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Extraction of Temporal Network Structures from
Graph-based Signals

Ronan Hamon, Pierre Borgnat, Member IEEE, Patrick Flandrin, Fellow IEEE, and Céline Robardet

Abstract—A new framework to track the structure of temporal
networks with a signal processing approach is introduced. The
method is based on the duality between static networks and
signals, obtained using a multidimensional scaling technique,
that makes possible the study of the network structure from
frequency patterns of the corresponding signals. In this paper,
we propose an approach to identify structures in temporal
networks by extracting the most significant frequency patterns
and their activation coefficients over time, using nonnegative
matrix factorization of the temporal spectra. The framework,
inspired by audio decomposition, allows transforming back these
frequency patterns into networks, to highlight the evolution of the
underlying structure of the network over time. The effectiveness
of the method is first evidenced on a synthetic example, prior
being used to study a temporal network of face-to-face contacts.
The extracted sub-networks highlight significant structures de-
composed on time intervals that validates the relevance of the
approach on real-world data.

Index Terms—temporal networks, multidimensional scaling,
nonnegative matrix factorization, network structures, decompo-
sition

I. INTRODUCTION

Many complex systems, whether physical, biological or
social, can be naturally represented as networks, i.e., a set of
relationships between entities. Network science [1] has been
widely developed to study such objects by providing powerful
tools, for instance the detection of communities [2], in order to
understand the underlying properties of these systems. These
works benefit from the natural representation of networks by
graphs, enabling the use of the comprehensive mathematical
understanding of graph theory. Recently, connections between
signal processing and network theory have emerged: The field
of signal processing over networks [3] [4] has been intro-
duced with the objective of transposing concepts developed
in classical signal processing, such as Fourier transform or
wavelets, in the graph domain. These works have led to
significant results, among them filtering of signals defined
over a network [3] or multiscale community mining using
graph wavelets [5]. Connections have also been considered
by defining a duality between graphs and signals: methods
have been developed to transform graphs into signals and
conversely, in order to take advantage of both signal processing
and graph theory in the analysis. In this matter, mapping
a graph into time series has been performed using random
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walks [6] [7] [8] or deterministic methods based on classical
multidimensional scaling [9]. This latter approach has been
the topic of several extensions in [10], in order to build a
comprehensive framework to link frequency patterns of the
so-obtained signals with network structures.

Studies mainly focused on the analysis of static networks,
potentially aggregated over time, but without time evolution.
However, the considered systems are most of the time not
frozen: vertices and edges appear and disappear over the
course of time. Aggregating the networks over a time interval
gives insight of the underlying mechanisms, but often does
not provide the actual dynamic sequence of appearance and
disappearance of edges: two edges, active one after the other,
will be considered simultaneous in the temporally-aggregated
network, leading to significant change of the network struc-
tures. Given the importance of knowing such dynamics, for
instance in topics such as epidemic spread or communication
networks, and thanks to the recent availability of many data
sets, a temporal network theory has recently appeared [11]
[12], developing tools to better understand the underlying
mechanisms of systems. Several studies proposed an extension
of the methods developed for static networks to the temporal
case: we can cite for instance works on network modeling [13]
[14], [15] [16], detection of communities [17] [18] [19] [20]
[21] [22], detection of temporal motifs [23], visualization [24],
or more generally data mining of time-evolving sequences
[25].

We propose in this article a new approach based on the
graph-based signals introduced in [10] to study temporal net-
works. It makes possible to visually track temporal networks
by following the frequency patterns associated to specific
structures. These frequency patterns are then studied by au-
tomatically extracting and tracking the significant frequency
patterns over time using nonnegative matrix factorization
(NMF) [26]. These patterns can be then transformed back
into networks to reveal the most significant structures of the
temporal network over time, the objective being here to follow
the global evolution of the system.

Preliminary versions of this work have been presented in
previous works: the principle of the extension to the temporal
case has been introduced in [27], as well as the visual tracking
of frequency patterns representing structures. In [28] and [29],
this approach has been used to make a study of a bike
sharing system in Lyon, which is not mentioned in this article.
Finally, the idea of the decomposition using NMF has been
suggested in [30]. This paper extends however those previous
works by detailing a comprehensive framework and setting
out consistent arguments for the validity of the method in the
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context of analysis of temporal networks.
The paper is organized as follows. Section II briefly sum-

marizes the duality between static networks and signals that
has been defined in [9] and further studied in [10]. Section III
is first concerned with the extension of the (static) duality to
temporal networks. Then the spectral analysis of the obtained
signals is introduced, enabling the use of different methods to
visually track the structure of temporal networks. Finally the
NMF-based method to extract significant frequency patterns
over time is described, as well as how these frequency patterns
can be transformed back into network structures. Section IV
introduces a synthetic temporal network built as a succession
of four different network structures which mix communities,
cycles and randomness. It is shown that the method proposed
in Section III permits to go beyond a mere visual tracking of
the structure of the temporal network, revealing the different
types of structures and evidencing their temporal activities in
consistence with the construction of the synthetic temporal
networks. A short study is also performed to assess the
sensitivity of the temporal patterns according to the level of
noise that may affect the original graph data. Finally, Section V
provides an illustration on a real-world temporal network. The
same methodology is applied to the well-documented case of a
real-world social network that consists of face-to-face contacts
in a primary school.

