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ABSTRACT

The efficient estimation of system reliability chateristics is of paramount importance for many
engineering applications. Real world system reliighrinodeling calls for the capability of treating
systems that ar@: dynamic,i) complexjii) hybrid andv) highly reliable. Advanced Monte Carlo
(MC) methods offer a way to solve these types obj@ms, which are feasible according to the
potentially high computational costs. In this paplee REpetitive Simulation Trials After Reaching
Thresholds (RESTART) method is employed, extending hybrid systems for the first time (to
the authors’ knowledge). The estimation accurad @recision of RESTART highly depend on
the choice of the Importance Function (IF) indiegthow close the system is to failure: in this
respect, proper IFs are here originally proposdthfivove the performance of RESTART for the
analysis of hybrid systems. The resulting overafiutation approach is applied to estimate the
probability of failure of the control system ofiquid hold-up tank and of a pump-valve subsystem

subject to degradation induced by fatigue. Thelteswe compared to those obtained by standard



MC simulation and by RESTART with classical IFs iéafale in the literature. The comparison

shows the improvement in the performance obtairyealio approach.

Keywords: advanced Monte Carlo method; RESTART¢c&Mse Deterministic Markov Process

(PDMP); hybrid dynamic system; importance functiefiicient failure probability estimation.

1. INTRODUCTION

In the performance-based design and operation afemoengineered systems, the accurate
assessment of reliability characteristics is ofapayunt importance, and more so for nuclear,
aerospace, chemical and energy transmission systatare safety-critical and must be designed
and operated within a risk-informed approach (USNRID9),(EPA, 2009), (NASA, 2010).

In order to assess quantitatively the failuredvwsdr of these systems, complex mathematical
models are built and subsequently translated ietaild mechanistic computer codes that are used
to simulate the response of the systems underusdperational transient and accident scenarios.
In practice not all the characteristics of the egstunder analysis can be fully described by the
model, due to the presence of intrinsically stotbasvents and to the analysts’ incomplete
knowledge about some phenomena. This leads to taimdgron the values of model parameters
and on the hypotheses supporting the model steiclthiese uncertainties must be taken into
account to conduct a realistic assessment of tlseersy failure behavior and the associated
reliability characteristics.

In practice real-world systems are:dipamic, i.e., their state changes (deterministically and/
stochastically) in time; 2hybrid, i.e., they are characterized by both discrete @minuous

variables (e.g., components’ discrete states, filkestioning, failed, standby, and continuous



physical quantities, like temperatures and presgu8gcomplex, i.e., they are described by a large
number of variables and parameters related by yigbhlinear dependences; Highly reliable,
i.e., their failure probability is very low.

These real-world system features rarely allowiaglthe models for reliability assessment with
uncertainty propagation analytically. On the othand, Monte Carlo Simulation (MCS) methods
offer a feasible means (Zio, 2013). The basic ideto randomly generate a large number of
possible system evolutions and estimate the fapuobability as the fraction of the number of
simulations that end in a failure state. Obvioughg smaller the failure probability, the largee th
number of simulations needed to achieve an acclepéstimation accuracy and precision. As a
consequence, the resulting computational cost neayelby high and at times impractical (e.qg.,
repeated realizations of system response by theui®mncode RELAP5-3D, which is used to
describe the thermal-hydraulic behavior of nucleamtems, may take up to twenty hours per run
in some applications). This calls for new simulati@chniques that allow performing failure
probability estimations, with as few as possibledeiocalls and, thus, as low as possible
computational time.

This can be obtained by resorting to advancedt®@arlo Simulation techniques (Bucklew,
2004), (Robert and Casella, 2004), (Rubino andifu®009). Examples of these methods include
Stratified Sampling (Helton and Davis, 2003), (Gaand lonescu-Bujor, 2004), (Munoz Zuniga
M. et al., 2011); Importance Sampling (IS) (Au &eck, 2003a), (Au, 2004), (Asmussen and
Glynn, 2007), (Dupuis et al., 2007), (Asmussenlet2811) and its variants, such as the cross-
entropy method (Rubinstein and Kroese, 2004), (DerBet al., 2005), (Asmussen and Glynn,
2007), (Botev and Kroese, 2008) or the recent Maf&bain Monte Carlo (MCMC) IS (Botev et
al., 2013a); Subset Simulation (Au and Beck, 2004y, and Beck, 2003b), (Ching et al., 2005),

(Au et al., 2007), (Cadini et al., 2012), (Au ancahg, 2014); Line Sampling (Schuéller and
3



Pradlwarter, 2007), (Zio and Pedroni, 2010), (Vb&tato et al., 2010) and Splitting Methods
(Kahn and Harris, 1951), (Garvels, 2011), (Botew Kroese, 2012), (Botev et al., 2013b), (Murray
et al., 2013). These algorithms have shown to gewautstanding performancessiatic problems,
whereas theiapplicability to complexdynamic systems is not fully demonstrated.

Methods explicitly designed for dynamic reliatyilanalyses have been proposed in the literature
(Labeau, 1996), and consistently developed throwgglrs (Labeau et al., 2000). In (Zhu et al.,
2006) advancements in the dynamic reliability fiblave been brought by including software
behavior into the analysis and using an entropyedrcriterion to force the simulation of scenarios
of interest. Cepin and Mavko, 2002) and (Rao et al., 2009) evalagstem failure probabilities
by resorting to dynamic fault trees. A method eipig Dynamic Event Tree (DET) and Monte
Carlo simulation is proposed in (Li et al., 2016)4Li et al., 2011) to force the stochastic system
simulation to a failure state and to retrieve tberesponding probability by means of a biasing
approach similar to that of Importance SamplingGatalyurek et al., 2010) and (Aldemir, 2013)
an efficient framework is proposed for the explanatof the state space of dynamic, hybrid and
complex systems and the assessment of the cordisgostate probabilities; however, an
acceptance threshold on the probabilities is iniced to avoid an explosion of the number of
system analysis, making these approaches exposetkdiecting events with small failure
probabilities. Finally, Sequential Monte Carlo slation has recently captured the attention of
many researchers due to its rigorous consistenthenatical formulation and its possibility of
dealing with static rare events (Cérou et al., 2@t large hybrid dynamic systems (Blom et al.,
2006), (Cassandras and Lygeros, 2006).

