
number, it is necessary to use the method of rarefied gas dynamics to cor-
rectly predict the effective thermal conductivity. These phenomena may be
of major importance in nano-porous materials and porous rocks such as gas
shales. In the present study we focused on the micro and meso porosities of
oolitic limestones, respective pore size correspond to the standard hydrody-
namic regime and these phenomena have been neglected.
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2. Background results

Hereafter we define some notations and recall some results which are
needed later. Upper case boldsymbols P , Λ, I refer to second order tensors,
lower case boldsymbols, as a, ε, σ, refer to first order tensors. I represents
the second-order, identity tensor (δij denotes Kronecker delta symbol, δij = 1
if i = j, δij = 0 otherwise). For the sake of simplicity only the polarisation
tensors related to spheroidal inclusions are recalled. The general case of
the 3D ellipsoid could be also considered in what follows. Oblate spheröıd
(0 < γ < 1) and prolate spheröıd (1 < γ), with symmetry axis 3 are described
by equation

z ∈ ΩI ⇔
z2

1

a2
+
z2

2

a2
+

z2
3

a2γ2
≤ 1 , 0 ≤ γ ≤ 1

a1 = a2 = a , a3 = aγ

(1)

Hill Polarisation tensor of a spheroidal inclusion in an infinite isotropic elas-
tic medium (λ denotes the conductivity of the infinite isotropic medium sur-
rounding the spherical inclusion) is a transversely isotropic second order ten-
sor

P =
Q(γ)

λ
IT +

1− 2Q(γ)

λ
IN (2)

IN = e3 ⊗ e3 , IT = e1 ⊗ e1 + e2 ⊗ e2 , I = IN + IT (3)

with (see [25] p. 441, or [26] p. 406, among many others)
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[
1 +

1
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γ

))]
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1

3
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1
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[
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1
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(
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2
√
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ln

(
γ +
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))]
if γ > 1

v = 1− γ2 , u = γ2 − 1

(4)

Hill Polarisation tensor of a spherical inclusion (γ = 1 and Q = 1/3)

P =
1

3λ
I (5)
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Q tensor (see [27] equation 2.9) for Maxwell homogenization scheme

Q = Λ. (I − P .Λ) (6)

In the case of a sphere (using 5 and Λ = λI)

Q =
2

3
λI (7)

Conductivity contribution tensor (see [10])

N i =
[
P + (Λi −Λ)−1]−1

(8)

Resistivity contribution tensor (see [10])

H i = −Λ−1.N i.Λ
−1 (9)

Dilute concentration tensor

Ai = [I + P . (Λi −Λ)]−1 (10)

In this paper, the reformulation of the Maxwell homogenization scheme in
terms of resistivity contribution tensor (9) will be used. For a spherical
inclusion i (λi) embedded in an infinite isotropic matrix

N i = Ni I , H i = Hi I , Ai = Ai I (11)

Ai =
3λ

2λ+ λi
(12)

and

Hi =
λ− λi
λ2

Ai , N i = − (λ− λi)Ai (13)

In the case of an isotropic ellipsoidal inclusion with conductivity tensor Λi =
λiI surrounded by an infinite isotropic matrix with conductivity tensor Λ =
λI (1) relation (5) gives

Ai = λ

(
1

λ (1−Q(γ)) + λiQ(γ)
IT +

1

2λQ(γ) + λi (1− 2Q(γ))
IN

)
(14)
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Orientational average (case of a random orientation distribution)

a =
1

3
Tr (a) I (15)

One obtains spherical (isotropic) second order tensors

Ai = AiI , H i = H iI (16)

with

g (λ, λi, γ) =
λ

3

(
2

λ (1−Q(γ)) + λiQ(γ)
+

1

2λQ(γ) + λi (1− 2Q(γ))

)
(17)

Ai = g (λ, λi, γ) (18)

One verifies relations

H i =
λ− λi
λ2

Ai (19)