Notations: Matrices are denoted by boldface capital
letters, their columns by boldface lowercase letters, and their
elements by lowercase letters: for M ∈ RA×B , M =
[m1, . . . ,mB ] = (mab)a∈{1,...,A},b=1,...,B . Tensors are rep-
resented by calligraphic capital letters: for M ∈ RA×B×T ,
M = [M (t)]t=1,...,T . Operators are represented by calli-
graphic boldface capital letters: F .

II. BACKGROUND ON GRAPH-BASED SIGNALS FOR STATIC
NETWORKS

A. Transformation from static networks to signals
Duality between networks and signals has been introduced

to analyze networks structures using signal processing tools.
Shimada et al. [9] proposed a method to transform static
networks into a collection of signals using multidimensional
scaling. In [10], this method has been extended to obtain a
comprehensive framework to transform graphs into a collec-
tion of signals. As this method is central in the subsequent
work on temporal networks, the main aspects of the method are
recalled in this section. We consider in the following networks
that are described by unweighted and undirected graphs with
N vertices.

Classical MultiDimensional Scaling (CMDS) [31] is a
statistical technique used to find the coordinates of points
in a Euclidean space, whose only the relations of distance
are known. This is done through a diagonalization of the
distance matrix, previously double-centered: the eigenvectors
are the corresponding signals, weighted by the square root of
the corresponding eigenvalues. These signals are ordered by
decreasing order of eigenvalue: the first components are then
the most representative of the data structure.

In [9], CMDS is used to transform a graph into signals
by projecting the N vertices of the graph in a Euclidean

space, such that distances between these points correspond to
relations in the graph. Describing the graph by its adjacency
matrix A ∈ RN×N , whose elements aij are equal to 1 if
vertices i and j are linked, and 0 otherwise, the distance
between vertices of a graph, denoted ∆ = (δij)i,j=1,..,N , is
defined for two vertices i, j of the graph by:

δij =


0 if i = j

1 if aij = 1 and i 6= j

w > 1 if aij = 0 and i 6= j

(1)

As discussed in [10], we choose w = 1+ 1
N . This definition

focuses on the presence, denoted by a distance equal to 1, or
the absence, denoted by a distance equal to w, of an edge
between two vertices. Hence, the distance of two vertices in the
graph, often defined as the length of the shortest path between
the two vertices, has no direct influence on the matrix ∆: two
unlinked vertices have a distance equal to w, whether they are
close or not in the graph.

Applying CMDS on the distance matrix ∆ leads to a col-
lection of points, corresponding to the vertices, in a Euclidean
space RN−1. The obtained collection of signals is denoted by
X ∈ RN×C , where C is the total number of components, and
thus is equal to N−1 for the full representation. The columns
xc represent the c-th signal, with c = 1, . . . C, and are indexed
by the vertices. The transformation is denoted by T : for an
adjacency matrix A, we have X = T [A]. Connections can
be done between the obtained signals and the eigenvectors
obtained by the diagonalization of the Laplacian matrix of the
graph [10].

As the signals are indexed by the vertices, the order in
which we consider them in the transformation is essential
to study some aspects of the signals, especially when using
spectral analysis of the signals. Ordering randomly the vertices
does not change the value assigned to each vertex, but would
lead to abrupt variations in the representation of signals:
Specific frequency properties, clearly observable in signals,
will no longer be visible. Unfortunately, the suitable ordering
is usually not available, especially when dealing with real-
world networks. To address this issue, we proposed in [32]
to find a vertex ordering that reflects the topology of the
underlying graph, based on the following assumption: if two
vertices are close in the graph (by considering for instance
the length of the shortest path between them), they have to be
also close in the ordering. Details of the algorithm and results
about the consistency between the obtained vertex ordering
and the topology of graphs are entirely covered in [32].

B. Inverse Transformation

Transforming back signals to a graph has to take into
account the nature of the signals, as they are a representation
of a specific network. The inverse transformation must hence
preserve the original topology of the underlying graph. By
construction of the collection of signals X , the perfect retrieval
of the underlying graph is easily reachable, by considering
the distances between each pair of point: As built using
CMDS, these distances represent the distance matrix ∆,
and the adjacency matrix of the graph is directly obtained.
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However, when X is degraded or modified, e.g., by retaining
only a small number of components or by processing the
signals, the distances are no longer directly the ones computed
between vertices, even if they stay in the neighborhood of
these distances. We proposed in [10] to take into account the
energy of components to improve the reconstruction, as well
as prior information about the original graph. If the distance
between two vertices i and j in a high-energy component,
i.e., a component associated to a large eigenvalue, is high,
it means that the two vertices are likely to be distant in the
graph. Conversely, if the distance is low, then the two vertices
are likely to be connected in the graph.

