
HAL Id: hal-01330146
https://hal.science/hal-01330146

Submitted on 10 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Mapping-based Method to Query MongoDB
Documents with SPARQL

Franck Michel, Catherine Faron Zucker, Johan Montagnat

To cite this version:
Franck Michel, Catherine Faron Zucker, Johan Montagnat. A Mapping-based Method to Query
MongoDB Documents with SPARQL. 27th International Conference on Database and Expert Systems
Applications (DEXA 2016), Sep 2016, Porto, Portugal. �hal-01330146�

https://hal.science/hal-01330146
https://hal.archives-ouvertes.fr

A Mapping-based Method to Query MongoDB
Documents with SPARQL

Franck Michel, Catherine Faron-Zucker, and Johan Montagnat

Univ. Nice Sophia Antipolis, CNRS, I3S (UMR 7271), France
{fmichel,faron,johan}@i3s.unice.fr

Abstract. Accessing legacy data as virtual RDF stores is a key issue in
the building of the Web of Data. In recent years, the MongoDB database
has become a popular actor in the NoSQL market, making it a signifi-
cant potential contributor to the Web of Linked Data. Therefore, in this
paper we address the question of how to access arbitrary MongoDB doc-
uments with SPARQL. We propose a two-step method to (i) translate
a SPARQL query into a pivot abstract query under MongoDB-to-RDF
mappings represented in the xR2RML language, then (ii) translate the
pivot query into a concrete MongoDB query. We elaborate on the discrep-
ancy between the expressiveness of SPARQL and the MongoDB query
language, and we show that we can always come up with a rewriting that
shall produce all correct answers.

Keywords: SPARQL access to legacy data, MongoDB, virtual RDF
store, Linked Data, xR2RML

1 Introduction

The Web-scale data integration progressively becomes a reality, giving birth to
the Web of Linked Data through the open publication and interlinking of data
sets on the Web. It results from the extensive works achieved during the last
years, aimed to expose legacy data as RDF and develop SPARQL interfaces to
various types of databases.

At the same time, the success of NoSQL databases is no longer questioned
today. Initially driven by major Web companies in a pragmatic effort to cope
with large distributed data sets, they are now adopted in a variety of domains
such as media, finance, transportation, biomedical research and many others1.
Consequently, harnessing the data available from NoSQL databases to feed the
Web of Data, and more generally achieving RDF-based data integration over
NoSQL systems, are timely questions. In recent years, MongoDB2 has become a
very popular actor in the NoSQL market3. Beyond dealing with large distributed
data sets, its popularity suggests that it is also increasingly adopted as a general-
purpose database. Arguably, it is likely that many MongoDB instances host

1
Informally attested by the manifold domains of customers claimed by major NoSQL actors.

2
https://www.mongodb.org/

3
http://db-engines.com/en/system/MongoDB

2

valuable data about all sorts of topics, that could benefit a large community at
the condition of being made accessible as Linked Open Data. Hence the research
question we address herein: How to access arbitrary MongoDB documents with
SPARQL?

Exposing legacy data as RDF has been the object of much research during
the last years, usually following two approaches: either by materialization, i.e.
translation of all legacy data into an RDF graph at once, or based on on-the-fly
translation of SPARQL queries into the target query language. The materializa-
tion is often difficult in practice for big datasets, and costly when data freshness
is at stake. Several methods have been proposed to achieve SPARQL access to
relational data, either in the context of RDB-backed RDF stores [8,21,11] or us-
ing arbitrary relational schemas [4,23,17,18]. R2RML [9], the W3C RDB-to-RDF
mapping language recommendation is now a well-accepted standard and several
SPARQL-to-SQL rewriting approaches hinge upon it [23,17,19]. Other solutions
intend to map XML [3,2] or CSV4 data to RDF. RML [10] tackles the mapping of
heterogeneous data formats such as CSV/TSV, XML and JSON. xR2RML [14]
is an extension of R2RML and RML addressing the mapping of an extensible
scope of databases to RDF. Regarding MongoDB specifically, Tomaszuk pro-
posed a solution to use MongoDB as an RDF triple store [22]. The translation of
SPARQL queries that he proposed is closely tied to the data schema and does not
fit with arbitrary documents. MongoGraph5 is an extension of the AllegroGraph
triple store to query arbitrary MongoDB documents with SPARQL. Similarly
to the Direct Mapping [1] the approach comes up with an ad-hoc ontology (e.g.
each JSON field name is turned into a predicate) and hardly supports the reuse
of existing ontologies. More in line with our work, Botoeva et al. recently pro-
posed a generalization of the OBDA principles to MongoDB [6]. They describe
a two-step rewriting process of SPARQL queries into the MongoDB aggregate
query language. In the last section we analyse in further details the relationship
between their approach and ours.