However, in this paper, we consider the REpe&ti8umulation Trials After Reaching Thresholds
(RESTART) method, an advanced MCS technique taitsgoot in splitting theory, which has

shown promising performance in the analysis of dyisadiscrete systems (Villén-Altamirano and
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Villén-Altamirano, 1991), (Villén-Altamirano and Wén-Altamirano, 1994), (Gérg and Schreiber,
1996), (Garvels and Kroese, 1998), (Tuffin and &div 2000) and which can be potentially
extended to dynamidyybrid systems. The method is based on the random gemedt many
possible realizations of the life of the dynamisteyn. Such trajectories are split (i.e., “multighe
when they get close to “interesting” regions of siystem state space (i.e., the failure region); on
the contrary, the trajectories are stopped if tieeyl to go far from the failure region. This way of
proceeding, coupled with a proper weight assigoezhth path allows a more efficient exploration
of the system state space and, thus, a reductidheoVariance of the corresponding failure
probability estimator (Villen-Altamirano and VilléAltamirano, 2002). The indication of which
trajectories should be split (i.e., of which regaf the state space should be explored more deeply
is given by a properly selected scalar Importangecion (IF) which is crucial for the overall
performance of the method (Garvels et al., 2002jljéh-Altamirano and Villén-Altamirano,
2006), (Lagnoux, 2006), (Cérou and Guyader, 20@¥)rein and Kinsch, 2011). In particular,
the possibility of embedding the discrete and ecwdus variables of a hybrid system within a
single scalar importance function is of interesttfee use of this method.

In this view, the objective of the paper is t@mwhthe feasibility of efficiently employing this
technique for hybrid, dynamic, highly reliable sysis. To this aim, we apply the RESTART
method to evaluate the failure probability of twgbhd dynamic systems in the literature, whose
mathematical models contain both discrete and roatis time-dependent variables: the first is a
control system of a liquid hold-up tank (Marsegaeand Zio, 1996) and the second is a system
composed by a pneumatic valve and a centrifugalppsimbject to degradation (Lin et al., 2014).
The systems are modeled via Piecewise Determiniéickov Processes (PDMPs). Although
suggestions and guidelines for the constructioproper Importance Functions (IFs) for discrete

dynamic systems are given in literature (Villénahttirano, 2007), (Villén-Altamirano, 2010b),
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(Villén-Altamirano, 2014)no indications have been given yet with referenchytwrid systems:
our developments in this represent the main cautioh of the present paper.

The rest of the paper is organized as followsection 2, a recall of the RESTART method and
of the performance index for evaluating it, is giveection 3 reports some references regarding
the PDMP modeling technique used in both caseesudiction 4 introduces general guidelines
for the definition of the importance function; geat5 presents an application of the RESTART
for estimating the failure probability of a cont®ystem of a liquid tank; section 6 shows the
RESTART performance on a pump-valve subsystemligtiad delivery system; finally in section

7 some conclusions are drawn.

2. THE RESTART METHOD

The REpetitive Simulation Trials After Reaching &sinolds (RESTART) method is a splitting
technigue that takes its origins in (Bayes, 197%@) has been developed mainly by (Villén-
Altamirano and Villén-Altamirano, 2002); (Villén-gdmirano and Villén-Altamirano, 2006);
(Villén-Altamirano and Villén-Altamirano, 2011). hmethod has been introduced to efficiently
estimate small failure probabilities of dynamictsyss: it relies on the observation that a (small)
failure probability can be expressed as a prodéi¢tanger) probabilities conditional on some
chosen “intermediate” and, thus, more frequent &svdine problem is, thus, tackled by performing
a sequence ofetrial simulations of (more frequent) intermediate eventgheir conditional
probability spaces. Such retrial simulations angied out by sequentiallgplitting the evolution
trajectory of the dynamic system each time it “esit¢hese intermediate conditional regions. In
this way, the split trajectories gradually populaliethe intermediate conditional regions until the

final failure region is reached.



For the sake of brevity, in what follows only thmin elements and concepts underlying the
RESTART algorithm are recalled for self-containmantl better comprehension of the paper; the

reader is referred to the cited references foh&rrtechnical details.

2.1. The Algorithm

Let Q be the state space of the stochastic prokéssdescribing the evolution of the dynamic
system of interest andl be the rare failure event, whose probability lwalsd estimated. A scalar
functiong: Q —» R, called Importance Function (IF), is introduceddentify a sequence of nested
“intermediate” states set§; c Q, (C; > C, D+ D Cy): these sets are of the forif} =
{x(t) € Q: p(x()) > T}, whereT, < - < Ty, is a given sequence of predefined thresholds. This
generates a partition 6fin regionsC; — Ciy; = {x(t) € Q: T; < ¢p(x(t)) < T;41}, such that the
higheri, the closer the system to the failure regdlone., the higher the “importance” of the system
states belonging to that region.