Let X̃ be a degraded collection of signals. The energies are
normalized according to the energies of the original compo-
nents, by multiplying the components x̃c by the normalization
factor Nc:

Nc =

√√√√∑N
n=1 x

2
nc∑N

n=1 x̃
2
nc

(2)

Then the distances are computed by using the energies as
follows:

d(X)ij =

√√√√ C∑
c=1

(uc)α(xic − xjc)2 (3)

with α ≥ 0, where uc is the energy of component c,
computed as uc =

∑n
i=1 x

2
ic, and normalized such that

‖u‖α =
∑C
c=1(uc)

α = C, with u the vector of energies for
all components. The parameter α controls the importance of
the weighting: if α is high, the high-energy components have
a higher importance in the computation of distances compared
to the low-energy components. Conversely, if α is small, the
importance of high-energy components is diminished. In par-
ticular, α = 0 gives the standard reconstruction. The distances
are then thresholded, by retaining the edges corresponding to
the smallest distances. The threshold is chosen in order to
recover the same amount of edges than in the original network.

It is worth noting that it is not strictly speaking an inverse
transformation: if we start from a graph G and apply the
method of transforming it into a collection of signals X =
T [G], this transformation is one-to-one, as is the following
Fourier transformation that ends up with spectral features.
Provided that the so-obtained signals (or spectra) are unaltered,
the way back is guaranteed and the characterization can be
considered as unique: T −1[T [G]] = G. The situation however
turns out to be different whenever the signals (or spectra) are
altered prior reconstruction. In this case, applying the same
inverse transformation T −1 as before (i.e., just computing the
distance matrix between components) on some altered signal
X̃ does not result, in the general case, in a matrix which would
be bimodal in its non-zero values and, hence, transformable
into an admissible adjacency matrix. Indeed, this situation now
requires to modify the reconstruction process, e.g., as proposed
in [10], in which the modified inverse transform T̃ −1 results
from the computing of a weighted distance matrix followed by
a suitable thresholding, ending up with a graph G̃ = T̃ −1[X̃]
which can be an approximation of G, but whose transform

cannot be guaranteed to exactly coincide with the collection
of signals we started with (in other words, T [T̃ −1[X̃]] 6= X̃).

III. EXTRACTION OF NETWORK STRUCTURES IN
TEMPORAL NETWORKS

A. Transformation of temporal networks into signals and back

The description of temporal networks considered in this
work consists in a discrete-time sequence of graph snap-
shots. The collection of all snapshots at the different times
t = 0, . . . , T − 1, with T the total number of time steps,
can be represented by a graph adjacency tensor denoted
A ∈ RN×N×T such that A = [A(t)]t=1,...,T . We study here
temporal networks where the edges are changing over time,
keeping the same given set of vertices (possibly isolated).

The extension of the method described in Section II is
directly achieved by applying at each time step the transforma-
tion on the corresponding static representation of the temporal
network. We denote X ∈ RN×C×T , the collection of signals
obtained from A, such that X = [X(t)]t=1,...,T . For each time
step t, we have

X(t) = T [A(t)] (4)

As the number of vertices in the graph does not evolve, the
number of components C, and then the number of frequencies
F , is constant over time. In the case where the set of
vertices evolves, the tensor is built by fixing the number of
components as the maximal number of components over time,
and by zero-padding the missing components. To index As
for the indexation of signals, the algorithm relabeling vertices
according to the structure of the network is performed at each
time step, leading to different labelings of the vertices over
time.1

Conversely, the inverse transformation is performed like-
wise, by applying the static inverse transformation on the
collection of signals at time t:

A(t) = T −1[X(t)] (5)

where A(t) represents the adjacency matrix of the recon-
structed temporal network at time t.

B. Spectral analysis of signals

Spectral analysis is performed using standard signal pro-
cessing methods: Let a collection X of C signals indexed
by N vertices. The spectra S ∈ CC×F give the complex
Fourier coefficients, whose elements are obtained by applying
the Fourier transform on each of the C components of X:

sc = F [xc] (6)

estimated, for positive frequencies, on F = N
2 + 1 bins, F

being the Fourier transform and c = 1, . . . , C.
From the spectrum S, the following features are obtained

for each frequency of each component:

1The objective of this work here is to track how the structure of the temporal
network evolves, regardless the labels of the vertices. The modification of the
labeling indicates how the vertex evolves over time in the global structure of
the network. This aspect is not discussed in the following, the labeling over
time is kept only for purposes of reconstruction.
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Fig. 1. This diagram describes the framework implemented to extract network structures in temporal networks using graph-based signals. The boxes describe
the objects, while arrows represent the operations. The procedure is as follows: From a temporal network described by the adjacency tensor A, a collection
of signals X is obtained by transforming each static graph into a collection of signals using the transformation described in [10]. A spectral analysis of the
signals is then performed, and a tensor of temporal energies E is obtained. In the frequency domain, the energies are decomposed into K frequency patterns
using nonnegative matrix factorization (NMF). Each component of the NMF is transformed back into a collection signals, first by reconstructing temporal
spectra using Wiener filtering, then by using inverse Fourier transforms. From the temporal collection of signals, a temporal network is obtained by using the
inverse transformation T −1 described in Section III-A.