3. Microstructure of a reference porous oolitic limestone

One presents in this section some microstructural observations of a ref-
erence porous oolitic rock chosen for this work, an oolitic limestone from
Lavoux (West of France, see [28]) whose microstructure has been detailed
[29]. One may also refers to [4], [2], for details. Oolites are quasi spherical
grains constituted by concentric porous layers. The oolite microstructure
are constituted by an assemblage of calcite grains (micrite, solid grains with
diameter range 1µm − 5µm) and micropores. More precisely oolites con-
tain quasi spherical grains composed of concentric layers, diameter range
100µm − 1mm, the layers are composed by an assemblage of micropores
and micrite grains. Micrite or microcristalline calcite is composed spherical
grains constituting solid oolitic phase, diameter range 1µm− 5µm. Sparitic
calcite cement or sparite, spar calcite, diameter range 20µm − 100µm, it
corresponds to the solid phase at the mesoscale. Solid phase of Lavoux lime-
stone, i.e. micritic grains inside oolites and sparitic cement between oolites,
is a quasi mono-mineral material constituted of pure calcite (solid volume
fraction of calcite, f s

calcite = Ωcalcite/Ωs ≈ 0.98).
The total pore volume fraction of Lavoux limestone varies from 0.15 to 0.30,
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it is decomposed into two classes of pores: inter oolitic pores(mesopores) and
intra oolitic pores (micropores) of approximately equal partial porosities [2].
As in [29], a sensitive study is performed in this paper on a relatively wide
range of porosity. Mesoscopic pores are divided into two types of pores:
oblate spheroidal pores of aspect ratio γ = 0.2 (index b1 in what follows)
and ellipsoidal pores (index b2) replacing superspherical concave pores taken
into account in [29].
Two cases are considered, flat pores similar to cracks are represented by
oblate spheroidal pores of aspect ratio γ = 0.05, and elongated pores cracks
are represented by prolate spheroidal pores of aspect ratio γ = 20. The par-
tial porosities of the two kind of pores are assumed equal. Flat and elongated
pores may respectively correspond to particular cases of secondary pores of
carbonate rocks described in [14]: channels (prolate ellipsoids, as elongated
pores), and cracks (flat oblate ellipsoids).
At the macroscopic level, experimental characterizations of the Lavoux lime-
stone show that the overall elastic behaviour is not far from isotropy. It
results from an isotropic or random distribution of constituents: oolites,
sparitic cement and mesopores. Thermal conductivity needs to be measured
on this reference material (and experimental study is currently performed
and results will be presented in a next paper), and it is assumed that the
overall conductivity is also isotropic. See [21] for an extensive review on
thermal conductivity of carbonate rocks which confirms reasonably overall
isotropy in most cases. The thermal conductivity of the pure calcite mineral
will be assumed equal to λc = 3.3W m−1K−1 (according to [30] and [31]).
The numerical values of thermal conductivities for liquid and air are respec-
tively λ` = 0.5984 W K−1 m−1 and λg = 0.0255 W K−1 m−1 (according to
[32]).

3.1. Volume fractions and constituents

As in [2]-[29] three different scales may be identified. First the smallest
scale, referred as microscopic scale, corresponds to the intra granular or intra
oolitic level. Second the intermediate scale, referred as as mesoscopic scale,
corresponds to the scale of oolite grains, syntaxial calcite grains (referred
as sparitic calcite cement, and inter oolitic pores. Third the largest scale,
referred as macroscopic scale corresponds to a large representative volume
elements compared to the oolite size, interoolitic pores and syntaxial calcite
grains. At the meso scale, one considers a four phase composite material
composed of poroelastic oolites (o) (constituted by solid grains and intra
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oolitic pores, or micro pores), inter oolitic meso pores divided into two fami-
lies b1 and b2, and sparitic cement (or syntaxial calcite) constituted by pure
calcite grains (index c).
A two scale porosity is considered as two population of voids may be identi-
fied. Intra oolitic voids of spherical or ellipsoidal shape, with average diam-
eter of 0.1µm, referred as micropores in what follows, with index a. Inter
oolitic voids of ellipsoidal shape, with average diameter approximately of
10µm, referred as mesopores b, divided into two families of equal volume
fraction, indexes b1 and b2. The total volumes occupied by the phases write