By way of example, assume that the system of@stas a nuclear reactor which is assumed to
fail when the fuel cladding temperattg(t) exceeds the safety threshéfd** = T,. In this case,
the stochastic proce&st) is represented by the ensemble of the (discretébles describing the
state of the components of the nuclear reactoesygt.g., pumps, valves, safety systems, etc.) and
of the (continuous) variables describing the evofubf the physical quantities that are critical fo
the reactor safety (e.g., temperature, pressurss rflaw rate, etc.). The importance function
¢>(X(t)) can be simply chosen as the “natural” indicatothefcondition of the fuel cladding, i.e.,
its temperatureds(t): in other Words,¢>(X(t)) = 0,(t). Finally, since the system fails when
P(X()) exceed®/"**, then three possible “intermediate” thresholdstwachosen df < T, <

Ty < T,



The algorithm proceeds as follows. A certain nani of initial simulation paths (trajectories),
called main trials, is generated by crude Monte Carlo simulation. $tegting point of these
trajectories is represented by the initial conditid the system of interest and it lies in regign-
¢, ={x(t) € Q: ¢p(x(t)) < T} . When the IF associated to a simulation pathestdrom a given
regionC; exceeds a threshofd,, of higher level at time*, k = 1, ..., M — i, the corresponding
system stateX (t*) is saved an&; ., — 1 new paths, calledttrials, are generated having the saved
stateX(t*) as origin (hence, if we count also the originahphat has exceeded thresh]d, ,
we haveRr,, trials starting from stat&(t*)). On the contrary, every time the IF of a triatim
C; falls below threshold;, that trial is interrupted. This is the main diface between RESTART
and the “classical” splitting (Garvels et al., 2D0&2here the paths are split only the first timeyth
cross a more important threshdlq, and, then, they are maintained for the rest oitimeilation,
even if their trajectories fall below the “genengfi thresholdT;, . On the contrary, RESTART
keeps only one of the;, trials (e.g. the one that has crossed the thrdshslthe representative
path for exploring less important regions (i.eqd regions lying below the threshdid, from
which theR;, retrials are generated): obviously in such a theeepresentative path has to be
re-split in case threshold;,, is again exceeded.. The reason behind the tremcati the
trajectories that tend to move farther from failvegionA is to reduce as much as possible the
computational cost associated to the exploratioeg@ibns of the state space that are not of irtteres
At the same time, the unbiasedness of the estinmtgsaranteed by associating a proper weight
to each path/retrial on the basis of the redipsn C;,, explored. Intuitively, less important regions
are visited by a lower number of paths with higiveights whereas more important regions are
explored by a potentially larger number of retriddat with correspondingly lower weights. An

analytical demonstration of the unbiasedness ORBBSTART estimators can be found in (Villén-



Altamirano and Villén-Altamirano, 2002). In additioit must be remembered that one trajectory
may exceed more than one threshold at the same(&wen if not frequently). For example,
consider a trial with origin iX;(t*) € C; — C;,; which exceed%;,, andT;,, at the same time. In
such a cas&®;,, - R;;, — 1 retrials should be generated from the new state(t*), as if all the
R;,1 — 1 retrials that should have been generated duestexbeedance of threshdid ; and the
one with origin inX;(t*) had reached;,,. In summary, we should take into account: i) thigal
trial started fromX;(t*) which is terminated when it falls beldiy, ii) (R;., — 1) retrials which
are generated due to the exceedance of threghgland that are terminated when they fall below
Tiy1; i) Riy1 - (Ri4o — 1) retrials which take into account the possible edaeee also of
thresholdr;, , and that are stopped when they fall befyy.

The simulation path of each retrial ends due itbee the rules explained above or to the
occurrence of a process “end condition”; on thetreoy, the simulation path of the main trials is
terminated only due to the occurrence of the “eoiddion”. “End conditions” are given as in
crude Monte Carlo simulations (e.g., reaching efitission time,,,;;, occurrence of absorbing
events, etc.). Figure 1 shows possible evolutionshe retrials (dashed and/or dotted lines)
associated to a single main trial (bold line) IRBSTART simulation with three thresholdd &

3), retrialsR; = 3,R, = 4,R; = 2, amission time (i.e., time horizon of system abaton)t,, ;.

and failure region defined (X (t)) > T,.
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Figure 1 Possible evolutions of RESTART trajectoriesrelativeto a single main trial (bold) in a simulation
W|th M = 3,R1 = 3'RZ = 4,R3 = 2.

For the evaluation of statistics based on all satioih trials, the weights associated to the eaah tr
need to be computed. The weight of a trajectorgbigiously related to the regiaf} — C;; In
which the trial lies; in particular it is related the product; = §-=1 R; of the splitting factors

necessary to reach threshdldand to the number of main tridé In details, ifX(t) is in C; —

Cit1, its weightw; will be w; = — . Notice that, the higher is the importance of the

NT; 1\/-1‘[}=1 R;j

region, the lower is its statistical weight. Foemple, considering the situation depicted in Figure

1, where the numbéy of main trials isl, the trajectories in regio6, — C, have weightsv; =

Ri = % since the main trial is split into three retrialgery time it exceeds threshdig similarly,

1

=L= % since they are the results of two

trajectories in regiolf; — C3 have weightsv, = — = —
1°k2 ’

successive splittings, related to the crossindhdgholdsT; (splitting into three retrials) ant,

(splitting into four retrials). Then, the estima®{A) of the probability of failureP(4) is P(4A) =

; N} - .
Mow;-Nj= {Vilr—“ whereN; is the number of occurrences of the failure eventhen the
L
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system has a stak{t) lying in regionC; — C;,,. Furthermore, ifA c Cy, (i.e., failures occur only