• the energies E, which read as ecf = |scf |2
• the phases Φ, which read as φcf = arg(scf )

The matrix E is studied as a frequency-component map,
exhibiting patterns in direct relation with the topology of the
underlying graph. The phases of signals Φ are used in the
inverse Fourier transformation, when the collection of signals
has to be retrieved from E.

In the temporal case, the spectral analysis of signals is
simply achieved by considering independently each time step.
We denote by S ∈ CC×F×T the spectral tensor, where S(t)

corresponds to the spectra obtained at time t. The correspond-
ing tensor E represents the temporal energies.

As described in [10], the spectra are closely related to
the network structures. In particular, the importance of high-
energy components as well as low frequencies is highlighted,
for instance for the structure in communities. Looking at
the marginals of the temporal energies or magnitudes over
frequencies and components is hence expected to give hints
about the evolution of the structure of the temporal network
over time. In the following, we will focus on the marginal of
the energies over the components, denoted Ec(f), and over
the frequencies, denoted Ef (c).

We also propose to use the spectral analysis to compare
two network structures by computing the correlation between
their spectra at each time step. The idea is to find among a set
of parametric graph models the one that best fits the network
at each time step. If we denote by Sm the spectra obtained
after transformation of an instance Gm of a prescribed graph
model, we can compute a correlation coefficient ρ(t) between
Sm and S(t). Generating several instances of the graph model
gives us an average value of the correlation coefficient over
several repetitions.

C. Extraction of frequency patterns using nonnegative matrix
factorization

1) Nonnegative Matrix Factorization (NMF): Nonnegative
matrix factorization (NMF) [26] is a linear regression tech-
nique, used to decompose a nonnegative matrix V of dimen-
sion C × T , i.e., a matrix whose terms are greater or equal
to zero, into the product of two nonnegative matrices W and

H . NMF leads to a reduction of the dimensionality of data,
by extracting in the columns of W patterns characterizing the
data, and in the rows of H the activation coefficients of each
pattern along the time. The number of extracted patterns, or
components, is denoted K. A common approach to achieve
such a decomposition consists of solving the optimization
problem:

(W ∗,H∗) = arg min
WH

D(V |Ṽ ) (7)

with Ṽ = WH . and where D is a dissimilar-
ity measure between matrices given by D(V |WH) =∑C
c=1

∑T
t=1 d(vct|ṽct), with d a dissimilarity measure be-

tween scalar values. Févotte et al. [33] proposed an algorithm
to find a solution of the NMF where d is the β-divergence, a
parametric function that encompasses the Euclidean distance,
the generalized Kullback-Leibler divergence and the Itakura-
Saito divergence as special cases.

Regularization of the activation coefficients can be added
in order to smooth them, with the assumption that there is
no abrupt variations in the structure from one time step to
the next one. The optimization problem is then defined as the
minimization of the fitting term, defined in Eq. (7), plus a term
of temporal regularization:

P (H) =

K∑
k=1

T∑
t=2

d(hk(t−1)|hkt) (8)

leading to:

(W ∗,H∗) = arg min
WH

D(V |WH) + γP (H) (9)

where γ controls the regularization and is empirically fixed
such that the activation coefficients highlight smoothness. In
[34] and [35], smooth NMF has been introduced for β = 1
and β = 0.

2) NMF on spectra of graphs: Several approaches have
been proposed to adapt NMF to networks, either static [36] or
temporal [19]. In the latter approach, the adjacency matrix is
represented as a tensor and is decomposed using nonnegative
tensor factorization (NTF) [37]. The drawback of this approach
is that the adjacency matrix at each time step is represented
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as the product of vectors, which is well-suited to highlight
structure in communities but not adapted when the structure
becomes more complex.

Following [30], we propose to use NMF to find patterns
in spectra of the collections of signals, obtained from the
transformation of the temporal network. By analogy with
music analysis, where an audio sample is decomposed into
several audio samples, separating for instance voice from
the instrumental part [38], we would like to decompose the
temporal network into temporal sub-networks, decomposing
at each time step the global structure into several substruc-
tures. Furthermore, audio spectra share similarities with graph
spectra, leading to use the Itakura-Saito divergence as measure
of dissimilarity, given by

dIS(vct|ṽct) =
vct
ṽct
− log

vct
ṽct
− 1. (10)

As the input in our case is the temporal spectra S, represented
as a tensor of dimension C × F × T , a small adaptation has
to be performed before applying NMF. At each time instant
t, the collection of spectra S(t) is represented as a vector vt
by successively adding end-to-end the columns of the matrix
S(t). For all t = 0, . . . , T − 1, these vectors compose the
columns of the matrix V , of dimension (FC)×T . The number
of components K is set according to our expectations about
the data, and the parameter γ is strictly positive to ensure
smoothness in the activation coefficients.