In this paper we propose a method to query arbitrary MongoDB documents
using SPARQL. We rely on xR2RML for the mapping of MongoDB documents
to RDF, allowing for the use of classes and predicates from existing (domain)
ontologies. In section 2 we shortly describe the xR2RML mapping language.
Section 3 defines a database-independent abstract query language, and sum-
marizes a generic method to rewrite SPARQL queries into this language under
xR2RML mappings. Then section 4 presents our method to translate abstract
queries into MongoDB queries. Finally in section 5 we conclude by emphasizing
some technical issues and highlighting perspectives.

2 The xR2RML Mapping Language

The xR2RML mapping language [14] is designed to map an extensible scope of
relational and non-relational databases to RDF. It is independent of any query

4
http://www.w3.org/2013/csvw/wiki

5
http://franz.com/agraph/support/documentation/4.7/mongo-interface.html

3

language or data model. It is backward compatible with R2RML and it relies
on RML for the handling of various data formats. It can translate data with
mixed embedded formats and generate RDF collections and containers. Below
we shortly describe the main xR2RML features and propose a running example.

An xR2RML mapping defines a logical source (xrr:logicalSource) as the
result of executing a query (xrr:query) against an input database. An optional
iterator (rml:iterator) can be applied to each query result. Data from the logical
source is mapped to RDF terms (literal, IRI, blank node) by term maps. There
exists four types of term maps: a subject map generates the subject of RDF
triples, and multiple predicate and object maps produce the predicate and object
terms. An optional graph map is used to name a target graph. Listing 1.2 depicts
the <#TmLeader> xR2RML mapping.

Term maps extract data from query results by evaluating xR2RML refer-
ences. The syntax of xR2RML references depends on the target database: a
column name in case of a relational database, an XPath expression in case
of a XML database, or a JSONPath6 expression in case of NoSQL document
stores like MongoDB or CouchDB. xR2RML references are used with property
xrr:reference that contains a single xR2RML reference, and rr:template that
may contain several references in a template string. In the running example
below, the subject map uses a template to build IRI terms by concatenating
http://example.org/project/ with the value of JSON field "code". When the
evaluation of an xR2RML reference produces several RDF terms, by default
the xR2RML processor creates one triple for each term. Alternatively, it can
group them in an RDF collection (rdf:List) or container (rdf:Seq, rdf:Bag and
rdf:Alt) of terms optionally qualified with a language tag or data type.

Like R2RML, xR2RML allows to model cross-references by means of ref-
erencing object maps. A referencing object map uses values produced by the
subject map of a mapping (the parent) as the objects of triples produced by
another mapping (the child). Properties rr:child and rr:parent specify the join
condition between documents of both mappings.

Running Example. To illustrate the description of our method, we define a
running example that we shall use throughout this paper. This short example is
specifically tailored to address the issues related to the SPARQL-to-MongoDB
translation, it does not illustrate advanced xR2RML features, but more detailed
use cases are provided in [14,7]. Let us consider a MongoDB database with one
collection "projects" (Listing 1.1), that lists the projects held in a company. Each
project is described by a name, a code and a set of teams. Each team is an array
of members given by their name, and we assume that the last member is always
the team leader. The xR2RML mapping graph in Listing 1.2 has one mapping:
<#TmLeader>. The logical source is the MongoDB query "db.projects.find({})"
that simply retrieves all documents from collection "projects". The mapping as-
sociates projects (subject) to team leaders (object) with predicate ex:teamLeader.
This is done by means of a JSONPath expression that selects the last member
of each team using the calculated array index "[(@.length - 1)]".

6
http://goessner.net/articles/JsonPath/

4

{ "project ":" Finance & Billing", "code ":"fin",

"teams ":[

[{"name ":"P. Russo"}, {"name ":"F. Underwood "}],

[{"name ":"R. Danton"}, {"name ":"E. Meetchum "}]] },

{ "project ":" Customer Relation", "code ":"crm",

"teams ":[

[{"name ":"R. Posner"}, {"name ":"H. Dunbar "}]] }

Listing 1.1. MongoDB collection "projects" containing two documents

<#TmLeader >

xrrxrrxrr:logicalSourcelogicalSourcelogicalSource [xrrxrrxrr:queryqueryquery "db.projects.find ({})"];

rrrrrr:subjectMapsubjectMapsubjectMap [rrrrrr:templatetemplatetemplate

"http :// example.org/project /{$.code }".];

rrrrrr:predicateObjectMappredicateObjectMappredicateObjectMap [

rrrrrr:predicatepredicatepredicate ex:teamLeader;

rrrrrr:objectMapobjectMapobjectMap [xrrxrrxrr:referencereferencereference

"$.teams [0 ,1][(@.length - 1)]. name"]].