M
if the system has a statedyy), the estimator becomes simpiyA) = NN: =< HIX,A -
™ NIlj=R;

. In (Villén-

Altamirano and Villén-Altamirano, 2002) the unbideess of the estimators is proven and details
concerning the variance of this estimator are given

As in all Monte Carlo-based methods, the higherdorrelation among the generated trajectories,
the higher the varianc’é[P(A)] of the failure probability estimator. In the RESRA method,
each retrial shares a part of the “simulation pattih the trial from which it is generated: thus,
there is correlation between them. In (Villén-Aligamo and Villén-Altamirano, 2002), optimal
and quasi-optimal values for the number of retiig)g = 1, ..., M, have been derived analytically
for a fixed number of thresholdg in order to minimize the variance 8{A4): on one sideR;
should be large enough to widely explore the sysstae space by generating the possible
trajectories of evolution of the process; on thieeotside,R; has to be small enough to avoid a
significant increase in the correlation among tegials and, thus, a dramatic decrease in the
efficiency of the method. The analytical resultsivid in (Villén-Altamirano and Villén-
Altamirano, 2002) demand for information that ipitally not available a priori, such as the value
of Py, i.€., the probability that the system reachesoreq; knowing that it is in regiorC,.
However, rough estimations via crude Monte Carl@xpert judgement are usually enough to
obtain satisfying results. Another crucial paramé&iethe algorithm is the numbgft of thresholds.
If the IF is continuous, it is possible to identifye optimal value foM as the largest possible value
that guaranteeB;;_, < 0.5, whereP;;_; is the conditional probability that the systemctezs
region(;, given that it lies in regiofi;_4, i.e.,P(X(t) € C;| X(t) € C;_1). On the contrary, if the
state space is discrete or hybrid (which is the @dghe present paper), the IF is discontinuous

and, thus, optimal values f&f andR; cannot be obtained easily. Applications of the REST
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method to reliability problems in discrete statacgs have been already shown in the literature;
also, suggestions for the choice of the correspuntis have been proposed (Villén-Altamirano,
2007); (Villén-Altamirano, 2010a); (Villén-Altamire, 2014). However, to the best of the authors’

knowledge, applications and related IFs for hylgigtems have not been proposed yet.

2.2. Perfor mance | ndex

The performance of the RESTART method can be asddégsmeans of the well-known Figure of
Merit (FoM) C - V(P), whereC is the computational cost associated to the megmaoid (P(A))

the variance of the failure probability estimafoA): this indicator takes into account both the
precision (i.e., the variance) of the estimator tcomputational effort needed to obtain it. The
gain or speedug of RESTART can be defined as the ratio betweefrti of crude Monte Carlo

simulation and the FoOM of RESTART. A formula foetideal (i.e., maximal) gain has been derived

in (Villén-Altamirano and Villén-Altamirano, 2002):

1
“PA(=InP@A) + 1)?

G (1)

whereP (A) is the failure probability to be estimated.

3. PIECEWISE DETERMINISTIC MARKOV PROCESS (PDMP) FOR

MODELING HYBRID DYNAMIC SYSTEMS

Piecewise Deterministic Markov Process is a modeithnique that allows to describe systems
whose variables evolve accordingly to physical l&ygically by Ordinary Differential Equations-

ODEsSs), which could stochastically change in tinleMPs were firstly introduced by (Davis, 1984)
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and (Davis, 1993) for describing systems with dateistic motion and random jumps; recently
PDMP have been treated in (Jacobsen, 2006) andugkit et al., 2014).
PDMPs are suitable, e.g., for modeling the preadsdegradation of physical systems which

present interdependencies among their variablesgiLal., 2014). Let

)?(t)zlf(t)leEszxs (2)
Z(t)
be the vector representing the state of the systetne suppolk: for simplicity of the presentation
of the method, thel-dimensional vectol (¢t) contains all the continuous variables (typically
related to the system physical quantities like terapres and pressures), wherggs) has a
discrete suppor§ and contains all the discrete variables (e.gsehelated to the functioning,
partially functioning or failed states of mechahicmponents). A continuous variable is
commonly used either in a continuous time monigon physics-based modeling framework. On
the contrary, discrete variables are used eithe@nwhis not necessary or it is not possible tddoui
a more detailed continuous model. This can bealtieetlack of information, (e.g., it is not possibl
to continuously monitor the system state), or ®ftitt that it is sufficient to know a range in alini
the variables lie: for example, if the vibratiome aver a certain value, then the pump is consitlere
partially degraded, otherwise it is in normal cdiuatis.

In PDMPs,Y(¢) follows a piecewise deterministic process whoseriaptions are brought by

Markovian transitions of the discrete variahfés) at timet,.. Letting X, = X(¢;) be the state of

the system at transition tintg, then the random jumps of the discrete varidiftd are driven by

the following transition probability:

p (Xk+1 = J, tesr € [t tic + AL |{X, tn}nsk) = P(Xe1 = J, tiewr € [tio tic + AL]|X) = 7)

Vk > 0,At > 0,7,jEET+].

(3)
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The transition probability in ( 3 ) depends onslege of both the continuous and discrete variables

Between two consecutive transition timgandt, ., the evolution of the system is deterministic,
e, X(t)=v(X, t—t,) for t€[tytrs1),Vk EN, where :RIxS—>RIxS is a
deterministic function in whic (¢) is constant an#(t) takes a specific value. It is not rare that
different values of the discrete variablé&) imply different deterministic evolutions for the

continuous variableE(¢) (i.e., the shape ap is itself dependent on the valueZft).