3) Identification of components: NMF returns two matrices
W and H: each column of W represents the kth (normalized)
frequency pattern, while the kth column of HT , gives the
activation coefficients of the frequency pattern k at each time
step. From wk, a component-frequency map can be built
by reshaping the vector into a matrix. To highlight how
these structures are arranged in the temporal network, each
component is transformed into temporal network: As described
in [38], using NMF with the Itakura-Saito divergence provides
means of reconstruction of the collection of signals corre-
sponding to each component. As the matrix V describes the
amplitudes of signals, the frequency patterns obtained using
NMF do not carry information about the phases, preventing
the reconstruction into signals. By using Wiener filtering [38],
the phases are reconstructed from the matrix S(t) directly, by
decomposing each element according to the matrices W and
H, enabling a reconstruction of signals corresponding to each
component of the NMF. For each component k, the temporal
spectrum S(k) ∈ CC×F×T is obtained such that its elements
s
(k,t)
cf read as:

s
(k,t)
cf =

w(cf)khkt∑K
l=1 w(cf)lhlt

scf (11)

leading to a conservative decomposition of the tensor S:

S =

K∑
k=1

S(k) (12)

The temporal spectrum of the component k is then a fraction of
the original temporal spectrum. From S(k), an inverse Fourier
transformation is performed, leading to a collection of signals
for each component k denoted by X (k) ∈ RN×N×T . Finally,

TABLE I
GENERATION OF THE TOY TEMPORAL NETWORK: PROBABILITIES TO

HAVE AN EDGE AT TIME t

e ∈ Ep e /∈ Ep

e ∈ Et−1 0.99 0.8

e /∈ Et−1 0.2 0.01

the adjacency tensor A(k) describing the temporal network
corresponding to the component k is obtained by using the
inverse transformation T −1 described in Section III.

Figure 1 summarizes the described framework developed
for the study of temporal networks. In the next sections, we
propose to illustrate it on a synthetic and a real-world temporal
network. The implementation has been made using the Python
language. The reader can refer to a dedicated webpage2 to
download the software implementation of the method.

IV. ILLUSTRATION ON A SYNTHETIC TEMPORAL NETWORK

A. Construction of the temporal network

The experiment is conducted first on a synthetic, yet realistic
example, for which the ground truth is perfectly known.
It consists of smooth transitions between different network
structures, mixing communities, cycles and randomness.

Starting from N unconnected vertices, the algorithm adds or
removes edges at each time instant according to a probability
depending both on the presence or not of the edge at the
previous time, and on a prescribed network structure. Let
Et be the set of edges at time t, Ep the set of edges of a
prescribed network structure, and e = (i, j) the edge between
the vertices i and j. Table I gives the probability to have e
in Et according to the presence of e at the previous time (i.e.
e ∈ Et−1) and the presence of e in the prescribed network
structure (e ∈ Ep). These probabilities are set up in order to
generate a smooth transition between the initial structure and
the prescribed network structure, and such that the structure
at the end of the time interval is close to the one of the
prescribed graph. Four networks are successively chosen as
prescribed network structures, each structure being active for
a time interval of 20 time steps:
• 0-20: Random linkage of vertices;
• 20-40: Network with 3 communities;
• 40-60: 4-ring lattice;
• 60-80: 4-ring lattice with 3 communities.
The prescribed structure is clearly visible thanks to a proper

labeling of vertices: The blocks describe the communities,
while the strong diagonal describes the regular lattice. These
structures are nevertheless not completely defined, as noise
due to the probabilities set in Table I remains present.

Figure 2 represents four snapshots of the temporal network
at the end of the time intervals. For each snapshot, the adja-
cency matrix is displayed on the left and the spectra of graph-
based signals on the right. These illustrations show that graph-
based signatures can be attached to network structures thanks
to the methodology outlined in Section II (for more details

2http://perso.ens-lyon.fr/ronan.hamon/index.php?page=software
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(a) Time 20 - Random linkage of vertices
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Fig. 2. Representation of the temporal network at the end of each time
interval. (Left) Adjacency matrix. (Right) Component-frequency map obtained
after spectral analysis. The color represents the intensity.

about such signatures, the reader is referred to [10]): random
structures are represented by a frequency pattern whose energy
is uniformly distributed, as in Figure 2a. The presence of
specific structure in the network reveals particular patterns,
such as high-energy low frequencies on the first components
for the structure in communities (Figure 2b) and localized
energies over specific frequencies for the regular structures
(Figure 2c). Combination of both structures in the graph is
preserved in the frequency pattern, as highlighted in Figure 2d.