Ω = Ωo + Ωb + Ωc (20)

with

Ωb = Ωb1 + Ωb2 (21)

one have

Ω = Ωo + Ωb1 + Ωb2 + Ωc (22)

with corresponding volume fractions

fo =
Ωo

Ω
, fb1 =

Ωb1

Ω
, fb2 =

Ωb2

Ω
, fc =

Ωc

Ω

fo + fb1 + fb2 + fc = 1
(23)

One defines the total volume of intra oolitic pores

Ωo = Ωa + Ωs
o (24)

and the porosity of the oolite phase at the mesoscopic scale

fa =
Ωa

Ωo

(25)

The total pore volume can be expressed as

Ωp = Ωa + Ωb1 + Ωb2 (26)

and the total porosity

fp =
Ωa

Ω
+

Ωb1

Ω
+

Ωb2

Ω
= fafo + fb1 + fb2 (27)

Representative data for the reference material studied in this paper are close
to fp = 0.26, fo = 0.74, fafo = 0.14 , fa = 0.19 , fb = 0.12 (see [2]) but a
sensitivity study will be performed on the volume fractions of the different
phases.
In sensitive study, as in [29] we will consider fb1 = fb2 = fb/2
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4. A two-scale porosity model for effective thermal conductivity of
isotropic porous oolitic rocks

4.1. First step: homogenization of micropores and solid grains inside oolites

The first step represents the transition from the microscopic scale to the
mesoscopic scale. Oolite pores are homogenized and the result of the first
step is the porous oolite.

As previously indicated, the granular and random microstructure of oo-
lites conduces to choose the self consistent approximation, originally due to
[33], for the step I. By respectively denoting λIo, λa, λo conductivity of
the oolite at the mesoscale, conductivity of the intra oolitic porous phase,
conductivity of micritic solid grains (λo = λc), the well known self consis-
tent approximations for a two phase material with spherical particles is the
positive root of the quadratic equation (see [25] formula 18.13 p. 463)

faλa
λa + 2λIo

+
(1− fa)λo
λo + 2λIo

− 1

3
= 0 (28)

It’s well known solution writes (see [25] formula 18.14 p. 463, with d = 3,
f2 = 1− f1)

h(λ1, λ2, f1) =
1

4

(
α12 +

√
α2

12 + 8λ1λ2

)
(29)

α12 = λ1(3f1 − 1) + λ2(2− 3f1) (30)

and then self consistent approximation writes

λIo = h(λa, λo, fa) (31)

It may be noticed that, in the tested range of microporosity fa < 0.2, as we
consider spherical particles, numerical differences between Self Consistent
approximation, and other approximations such as Maxwell or Mori Tanaka
would not be very significant. In the present model, the impact on overall
thermal conductivity is limited when compared to the second homogenization
step which corresponds to the mesoscopic scale. This comment is restricted
to the tested range of microporosity and it would be irrelevant for a wider
range.
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4.2. Second step: transition from the mesoscopic scale to the macroscopic
scale with ellipsoidal pores

At the mesoscale one considers a four phase phase heterogeneous medium,
which is composed of porous oolites, nearly spherical and randomly dis-
tributed, it is the main phase (fo ≈ 0.74 in the reference case), pure solid
calcite referred as sparitic cement (index c), meso pores modelled as two dis-
tinct families of ellipsoids randomly distributed in orientation. Reformulation
of Maxwell homogenization scheme recently by I. Sevostianov and coauthors
in the context of elasticity and conductivity problems (see [27], [29], [7] , [8]
, [9], [10]) is then used for the transition from the mesoscopic scale to the
macroscopic scale. More precisely reformulation of Maxwell homogenization
scheme in terms of resistivity contribution tensor provides (see [29] relation 10
using compliance contribution tensor) the simple scalar relation established
under assumption of macro isotropy

λeff
MX =

(
1

λc
+

((
fb1Hb1 + fb2Hb2 + foHo

)−1 − 2

3
λc

)−1
)−1

(32)

with Hb1, Hb2 and Ho respectively given by formula (19-13)

Hb1 =
λc − λb
λ2
c

g (λc, λb, γb1) , Hb2 =
λc − λb
λ2
c

g (λc, λb, γb2) (33)

Ho =
3
(
λc − λIo

)
λc (2λc + λIo)

(34)