4. IMPORTANCE FUNCTION DEFINITION
In what follows, general guidelines and procedstaps for defining efficient importance functions
are reported.

4.1. System Analysis

The scope of this step is to identify the composemd the continuous variables involved in the
(failure) event of interest: for example, thos¢estahat the components should visit to causesyste
failure (i.e., the minimal cut sets) and the valtiest the continuous variable should assume in
those conditions (e.g., liquid level in a hold-@pk or the pressure in a nuclear reactor vessel).
Dependencies among components and variables ceuddsb identified (if possible) at this step:
for example, specific sequences of events thattleadystem to failure.

4.2. Components And Variables Ranking

Based on the information collected at the previstep, a possibly rough and qualitative ranking
of the components and variables that contributet noothe failure event should be performed. In
particular, variables and component configuratibias arenecessary to lead to system failure (e.qg.,
a specific configuration or failure mode of thewed in the system) should be ranked at the top.

4.3. Definition of the | mportance Function

14



The definition of a proper Importance Functionygitally problem- and system-dependent: see
(Villén-Altamirano, 2010b), (Villén-Altamirano, 2@). Thus, in accordance with the analyses
conducted in the previous two steps, an importémeetion should be conceived by considering
first the elements (i.e., the components and theirmaous variables) in the top positions of the
ranking, i.e., those that contribute most to sysfaiture. For example, in the case study that
follows (Section 5), firstly, the state of thredwes is considered since their failure is the neaps
condition to lead the system to an uncontrolledagion; secondly, the level of the liquid in the
tank is taken into account, since it gives infoimratbout the remaining time available to perform
repair on the failed components.

However, it has to be admitted that an automgeiceral procedure for the definition of the
Importance Function is not yet available, especialt complex systems. In this view, the previous

guidelines could serve as a starting point forreituorks.
5. CASE STUDY 1. HOLD UP TANK

The RESTART method has been applied to a well-knoage study in the literature for dynamic

reliability analysis (Aldemir, 1987), (Siu, 1994Marseguerra and Zio, 1996).

5.1. The M oddl

The system consists of a tank containing a fluidsehevel is controlled by suitable sensors, which

govern three active components (Figure 2).
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Comp. 3 [ Y,

Outflow [ ... Y.

Figure 2 Tank containing a liquid, whose levd is controlled by three active components

Input inflow is provided by components 1 and 2 (gpgmps) that produce equal and constant rates
of liquid level variationQ, = Q, = 0.6 m/h. Outflow is, instead, provided by a valve with
constant level variation rai@; = —0.6m/h. All the components are independent and can fail
either Stuck Open (SO) or Stuck Closed (SC); dtdure, a repair strategy that brings the
components back to an “as-good-as-new” state isleimmgnted. Exponential probability
distributions are used to model all types of stetihatransition. The Mean Time To Failures
(MTTFs) of components 1, 2 and 3 &&9h, 175h and320h, respectively, for both types of
failures (SO and SC), whereas the Mean Time To RéA TR) for each component &h. In
this case study, the continuous variab(e) represents the level of liquid in the tank; aref¢hare
3 discrete variableg = (Z,,Z,,Z5) for the components states (-1: operating; 0: SGQ).

The initial liquid level is set t&(t = 0) = Y, = 0. The whole system fails either for overflow
(i.e., when the liquid level exceeds threshiala= Y, + 5) or for dry-out (i.e., when the liquid level
falls below threshold_; = Y, — 5). In addition, two alarm thresholds, namdly; and Y;, are set

to Y, £+ 1, respectively. Every time the levé(t) reaches one of these two alarm thresholds, the
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possibly failed components are detected and putrurgghair; at the same time, the control system
modifies the working configuration of the activexgponents so as to drive the liquid level towards
a safe condition. Between two consecutive (stoda)asansition timeg, andty., the liquid level
evolution is described by the following determimsaw:

Y(t) =Y, +(a1Q1 + a2Qz + a30Q3) - (t — t4); Vit S € < tpiq (4)
whereY;, is the value of the liquid level at (random) tiéios time t; and d@ = (a,, a,,a3) is a
Boolean vector such that:

(5)

_ { 1if component i is open or SO
% 0if component iis closed or SC

With reference to Figure, Zhe initial configuration of the system is in ddarium, i.e., the inflow
equals the outflow and = (1,0,1). We divide the liquid level in three working stsitd)Y (t) <
Y_1;2)Y_1 <Y(t) <Yy;3)Y; <Y(t). If Y(t) passes frond) to 1), due to any kind of component
failure, the controller will sefi = (1,1,0) to increase the liquid level; otherwise Yift) passes
from 2) to 3), the controller will sefi = (0,0,1) to reduce the liquid level. Once the liquid level
reaches one of the failure threshdlgs, the system remains failed and no repair can beuwtied
within a time comparable with the mission timg,,. For simplicity of presentation, in this paper
we consider only the assessment of the probalwhtgry-out failures, i.e.lJ = P(tdryout <
tmiss), wheret g,y i the time at which dryout occurs anglss (= 500h) is the mission time.
Notice that the event of interest occurs when dtewing two events occur consecutivelyall
the components fail in the configuration of minimalt set {cs) agryoue = (0,0,1), (i€,
component ISC, component &C, component 30); ii) the repair strategy fails to restore at least

one component before the liquid level reaches

5.2.1mportance Functions
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Two Importance Functions (IFs) have been considaretiis case study: the first orlg has
already been proposed in the literature to evaloatii-components failure probability (Villén-
Altamirano, 2014); the second ogg is introduced for the first time in this paper dalles into
account both the presence of multiple discrete @omapts states and the information associated to
the continuous physical variabfet).