B. Network-based analysis

Network-based descriptors are used to analyze the structure
of the network. Figure 3 plots three descriptors of the network
at each time step: The number of edges (Figure 3a), the aver-
age clustering coefficient (Figure 3b) and the average length
of shortest paths (Figure 3c) contribute to the identification
of the four time intervals. The number of edges increases
in the period 1 to form the random structure, characterized
by a low average clustering coefficient and a low average
length of shortest paths. Adding communities in period 2
increases the average clustering coefficient, as expected. On
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Fig. 3. Descriptors of the Toy Temporal Network over time. The alternating
shaded regions correspond to the four different periods, whose label is given
at the top of each region.
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Fig. 4. Marginals of the energies of temporal spectra.

the contrary, the regular structure in period 3 decreases the
clustering coefficient and increases the average length of
shortest paths, but much less in proportion than the decrease
of the number of edges would affect. As expected, adding
communities in this regular structure, as it is done in period
4, significantly increases the average clustering coefficient
and slightly decreases the average length of shortest paths.
These network-based descriptors give good intuitions on the
underlying structure of the temporal network, but turn out to be
inefficient to exactly characterize the structure. Furthermore,
mixture of different structures, as it appears in this model, are
not explicitly revealed.

C. Spectral analysis of graph-based signals

Figure 4 shows Ec(f) and Ef (c) for respectively f =
1, 2, 3, 35 and c = 0, 1, 2, 70. These two figures reveal the
predominance of the first components and low frequencies, to
track an organization in communities of the network: the low
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(a) Comparison with a network with k communities, for different
values of k. The temporal network is highly correlated with a graph
organized in communities during the period 2 and 4, as expected.
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(b) k-regular lattice, for different value of k. The temporal network
has the highest correlation with a 4-regular lattice during the period
3.

Fig. 5. Correlation between the temporal spectra at each time step and the
spectra of networks with two specific network structures. The correlation is
averaged over 20 repetitions.

frequencies for the first components have a greater energy than
for other types of structure, as already remarked in Figure 2.
The tracking of the other types of structures is nevertheless
not visible using this representation.

In order to go further, the correlation between the temporal
spectra of the toy temporal network and two network structures
is studied. First, a structure in communities is observed, using
a network model generating a random graph with a fixed
number of communities. The comparison is done for a number
of communities from 2 to 6, with 20 repetitions for each num-
ber of communities. Figure 5a shows the average correlation:
the correlation is maximal during the periods 2 and 4, where
the network is effectively structured in communities. During
the period 2, the correlation is maximal when the network is
structured in 3 communities, as expected. During the period
4, the number of communities is not clearly revealed, as
the communities are not the only component of the network
topology.

In Figure 5b, the temporal network is compared using the
same method with a k-regular lattice, for k equals to 2, 4, 6
and 8. If the correlations are lower than previously, we can
nevertheless notice that in period 3, the temporal network is
correlated with a 4-regular lattice, which is the structure set
in the prescribed network during this period.

The study of temporal spectra gives hence insights about the
structure of the underlying temporal network, but this approach
is limited by the lack of knowledge, in the general case, of the
parametric graph models composing the temporal network.
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Fig. 6. Activation coefficients obtained after the nonnegative matrix factor-
ization for the Toy Temporal Network, using K = 3 and γ = 5. They
correspond to the rows of the matrix H , normalized by the maximal value
of H .
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Fig. 7. (Left) Frequency patterns, obtained after reshaping the columns of
W into matrices (arbitrary units). (Right) Adjacency tensor aggregated over
time: for each component k, A(k) =

∑T
t=1 hktA

(k,t).

D. Extraction of network structures

NMF is applied to the Toy Temporal Network defined in
Section IV. The matrix V ∈ R4950×80 is decomposed using
K = 3 and γ = 5, which is the expected number of structures.

Figure 6 shows the activation coefficients of each compo-
nent. We notice that the activation coefficients are consistent
with the division of time introduced in the generation of
the temporal network: All components have distinct levels of
activation, corresponding to the four different structures used.
The component 1 is active in periods 1, 2 and 4 with an almost
constant level, the component 2 is mainly active in period 3,
as well as in periods 1 and 4, and finally, the component 3 is
active in period 1 and in period 2.

Jointly looking at the corresponding frequency patterns
(and, more precisely, their connections) in Figure 7 (left plots)
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and at the network structures observed in Figure 2, confirms
the good match with the expected results: The component
1 looks like a structure in communities, the component 2
resembles a k-regular structure and the component 3 exhibits
random structure. The structure in period 1 is then a mixture
between a random structure and a structure in communities
(as it happens, one single community), in period 2 only the
structure in communities is present, in period 3 a regular
structure described by component 2 and finally, the fourth
period is a mixture between structure in communities and
regular structure. Random structure is present in period 1 and
in period 2 inside communities.

The right plots in Figure 7 display, for each component k,
the aggregated adjacency matrix over time, obtained after the
back transformation of the spectra into a temporal network.
The sum is weighted by the activation coefficients given by the
matrix H , in order to highlight visually the most significant
patterns:

A(k) =

T∑
t=1

hktA
(k,t) (13)

This representation partly confirms the connections between
spectra and structures as described above. We can notice that
component 1 displays the three communities present in period
2, as well as communities corresponding to a regular structure
in period 4. The actual communities in period 4 are caught
in the component 2, which does not correspond to a regular
structure, even if the diagonal, characterizing the k-regular
lattice, is clearly dominant. Finally, the component 3 looks
like a random matrix, as no structure is visible, at least through
this representation.