From relation (32) one may easily deduce an explicit formula for the effective
thermal conductivity

λeff
MX = λc

3− 2λc
(
fb1Hb1 + fb2Hb2 + foHo

)
3 + λc

(
fb1Hb1 + fb2Hb2 + foHo

) (35)

It should be emphasized that a more complex description of the mesoscale
porosity could be easily introduced in the reformulation of Maxwell homog-
enization scheme in terms of resistivity contribution. As an example, the
fourth types of secondary pores distinguished in [14] for carbonate rocks
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could be introduced as randomly oriented spheroids are considered and rela-
tion (32) would be replaced by

λeff
MX =

(
1

λc
+

((
fb1Hb1 + fb2Hb2 + fb3Hb3 + fb4Hb4 + foHo

)−1 − 2

3
λc

)−1
)−1

(36)

fbi and Hbi respectively denoting volume fraction and resistivity contribution
tensor of the mesoscale pore bi. As oolites are not perfectly spherical, a
random distribution of the best ellipsoidal approximation of oolites (oblate
spheroids with aspect ratio close to γ = 0.7) could be also used and relation
(32) would be replaced by

λeff
MX =

(
1

λc
+

((
fb1Hb1 + fb2Hb2 + foHo

)−1 − 2

3
λc

)−1
)−1

(37)

with Ho given by a relation similar to (33). In further works we will also take
into account more realistic shapes such as concave shapes (see recent paper
[13]). As previously indicated, ellipsoidal shape is adopted for simplicity and
in this case the best ellipsoidal approximation of more complex shapes needs
to be used.

It may be noticed that relations (32-36-32) are very similar to relation 4.9
of paper [27], and relations 13− 17 of paper [29], which have been obtained
in elasticity.

4.3. Second step: transition from the mesoscopic scale to the macroscopic
scale with concave pores

As in [29], concave pores (b2) are approximated by superspheres

(|x|)2p + (|y|)2p + (|z|)2p = 1 (38)

of concavity factor p = 0.35 (see figure 4) For pores of the shape of su-
persphere of concavity factor p, approximate expressions for components of
the resistivity contribution tensor have recently be obtained by [13] (see [34]
for the elasticity problem) thanks to a numerical method (Finite Element
Method). As this tensor is spherical (hydrostatic) one have

Hb2 = Hb2 (39)

Numerical values of the resistivity contribution tensors are given in the next
section, as they depend on the thermal conductivity of the surrounding ma-
trix (λc) and the inclusion (liquid water and air will be considered).
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5. Numerical results

5.1. Experimental data

We present in this section a comparison of the developed micro-macro
model with experimental results for relatively pure calcitic limestones pre-
sented in [35]. Oolitic limestones studied in this paper belong to this type
of limestone. Intra oolite solid grains and inter oolite sparitic cement are
composed of calcite. Extensive bibliographical review and data relative to
thermal conductivity of limestones may be found in [20], [36], and in [11] for
porous rocks more generally. Experimental results are presented in figures
(5-6) and they cover a wide range of porosity (upper porosity is close to 0.7
which corresponds to highly porous rocks). In this paper, we restrict the
study to the range 0 ≤ fb ≤ 0.3 which is relatively large for oolitic lime-
stones. Upper value of thermal conductivity is given by the conductivity of
the calcitic solid phase and it corresponds to the case of zero porosity. As ex-
pected, as conductivities of air and liquid water are lower than that of solid,
effective thermal conductivity decreases with increasing values of porosity.
In both cases, pore space respectively fully saturated by air or liquid water,
effective thermal conductivity - porosity curve may be accurately fitted by a
linear function of porosity (see figures 5-6). As experimental data collected
in bibliographical review are not restricted to the detailed investigated mi-
crostructure type (oolitic limestone rocks with two-scale porosity), the aim
of the comparison is not to very accurately fit the data but mainly to recover
qualitative results, in particular effects of porosity and saturating fluid on
overall thermal conductivity.