Since in this case we have only one minimal eti{acs) a0, that leads to the failure event

of interest, the Ik, (t) introduced in (Villén-Altamirano, 2014) becomes:

$:1(t) = fe(®)/n, (6)

where fc(t) is the number of components in thes which are failed at time andn is the
cardinality of themcs (i.e., n = 3 in this case): obviously, the higher the numberfaled
components, the closer the system to failure aachipher the importance of the corresponding
state. Notice that once tinaes configuration is obtained at tinte the system igot guaranteed to
fail instantaneously at time Actually, there is still a safety margin given thye time needed by
liquid level Y (t) to move from the alarm threshdid, to the failure on&_s: in this time window
repairs “could” occur and avoid system failure. $hilree thresholdd’,, T,,T5) = (1/3,2/3,1)
are used in our RESTART implementation, insteatheftwo admissible if no repair strategy had
been planned (actually, if no repairs were allowgdt) = 1 would automatically imply system
failure att).

The second I, (t) considers two aspects: (i) during the process compts could fail in a state
different from that of themcs and (ii) once tharncs is reached, repair processes still happen

stochastically. The importance functign(t) is defined as follows:

Ys — Y (¢) )

¢z(t)=2'fc(t;_f(t)+ (7)

0,1
max< n A
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where f(t) is the number of failed components at the curtiené¢ t. The first “discrete” term
considers that if a component fails stuck in a fpmsiopposite to the one “required” by thres
Aaryout, It gives a negative contribution to (i.e., it veds) the importance of that state (since the
component needs to be repaired before it can rdechonfiguration “required” by theacs). In
other wordsg, gives less importance to those configurations wleemponents are failed, but
not in the state according to thmes. In addition, the second term introduces a cootisypart into
the IF, when the alarm threshdfd; has been down-crossed. This allows introducingtiate!
intermediate thresholds to increase the frequericyragectory splitting; i.e., to make the
exploration of the system state space more thorowich increases the performance of the
method by reducing the variance of the estimatorthef conditional probability? (Y (t) <
Y_s | Y(t) <Y_;). In the case under analysis, we introduce onlyintegmediate threshold that
corresponds to the configuration of the system wiitgemcs has been reached and the liquid level
isY(t) = -3, i.e., itis at half position between the ala¥m and the failure threshold s: thus,

(TIJ TZJ TBJ T4) = (1/3 ) 2/3; 1 ) 1287)

5.3.Reaults

The RESTART method has been applied with both itamaoe functionsp,; and ¢, and its
efficiency compared to that of standard MCS. kv@th recalling that accelerated Monte Carlo
methods are typically used when the computatioostl associated to a single run of the dynamic
system model is prohibitive (e.g., hours or days)this view, it is interesting to compare the
performance of the two methods by keeping fixeddte time of simulation of the system model.
Thus, the results produced by RESTART have beempaoed to the estimates obtained by the

crude Monte Carlo method using the same Total il Time (TST)ts (in this casets =
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80000~h, i.e., the total number of hours of liquid tanlokition). As performance indices, we have
considered the MeafE[U]) of the failure probability estimatoll, its Standard Deviation
(Std[T]), the Figure of Merit (FoM) introduced in sectior2 2nd the average Number of System
Analyses(E[NSA]) (i.e., the average number of complete or part@h® used to evaluate the
estimator). The number of retrial® for each threshold; has been fixed tq¢7,7,40) and
(7,7,7,10), respectively fogp, and¢,, following the guidelines provided by (Villén-Al@rano
and Villén-Altamirano, 2002).

Table lreports the values of the performance indiEf3], Std[U], FoM andE[NSA] obtained
as average over 100 estimates. The true alogthe failure probability i§.40 x 10~*. The Std
of the estimator obtained using ¢ is one order of magnitude smaller than the onaionétl by
crude Monte Carlo and almost 30% smaller than tee rovided byp,. In addition, the FOM
given by the new Ii®, is two orders of magnitude lower than that of dead MC and half of that
of ¢,. The values oE[NSA] show that RESTART employs more system analysasdtendard
MC, but it must be considered that part of soméesysanalysis is shared by different retrials and,
then, it does not imply additional computationastcdndeed, the real total computational cost
required by the different methods (which matterthm analysis) is the same by construction and

is represented by the TST.

Table 1 System probability of dry-out failure obtained as average over 100 estimates by crude M onte Carlo
(MC) and by the RESTART method with two different Importance Functions (IFs), ¢p; and ¢,.

MC RESTART ¢, RESTART ¢,
E[U] 491x107* 5.36 x 107* 5.38 x 107*
Std[0] 1.70 x 1073 2.40 x 107 1.69 x 107*
FoM|U] 2.25x 1071 4.74 x 1073, 2.30 x 1073
E[NSA] 1.63 x 102 2.00 x 10° 2.26 x 10°
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6. CASE STUDY 2: PUMP AND VALVE SUBSYSTEM

In this artificial case, the fluid delivery systdmatween two plants is considered. It consists of tw
subsystems: the former pushes fluid from plant Alémt B, whereas the latter pushes fluid in the
opposite direction. The subsystems are identicdlcansist of a pneumatic valve and a centrifugal
pump. Part of the pipes is shared between the tvbsystems, so that they have to work in
alternating way (Figure 3): every hour, the fluldw has to be inverted; thus, every hour the
operating (resp., the switched off) pump is swittlodf (resp., on) and the associated valve is
closed (resp., opened). Since the two subsystemsdantical, we focus our attention on the
analysis of a single pump-valve subsystem whos&hboperating time is considered (i.e., only the

time during which the subsystem is actually delivgthe fluid). Indeed, components’ degradation

develops due to wear.