Listing 1.2. xR2RML example mapping graph

3 Translating SPARQL Queries into Abstract Queries
under xR2RML Mappings

Various methods have been defined to translate SPARQL queries into another
query language, that are generally tailored to the expressiveness of the target
query language. Notably, the rich expressiveness of SQL and XQuery makes it
possible to define semantics-preserving SPARQL rewriting methods [8,2]. By
contrast, NoSQL databases typically trade off expressiveness for scalability and
fast retrieval of denormalised data. For instance, many of them hardly support
joins. Therefore, to envisage the translation of SPARQL queries in the general
case, we propose a two-step method. Firstly, a SPARQL query is rewritten into
a pivot abstract query under xR2RML mappings, independently of any tar-
get database (illustrated by step 1 in Figure 1). Secondly, the pivot query is
translated into concrete database queries based on the specific target database
capabilities and constraints. In this paper we focus on the application of the sec-
ond step to the specific case of MongoDB. The rest of this section summarizes
the first step to provide the reader with appropriate background. A complete
description is provided in [16].

The grammar of our pivot query language is depicted in Listing 1.3. Op-
erators inner join on, left outer join on and union are entailed by the
dependencies between graph patterns of the SPARQL query, and SPARQL filters
involving variables shared by several triple patterns result in a filter operator.
The computation of these operators shall be delegated to the target database if
it supports them (i.e. if the target query language has equivalent operators like

5

Fig. 1. Overview of the SPARQL-to-MongoDB Query Translation Process

<AbsQuery > ::=

<Query > | <Query > FILTERFILTERFILTER <filter > | <AtomicQuery >

<Query > ::=

<AbsQuery > INNERINNERINNER JOINJOINJOIN <AbsQuery > ONONON {v1 ,...vn} |

<AbsQuery > ASASAS child INNERINNERINNER JOINJOINJOIN <AbsQuery > ASASAS parent

ONONON child/<Ref > = parent/<Ref > |

<AbsQuery > LEFTLEFTLEFT OUTEROUTEROUTER JOINJOINJOIN <AbsQuery > ONONON {v1 ,...vn}|

<AbsQuery > UNIONUNIONUNION <AbsQuery >

<AtomicQuery > ::= {FromFromFrom , ProjectProjectProject , WhereWhereWhere}

Listing 1.3. Grammar of the Abstract Pivot Query Language

SQL), or to the query processing engine otherwise (e.g. MongoDB cannot pro-
cess joins). Each SPARQL triple pattern tp is translated into a union of atomic
abstract queries (<AtomicQuery>), under the set of xR2RML mappings likely to
generate triples matching tp. Components of an atomic abstract query are as
follows:

- From is the mapping’s logical source, i.e. the database query string (xrr:query)
and its optional iterator (rml:iterator).

- Project is the set of xR2RML references that must be projected, i.e. returned as
part of the query results. In SQL, projecting an xR2RML reference simply means
that the column name shall appear in the select clause. As to MongoDB, this
amounts to projecting the JSON fields mentioned in the JSONPath reference.

- Where is a conjunction of abstract conditions entailed by matching each term
of triple pattern tp with its corresponding term map in an xR2RML mapping:
the subject of tp is matched with the subject map of the mapping, the predicate
with the predicate map and the object with the object map. Three types of
condition may be created:
(i) a SPARQL variable in the triple pattern is turned into a not-null condition on
the xR2RML reference corresponding to that variable in the term map, denoted
by isNotNull(<xR2RML reference>);
(ii) A constant triple pattern term (IRI or literal) is turned into an equality
condition on the xR2RML reference corresponding to that RDF term in the
term map, denoted by equals(<xR2RML reference>, value);
(iii) A SPARQL filter condition f about a SPARQL variable is turned into a
filter condition, denoted by sparqlFilter(<xR2RML reference>, f).

6

Finally, an abstract query is optimized using classical query optimization
techniques such as the self-join elimination, self-union elimination or projection
pushing. In [16] we show that, during the optimization phase, a new type of
abstract condition may come up, isNull(<xR2RML reference>), in addition to
logical operators Or() and And() to combine conditions.

Running Example. We consider the following SPARQL query that aims to
retrieve projects in which “H. Dunbar” is a team leader.