5.2. Simplified model based on ellipsoidal approximation for all pore families

The sensitive study is similar to the one presented in [29]. For the simpli-
fied model based on ellipsoidal approximation, mesopore family b2 is mod-
elled by flat oblate pores close to cracks (γ = 0.05) or elongated prolate pores
(γ = 20) instead of concave pores of superspherical shape.
Two cases are considered: porosity fully saturated with liquid water (λ` =
0.5984W m−1K−1), wet case, and porosity fully saturated with air (λa =
0.0255W m−1K−1), dry case.
Figures (7-8-9-10) illustrate dependence of the effective thermal conductiv-
ity on the mesoporosity (assuming that b1 and b2 pore families have the
same volume fractions) at different levels of the volume fraction of oolites
(fo = 0.4− 0.5− 0.6− 0.7).
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As it has been observed in elasticity [29], distribution of the volume con-
centration between spar calcite and porous oolitic grains plays minor role as
compare to volume fraction of pores.
As expected, to the higher conductivity contrast between solid calcite mineral
and air:

λc
λg
≈ 129.4 (40)

compared to the corresponding ratio between solid calcite and liquid water

λc
λ`
≈ 5.5 (41)

the higher impact of the porosity on the overall thermal conductivity is ob-
served in the dry case. Due to this higher contrast, the case of the air
saturated porosity the most interesting for a micro-macro characterization
because it is more sensitive to pore shape than the case of water liquid
saturated (air saturated porosity is similar to an insulating phase). Compar-
isons between model and experiments show that flat oblate spheroidal pores
(γ = 0.05) overestimate the effect of porosity on the overall in the case of air
saturated pores. This overestimate is less pronounced in the case of liquid
saturated pores. In both cases, liquid and air, prediction of model are more
accurate with prolate spheroidal elongated pores (γ = 20) than crack similar
oblate pores.
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5.3. Model including concave pores family

One only replaces ellipsoidal pore family b2 by superspheres of concavity
factor p = 0.35 and the same sentivity study is performed. Preceding values
of resistivity contribution tensor (formula 33) needs to be replaced by the
following numerical values (see [13] for details on calculation of resistivity
contribution tensors).

H
supersph

b2 (λc, λ`) = 0.447518 (42)

H
supersph

b2 (λc, λg) = 0.528849 (43)

and relation (35) can be used. Figures (11-12) illustrate dependence of the
effective thermal conductivity on the mesoporosity at different levels of the
volume fraction of oolites. Comparison with experimental data show that
the model accurately predicts effect of porosity and effect of saturating fluid.
Similarly to the model with prolate elongated pores, variations of effective
thermal conductivity with porosity in the most sensitive case of air satu-
rated porosity are correctly reproduced. Microstructural observations (see
figure 4) show that concave pore shapes are more relevant than elongated
pore shapes to describe the mesopores filling the space between spherical
oolites. Experimental data correspond to purely calcitic limestones, and it is
not restricted to oolitic limestones. A more accurate validation of the model
by comparison with experimental data specific to oolitic limestone will be
necessary. Experimental study of effective thermal conductivity of Lavoux
oolitic limestone is in progress and experimental results will be presented in
a next paper.
On the basis of the preceding results, a best ellipsoidal approximation can
be proposed for this material by minimising the difference between the nu-
merical values of the resistivity contribution tensor respectively obtained for
the supersphere (43-42) and for the spheroids (33), for the two cases (air
saturated and water liquid saturated)

γAir-min
b2 ≈ 0.31 (44)

γLq-min
b2 ≈ 0.11 (45)

Resistivity contribution tensor of a superspherical inclusion depends on the
shape parameter (concavity parameter p) and on the contrast between re-
spective thermal conductivities of inclusion and matrix. This contrast is
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very different in the two extreme cases investigated (see 40-41). As a conse-
quence, the best ellipsoidal approximation depends on the conductivities of
constituents, and it yields different aspect ratii in the two cases