-

Figure 3 Fluid delivery system, wher e the pump-valve subsystem under analysisis highlighted by the dash
box.

6.1. Mod€

The model of the subsystems’ components (centtifoigiap and pneumatic valve) takes its roots
from (Lin et al., 2014), where a Piecewise Deteistio Markov Process is used to describe the
dependences between the degradation processeg tivéhcomponents and the effect of the

abrasive particles present in the fluid. In patiacuthe authors consider the influence that the
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degradation state of the pump has on the degradataress of the valve. We recall here the main
characteristics of the model and refer the intedestader to (Lin et al., 2014) for more details.
6.1.1. Pump
The degradation process of the centrifugal pungeseribed by a continuous-time homogeneous
Markov chainZ(t). The state space consists of a state of normatiuming, namelyZ (t) = 3,
two degradation states (nameB(t) = 2 andZ(t) = 1) and a failure one (namelg(t) = 0).
This classification is based on the intensity efvibrations produced by the pump. In other words,
state 3 specifies the normal condition (i.e., smddfations), state 2 medium vibrations, state 1
high vibrations and state O specifies the failut®tes No repairs are planned, except those
performed at the mission time and the correctivespne., those carried out when the component
is failed. Figure 4 shows synthetically the stgi@ce of the Markov process modeling the stochastic
degradation of the pump. The transition rateas been changed from that of (Lin et al., 2004) i
favor of a more realistic value df = 4.68 x 10™> h™1, which already takes into account the
relative increment caused by the abrasive particles
OO 020
Figure 4 State space of the Markov process modeling the degradation of the pump
6.1.2. Valve
The pneumatic valve is a gas-actuated valve wiitinear cylinder actuator described by a physics-
based model. A system of Ordinary Differential Biprss (ODES) describes the evolution of the
state variables of the valve. These variables(gritie position and the velocity of the pistart)
andv(t), respectively; (ii) the mass of gas at the top laoitiom chamber of the valves, (t) and

m,, (t), respectively, and (iii) the equivalent orificeearof the internal leakage of the pistb(t,).
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The differential equation describing the deterntiaisme evolution of the leakagg(t) (i.e., the
variable pinpointing the degradation state of thlwve, which depends on the vibration state of the
pump) is as follows:

L) = w@ + a,)(1 + Bz rv(t)?, (8)
wherew is the wear coefficienty,, is a constant that characterizes the relativeement of the

degradation rate due to the abrasive particlesdriltid,r is the coefficient of kinetic friction and
Bz is a variable that characterizes the relativeamamt of the internal leakage caused by the
vibrations of the pump: the higher the vibratiotheg larger the value ¢f; ). Table 2reports the

value of the model parameters that have been heddied with respect to (Lin et al., 2014).

Table 2 Parameters of the physical valve model modified with respect to (Lin et al., 2014)

Parameters Value
w 417 x10711m N1
a, 0.2
B3 0
B> 0.2
B 0.4
Bo 0

If L(t) reaches the vallg20 x 10~°m?, then the valve can be considered failed, sincaritnot
get to the fully opened position within the saftiye limit of 15s from the opening command.

With reference to the notation used in sectioth8, subsystem is described by the following

vector of variables:
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where Z(t) represents the state of the pump. The objectivihesevaluation of the failure
probability U of the subsystem up to the mission timg, = 1848h, since at that time

components are put under maintenance and thepsteed.

6.2. | mpor tance Functions

Two Importance Functions (IFs) have been considéoedpply the RESTART method and
compare its performance to that of the crude M@#do method. Ik, is based only on the state
of the pump and exploits the fact that the pumiinésonly source of (aleatory) uncertainty in the
subsystemThus, two intermediate threshol@B,, T,) = (1/3,2/3) are set (Villén-Altamirano,

2014):

3—Z(t) (10)
—

¢ (t.X) =
The second Ik, tries to consider the contribution of valve fa@larto the failure of the whole
subsystem. Since the speed of degradation of tiie Madependent on the degradation of the pump
(i.e., the higher the pump vibrations, the higher tlegradation speed of the valve), the new IF
takes into account also the pump transition tirmeeed, it can be seen that the mission tige,
of the experiment is such that if the pump remairgate 3 (i.e., the normal functioning state), no
valve failure can occur, because the leakage careach the failure level. However, if the first
transition timet,_,, of the pump occurs before a certain tilge, = 629h, then, valve failure

could happen. This also depends on the timeg, when the second transiti@ 1 occurs. It is
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reasonable that the sooner transitbr> 2 occurs (i.e., the smallgs_,,), the larger the time
window within which2 — 1 can occur and can lead to valve failure. Thuscareidentify the set
of pump transition times that can lead to the failaf the valve within the mission time. Figure 5
reports the function,_,; = f(t5_,,) (black line), which gives the maximum timhg,,; within which
transition2 — 1 must happen so that the valve failure occurs befgy,: in other words, given
the first pump transition timg_,,, if t,_,; < f(t3-), then the system is going to fail befoyg,;,
either due to a deterministic degradation of tHeevar to a possible third stochastic transition of

the pump.

1400

1200

1000 r

800 [

0 500 1000 1500 2000

3—2

Figure 5 Maximum valuethat t,_,; can assume to guarantee valve failure within t,,;ss

The new IR, is, then, based on the observation that the smsilee number of transitions needed
by the pump to lead the subsystem to failure, thkdr should be the corresponding IF associated

to that particular pump state. Thys, can be expressed as follows:

R # Z(t) #2
¢2(t,X) = 3—Z(t) 1 (11)

3 + §I(t5f(t3_,2)) ,Z(t) =2
The second term in ( 11 ) shows that;if, < t5_,,, then,¢, jumps directly from 0 to the second

intermediate thresholfl, equal to2/3, due to the high probability of valve failure.ttfe second
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transition of pump state does not occur at tirge f (t5_,,), the possibility of valve failure ceases

and the IF correspondingly decreases.