SELECT ?proj WHERE {?proj ex:teamLeader "H. Dunbar".}
The triple pattern, denoted by tp, is translated into the atomic abstract query
{From, Project, Where}. From is the query in the logical source of mapping
<#TmLeader>, i.e. "db.projects.find({})". The detail of calculating Project is
out of the scope of this paper; let us just note that, since the values of variable
?proj (the subject of tp) shall be retrieved, only the subject map reference is
projected, i.e. the JSONPath expression “$.code”. The Where part is calculated
as follows:
- tp’s subject, variable ?proj, is matched with <#TmLeader>’s subject map; this
entails condition C1: isNotNull($.code).
- tp’s object, "H. Dunbar", is matched with <#TmLeader>’s object map; this entails
condition C2: equals($.teams[0,1][(@.length-1)].name, "H. Dunbar").
Thus, the SPARQL query is rewritten into the atomic abstract query below:

{ FromFromFrom: {"db.projects.find ({})"} ,

ProjectProjectProject: {$.code ASASAS ?proj},

WhereWhereWhere: {isNotNull($.code),
equals($.teams [0 ,1][(@.length -1)].name , "H. Dunbar ") }}

The JSON documents needed to answer this abstract query shall verify condition
C1 ∧C2. In the next section, we elaborate on the method that allows to rewrite
such conditions into concrete MongoDB queries.

4 Translating an Abstract Query into MongoDB Queries

In this section we briefly describe the MongoDB query language, then we define
rules to transform an atomic abstract query into an abstract representation of
a MongoDB query (step 2 in Figure 1). Finally, we define additional rules to
optimize and rewrite an abstract representation of a MongoDB query into a
union of executable MongoDB queries (step 3 in Figure 1).

4.1 The MongoDB Query Language

MongoDB provides a JSON-based declarative query language consisting of two
major mechanisms. The find query retrieves documents matching a set of con-
ditions. It takes a query and a projection parameters, and returns a cursor to
the matching documents. Optional modifiers amend the query to impose limits
and sort orders. Alternatively, the aggregate query allows for the definition of
processing pipelines: each document of a collection passes through the stages of

7

AND(<exp1>, <exp2>, ...) → andand$and:[<exp1>,<exp2 >,...]

OR(<exp1>, <exp2>, ...) → oror$or:[<exp1>,<exp2 >,...]

WHERE(<JavaScript exp >) → $where$where$where:"< JavaScript exp >"

ELEMMATCH(<exp1>,<exp2 >...) → $elemMatch$elemMatch$elemMatch :{<exp1>,<exp2 >...}

FIELD(p1) ... FIELD(pn) → "p1.pn":

SLICE(<exp >, <number >) → <exp >:{$slice$slice$slice:<number >}

COND(equals(v)) → eqeq$eq:v

COND(isNotNull) → $exists$exists$exists:truetruetrue , nene$ne:nullnullnull

COND(isNull) → eqeq$eq:nullnullnull

NOT_EXISTS(<exp >) → <exp >:{$exists$exists$exists:falsefalsefalse}

COMPARE(<exp >, <op >, <v>) → <exp >:{<op >:<v>}

NOT_SUPPORTED → ∅
CONDJS(equals(v)) → == v

CONDJS(isNotNull) → != nullnullnull

Listing 1.4. Abstract MongoDB query representation and translation to a concrete
query string

the pipeline, that allows for richer aggregate computations. As a first approach,
this work considers the find query method, hereafter called the MongoDB query
language. As an illustration let us consider the following query:

db.projects.find(

{"teams .0":{ $elemMatch :{" age ":{ $gt :30}}}} , {"code ":1})

It retrieves documents from collection “projects”, whose first team (array "teams"

at index 0) has at least one member (operator $elemMatch) over 30 years old (op-
erator $gt). The projection parameter, {"code":1}, states that only the "code"

field of each matching document must be returned.

The MongoDB documentation7 provides a rich description of the query lan-
guage, that however lacks formal semantics. Recently, attempts were made to
clarify this semantics while underlining some limitations and ambiguities: [5] fo-
cuses mainly on the aggregate query and ignores some of the operators we use
in our translation, such as $where, $elemMatch, $regex and $size. On the other
hand, [13] describes the find query, yet some restrictions on the operator $where

are not formalized. Hence, in [15] we specified the grammar of the subset of
the query language that we consider. We also defined an abstract representa-
tion of MongoDB queries, that allows for handy manipulation during the query
construction and optimization phases. Listing 1.4 details the constructs of this
representation and their equivalent concrete query string. In the compare clause
definition, <op> stands for one of the MongoDB comparison operators: $eq, $ne,
$lt, $lte, $gt, $gte, $size and $regex. The not supported clause helps keep
track of parts of the abstract query that cannot be translated into an equivalent
MongoDB query element; it shall be used when rewriting the abstract query into
a concrete query (section 4.3).