The decomposition of temporal networks using NMF en-
ables to retrieve from the spectra the different structures
composing the temporal network, and to detect when these
structures are present, either alone or together.

E. Influence of the noise

A study of the robustness of the method in the presence of
noise in the data is performed in the following. The presence
of noise in the networks can be due to either the existence
of a spurious link, or on the contrary to its absence. The
procedure to assess the influence of the noise on the method
of extraction of network structures is defined as follows: A
uniform random noise is introduced in the data by flipping
the entries of the adjacency matrix with a probability p at
each time step. With such a process, edges are added or
removed with the same probability. Then the noisy temporal
network is transformed into signals, and components are
extracted using the method described in Section III. The
similarity between the components obtained in the noiseless
situation and those obtained from the noisy temporal network
is computed: The components are first paired such that each
component refers to the same structure, in order to prevent
any change in their order. Then the correlation coefficient
between the vectors (corresponding to the rows of H and
the columns of W ) is computed. This process is run for
p = 0.00, 0.01, 0.02, . . . , 0.2, ranging from noiseless situation
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Fig. 8. Study of the influence of the noise on the components obtained after
extraction using the method described in Section III. The process described in
Section IV-E is run for p = 0.00, 0.01, 0.02, . . . , 0.2 and repeated 50 times.

to high level of noise. For each value of p, the operation is
repeated 50 times.

Figure 8 displays the correlation coefficients for the ac-
tivation coefficients (Figure 8a) and the frequency patterns
(Figure 8b) of each component. Two main conclusions can
be done: First, the correlation between noiseless and noisy
components is high, meaning that the presence of noise does
not affect the ability of the method to extract relevant network
structures. Second, the correlation is slowly decreasing with
respect to the value of p, which is in keeping with the expected
behavior: If the temporal network is very noisy, the specific
structures are less well-characterized as well as the extracted
components. This is particularly true for the first two compo-
nents, which represent respectively structure in communities
and regular structures. As for the third component which
represents randomness, the last observation is less obvious
because the noise is also a source of randomness.

It is also worth noting that there are variations in the
obtained components even in a noiseless situation (p = 0).
This is due to nonnegative matrix factorization, which pro-
vides an approximation of the solution, and is then subject
to variability. These results nevertheless confirm that this
variability exerts a low influence on the resulting component,
as the correlation coefficients for both frequency patterns and
activation coefficients are close to 1.

V. A TEMPORAL NETWORK OF SOCIAL INTERACTIONS AS
A REAL-WORLD EXAMPLE

A. Description of the temporal network

The decomposition is applied to a real-world temporal
network, describing social interactions between children in a
primary school during two days in October 2009. During a
20-second interval, an edge exists between two individuals
if a contact is recorded, measured by wearable RFID (Radio
Frequency IDentification) sensors [39]. For our study, the
data set is described by a temporal network, representing for
each time step the aggregated contacts between individuals for
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Fig. 9. Descriptors of the Primary School Temporal Network over time. The
shaded regions correspond to class periods, while white regions correspond to
breaks and lunch, according to the information given in [39]. No significant
information is provided by the usual network-based descriptors

10 minutes. We restrained the analysis to the first day: 226
children and 10 teachers participated in the experiment, sepa-
rated in five grades (from 1st grade to 5th grade), themselves
separated in two classes.

Figure 9 shows the network-based descriptors classically
used to characterize the temporal network. Figures 9a and
9b show that the number of edges in the temporal network,
as well as the number of isolated vertices, is not constant
over time, reflecting the real-world nature of data: during the
lunch break, some children leave the school to have lunch
at home. However, the network-based descriptors (Figures 9c
and Figures 9d) do not provide significant insights about the
structure of the temporal network.

B. Spectral analysis of graph-based signals

Figure 10 shows the marginals of the energies of temporal
spectra obtained from the transformation of the primary school
temporal network. The energies of the low frequencies and
of the first components are not equally distributed over time:
this indicates changes in the global structure of the temporal
network, that occur in break periods as well as during lunch.
We can then divide the day into two main periods: the period
where the children have class (shaded regions) and the breaks
and lunch (white regions).