6. Conclusion

The main factor affecting elastic properties of oolitic limestone is the pore
space geometry. As identified in [29] some mesopores are concave and may
be approximated by superspherical shape (see [34], [13]). A simplified model
is presented by using ellipsoidal approximation for all the pores. This model
could be used as a first approach for estimating overall thermal conductiv-
ity, its advantage being the simplicity of the corresponding homogenization
model. Numerical results confirms the potential importance of the shape of
mesopores for the conductivity problem (see [29]). In the two particular cases
presented: air saturated and liquid water saturated pores, the comparison
between resistivity contribution tensors of spheroids allows to define, in each
case the best ellipsoidal approximation for a given superspherical shape.
Comparison between multi-scale model based on Maxwell homogenization
method and experimental data show that it correctly predicts effects of poros-
ity and saturating fluid on overall thermal conductivity, when taking into
account concave pore of superspherical shape. These results are interesting
in relation to cross property analysis between elastic coefficients and thermal
conductivity. It confirms previous results obtained with a similar upscaling
model for the same material, for the prediction of elastic coefficients [12].
Experimental characterization of the thermal conductivity of such oolitic
limestones, at different saturation ratios is also in progress and comparison
with numerical results needs to be performed.
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1

Figure 1: Scanning Electron Microscopy (SEM) images of Lavoux limestone (see [29])
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Figure 2: First homogenization step: micropores inside oolite core are homogenized by
using self consistent method (2D representation of a 3D microstructure)

oolite 

meso pores

meso pores  (b1)
(randomly oriented) 

sparitic cement (c)

Step II : Maxwell homogenization scheme

sparite c

meso pores (b2)
(randomly oriented) 

Figure 3: Second homogenization step: transition from mesoscale to macroscale with
Maxwell homogenization method, case of simplified model (ellipsoidal approximation for
all the pores)

21



Pore of the 
superspherical shape

Oblate 
spheroidal pore

Figure 4: Mesoporosity: ellipsoidal pores (b1) and concave pores (b2) (see [29])
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Figure 5: Pores saturated with air: experimental thermal conductivity as a function of
porosity, for pure calcitic limestones [35]
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Figure 6: Pores saturated with water liquid: experimental thermal conductivity as a
function of porosity, for pure calcitic limestones [35]
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Figure 7: Pores saturated with air : effective thermal conductivity as a function of meso-
porosity with b2 = random distribution of cracks (oblate γ = 0.05)- blue : fo = 0.4 -
fo = 0.5 - green : fo = 0.6 - red : fo = 0.7, experimental data taken from [35]
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Figure 8: Pores saturated with air : effective thermal conductivity as a function of meso-
porosity with b2 = random distribution of needles (prolate γ = 20)- blue : fo = 0.4 -
fo = 0.5 - green : fo = 0.6 - red : fo = 0.7, experimental data taken from [35]

fo=0.4

fo=0.5

fo=0.6

fo=0.7

exp

0.05 0.10 0.15 0.20 0.25 0.30
fb1.0

1.5

2.0

2.5

3.0
λMX
eff

Water liquid saturated - γb2=0.05

Figure 9: Pores saturated with liquid water : effective thermal conductivity as a function
of mesoporosity with b2 = random distribution of cracks (oblate γ = 0.05)- blue : fo = 0.4
- fo = 0.5 - green : fo = 0.6 - red : fo = 0.7, experimental data taken from [35]
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Figure 10: Pores saturated with liquid water : effective thermal conductivity as a function
of mesoporosity with b2 = random distribution of needles (prolate γ = 20)- blue : fo = 0.4
- fo = 0.5 - green : fo = 0.6 - red : fo = 0.7, experimental data taken from [35]
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Figure 11: Pores saturated with air : effective thermal conductivity as a function of
mesoporosity with b2 = random distribution of superspheres (p = 0.35) - blue : fo = 0.4
- fo = 0.5 - green : fo = 0.6 - red : fo = 0.7, experimental data taken from [35]
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Figure 12: Pores saturated with liquid water : effective thermal conductivity as a function
of mesoporosity with b2 = random distribution of superspheres (p = 0.35) - blue : fo = 0.4
- fo = 0.5 - green : fo = 0.6 - red : fo = 0.7, experimental data taken from [35]
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Figure 13: Pores saturated with air: Resistivity contribution tensor of spheroid as a

function of pore aspect ratio γ, comparison with supersphere (p = 0.35, H
SP−air

b2 = 0.529)
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Figure 14: Pores saturated with liquid water : Resistivity contribution tensor of spheroid

as a function of pore aspect ratio γ, comparison with supersphere (p = 0.35, , H
SP−lq

b2 =
0.448)
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