6.3. Results

Differently from Case Study 1 (Section 5), the RBRT and the MC methods are here compared
by fixing the maximum variance of the estimalk(t) for every time step within a time window

of interest. Thus, the performance index introduce®ection 2.2 practically “reduces” to the
computational time (CPU) or to the Total Simulatitime (TST), i.e., the “number of hours”
simulated by the dynamic system model. To this dima,independent replication method with a
non-fixed number of replicas has been used to at@leach time a new path is simulated during
an experiment, the width of the 90% Confidencerirge(Cl) of the Relative Error (RE) of the
estimatorU (t) at every time step (Villén-Altamirano, 2014). The replication of nguaths in an
experiment is interrupted when the widths of the @flthe RE are lower than a given threshold
(10%, in this paper) for all the time steps in time window of interest. In this paper, the time
window considered i$t neck1s teneckz] = [1700h, 1848h], which includes the time where the
contribution of valve failures to the failure oktlsubsystem starts to become relevant and where,

thus, our attention is focused. Figure 6 reports iean valuet[U] and the 0.05 and 0.95

percentiles of/ obtained using 100 estimators produced by crudeaiC RESTART using the
two different IFs¢; and ¢, described in Section 6.2. All the methods retdmoat the same
average estimate confirming that the correspondsignators are unbiased. In Figure 6 (middle
right), a zoom on the critical time window showswhthe three methods obtain the desired
precision for the failure probability estimatesward 1700k, where the RE reaches its maximum

value within the time window of interest. The oti@o zooms (top and bottom) show that the MC
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Simulation tends to present respectively the ldrGesfidence Intervals (Cls) befot&€00h and

the smallest after that time; the opposite behamsarbtained forp,. On the contrary, the Cls

obtained by, take average values showing a higher robustnessdiag to the chosen stopping

criterion.
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Figure 6 Left column: average failure probability and respective 0.05 - 0.95 percentiles obtained by 100
estimators of the subsystem evolution with crude Monte Carlo (M C, dashed lines), RESTART &, (dashed-
dotted lines) and RESTART &, (dotted lines). Right column: zoom on different time windows of the same

quantities.
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In Table 3 the Total Simulation Times (TSTs) neeldgdhe different methods to get the desired
precision are proposed. Both the RESTART methods atleast 90% of the TST compared to
the crude Monte Carlo, obtaining gaifidarger than 10. Furthermogg, outperformsp,, getting

on average a gain @7.89 (larger than 16.56), which is closer to the optigaanG ( 1) introduced

in section 2.2 which, in this case study, is arol8dThe number of retrial®; starting from each

threshold T; has been chosen via a trial-and-error techniquat thas led toRy =

[R1(¢1),R2(¢1)] =[20,4] and Ry, = [R,(¢2), R2(¢2)] = [8,8]. It is worth noting thaip,
presents the same number of retrials at both thlégshn accordance with the quasi-optimal results
proposed in (Villén-Altamirano and Villén-Altamiran 2002). On the contrary, the disparity
between the retrials qf; is caused by the different probabilities thatlth@as of crossing a given

threshold, given the actual state of the subsystem.

Table 3Mean Total Simulation Time (TST) and gain obtained by 100 replications, respectively, with crude
Monte Carlo (MC); RESTART with ¢4 and ¢, as I mportance Functions.

MC RESTART ¢, RESTART ¢,
TST 4.51 x 10° 2.72 x 108 2.52 x 108
Gain, G - 16.56 17.89

7. CONCLUSIONS

The RESTART method has been here used, for thetiine, for the estimation of the failure
probability of hybrid dynamic systems due to itpalility of thoroughly exploring, by means of
sequences of retrials, paths that could potentieliy to rare failure events and also for the
possibility of embedding discrete and continuousaides (typically describing a hybrid system)
within a single scalar IF. For this reason, an esiten of the IF definition has been necessary. Two

case studies have been considered: the first aomtiee control system of a liquid hold-up tank;
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the second deals with a pump-valve subsystem dubjeegradation induced by fatigue. The two
case studies have shown how the performance dRE&TART method (quantified in terms of
estimation accuracy, precision and associated ctatpoal cost) can be increased by properly
taking into account the contribution of both thentouous and the discrete variables
(characterizing the hybrid system) in the defimtaf the Importance Function (IF).

In the first case study, it has been shown #hidhg into account the contribution of continuous
variables in the construction of the IF allows gasing the performance of the RESTART by an
order of magnitude with respect to crude Monte &€aimnulation and by a factor of 2 with respect
to RESTART employing classical, “discrete” IFs allg available in the literature.

In the second case study, some preliminary knbgdeabout the possible failure sequences has
led to the introduction of a new IF capable of édesng the dependences between the degradation
of the two process components of the system. Bjosag, the performance of the RESTART has
been found to be close to the optimal theoreticed derived in (Villén-Altamirano and Villén-
Altamirano, 2002). Although in this paper it hagbeshown, by means of two case studies, that
the introduction of an IF considering both continscand discrete variables can increase the
performance of the RESTART method in the analysibybrid, dynamic systems, it has to be
admitted that a@eneral procedure for aautomatic design of an efficient IF is not yet available,

especially for complex, multi-components, multitstaystems.
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