Comparing the Primary School Temporal Network with a
network with communities using correlations between spectra

9 10 11 12 13 14 15 16
Hour of the day

0.95

1.00

R
el

at
iv

e
en

er
gy

Class Break Class Lunch Class Break Class Component 0
Component 1
Component 2
Component 70

(a) Averaged over frequencies Ef (c) for c = 0, 1, 2, 70

9 10 11 12 13 14 15 16
Hour of the day

0.98

1.00

R
el

at
iv

e
en

er
gy

Class Break Class Lunch Class Break Class Frequency 1
Frequency 2
Frequency 3
Frequency 35

(b) Averaged over components Ec(f) for f = 1, 2, 3, 35

Fig. 10. Marginals of the energies of temporal spectra. The energies of the
low frequencies and of the first components are not equally distributed over
time, indicating changes in the global structure of the temporal network.
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Fig. 11. Correlation between the temporal spectra at each time step and the
spectra of a network with communities. Each line represent the number of
communities, averaged over 20 repetitions. The temporal network is correlated
with structure with a large number of communities during class periods, and
with structure with a small number of communities during breaks and lunch.

shows that the former temporal network is correlated with the
latter network involving a large number of communities (be-
tween 9 and 15) during class periods, a smaller one (between 3
and 6) during breaks and lunch periods (see Figure 11). This is
consistent with the spatiotemporal trajectories given in [39],
showing the location of the classes over time: during class
periods, the classes are separated into different classrooms,
while during breaks and lunch, the classes mix, yet in two
distinct groups.

C. Extraction of network structures

In the light of the above study of the temporal spectra, we
can go further and decompose the Primary School Temporal
Network into two temporal sub-networks. Furthermore, this
allows for a quicker interpretation of the obtained components,
as well as for an evidence of its ability to extract the significant
components.

Figure 12 shows the results of the NMF on the Primary
School Temporal Network, using K = 2 and γ = 5. The
school day is divided into three specific periods, according
to the activation coefficients (Figure 12b). The first period
occurs during class hours, where only the component 1 is
mainly active. The second period groups together the breaks,
during which the components 1 and 2 are significantly present.
Finally, the period 3 concerns the lunch break, where the
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(a) Frequency patterns, obtained after reshaping the columns of W into
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Fig. 12. Results of the nonnegative matrix factorization for the Primary School
Temporal Network, using K = 2 and γ = 5. The activation coefficients are
consistent with the schedule of the children in the primary school, as detailed
in [39].

component 2 is dominant. This cutting is consistent with the
ground truth, as described in [39]: only two or three classes
have breaks at the same time, while the other ones stay in
their respective classrooms. As for lunches, they are taken in
two consecutive turns, preserving the structure in classes, with
nevertheless a weaker intensity.

Figure 13 shows different representations of the temporal
networks reconstructed from the components. The left figure
shows the aggregated adjacency matrix over time, as described
in Section IV-D. The vertices are ordered according to the
classes of the children, from the youngest to the oldest. The
middle figure shows the aggregated network, using the layout
provided in [39], after thresholding of edges according to
their weights. The color of dots indicates the grade of the
children, while black dots represent the teachers. Finally, the
right figure shows the contact matrix between classes, obtained
by counting the number of edges inside and between the
classes. A logarithmic scale is used to enhance the visualiza-
tion. Figure 13a shows the original temporal network, while
Figures 13b and 13c show respectively the component 1 and
the component 2. We can easily observe that the component
1 describes the structure in classes, with higher density of
edges inside classes than between classes. Conversely, the
component 2 highlights a less structured network pattern,
which looks like two communities, separating the youngest
classes from the oldest. Those observations are consistent with
the description of lunches mentioned above.

These results highlight the interest of decomposing a tem-
poral network into several sub-networks, which can be studied
independently of each another. Without prior knowledge, the
different periods of activity in the primary school are dis-
played, and can then guide the analysis of the system by
restricting the analysis over several time intervals.
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Fig. 13. (Left) Aggregated adjacency matrix over time, weighted by the
coefficients of H . (Middle) Network representation using the layout provided
in [39], after thresholding of edges according to their weights. The color of
dots indicates the grade of the children, while black dots represent the teachers.
(Right) Grayscale-coded contact matrix between classes: each entry gives the
number of contacts inside and between the classes. A logarithmic scale is
used to enhance the visualization. The component 1 represents the structure
in classes, while the component 2 describes the structure during the breaks
and lunch.

VI. CONCLUSION

We have proposed a novel method to track the structure of
temporal networks over time using the duality between graphs
and signals, as well as classical signal processing techniques,
such as spectral analysis and nonnegative matrix factorization.
At each time, the temporal network is represented by a graph
which is transformed into a collection of signals. NMF is
used to extract patterns in the energies of spectra of these
signals; these patterns, whose activation coefficients vary over
time, represent a specific structure of the underlying network.
The effectiveness of the method has been demonstrated on
a synthetic example, containing three types of structures as
well as on a real-world network describing temporal contacts
between children in a primary school.

These results provide insights in the characterization of tem-
poral networks, but also call for further studies: In particular,
it would be interesting to have a deeper look on how the
reconstructed temporal networks are embedded in the original
temporal network. Furthermore, it would be worth considering
an iterative analysis, by studying the reconstructed temporal
networks themselves, using the same process. Finally, one
issue to the decomposition is how the number of components
K should be chosen. The choice in this work has been guided
by the intuition, according to the knowledge about the consid-
ered temporal networks. It could be nevertheless interesting
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to increase or decrease the value of K, in order to merge
or split sub-structures. This approach could lead to define a
notion of stability of a decomposition, and consequently a
spatiotemporal multiscale analysis.
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