7
https://docs.mongodb.org/manual/tutorial/query-documents/

8

4.2 Query Translation Rules

Section 3 introduced a method that rewrites a SPARQL query into an abstract
query in which operators inner join, left outer join and union relate atomic
abstract queries of the form {From, Project, Where}. The latter are created by
matching each triple pattern with candidate xR2RML mappings. The Where
part consists of isNotNull, equals and sparqlFilter abstract conditions about
xR2RML references (JSONPath expressions in the case of MongoDB).

MongoDB does not support joins, while unions and nested queries are sup-
ported under strong restrictions, and comparisons are limited (e.g. a JSON field
can be compared to a literal but not to another field of the same document). Con-
sequently, operators inner join, left outer join, and to some extend union
and filter, shall be computed by the query processing engine. Conversely, the
abstract conditions of atomic queries can be translated into MongoDB queries8.

Given the subset of the MongoDB query language considered, the recursive
function trans in Table 2 translates an abstract condition on a JSONPath ex-
pression into a MongoDB find query using the formalism defined in Listing 1.4.
It consists of a set of rules applicable to a certain pattern. The JSONPath ex-
pression in argument is checked against each pattern in the order of the rules (0
to 9) until a match is found. We use the following notations:
- <JP>: denotes a possibly empty JSONPath expression.
- <JP:F>: denotes a non-empty JSONPath sequence of field names and array
indexes, e.g. .p.q.r, .p[10]["r"].
- <bool expr>: is a JavaScript expression that evaluates to a boolean.
- <num expr>: is a JavaScript expression that evaluates to a positive integer.

Rule R0 is the entry point of the translation process (JSONPath expressions
start with a ‘$’ character). Rule R1 is the termination point: when the JSONPath
expression has been fully parsed, the last created clause is the condition clause
cond, producing e.g. "$eq:value" for an equality condition, or "$exists:true,

$ne:null" for a not-null condition. Rules R2 to R8 deal with the different types
of JSONPath expressions. In case no rule matches, the translation fails and
rule R9 creates the not supported clause, that shall be dealt with later on.
Rule R4 deals with the translation of JavaScript filters on JSON arrays, where
character ‘@’ stands for each array element. It delegates their processing to
function transJS (described in [15]). For instance, the filter "[?(@.age>30)]" is
translated into the MongoDB sub-query "age":{$gt:30}.

Due to the space constraints, we do not go through the comprehensive justi-
fication of each rule in Table 2, however the interested reader is referred to [15].

Running Example. The Where part of the abstract query presented in section
3 comprises two conditions:
C1: isNotNull($.code), and
C2: equals($.teams[0,1][(@.length - 1)].name, "H. Dunbar").

Here are the rules applied at each step of the translation of C1 and C2.

8 In the current state of this work we do not consider SPARQL filter conditions.

9

Fig. 2. Translation of a condition on a JSONPath expression into an abstract Mon-
goDB query (function trans)

R0 trans($, <cond>) → ∅
trans($<JP>, <cond>) → trans(<JP>, <cond>)

R1 trans(∅, <cond>) → COND(<cond>)

R2 Field alternative (a) or array index alternative (b)
(a) trans(<JP:F>["p","q",...]<JP>, <cond>) →

OR(trans(<JP:F>.p<JP>, <cond>), trans(<JP:F>.q<JP>, <cond>), ...)
(b) trans(<JP:F>[i,j,...]<JP>, <cond>) →

OR(trans(<JP:F>.i<JP>, <cond>), trans(<JP:F>.j<JP>, <cond>), ...)

R3 Heading field alternative (a) or heading array index alternative (b)
(a) trans(["p","q",...]<JP>, <cond>) →

OR(trans(.p<JP>, <cond>), trans(.q<JP>, <cond>), ...)
(b) trans([i,j,...]<JP>, <cond>) →

OR(trans(.i<JP>, <cond>), trans(.j<JP>, <cond>), ...)

R4 JavaScript filter on array elements, e.g., $.p[?(@.q)].r
trans([?(<bool expr>)]<JP>, <cond>) →
ELEMMATCH(trans(<JP>, <cond>), transJS(<bool expr>))

R5 Array slice: n last elements (a) or n first elements (b)
(a) trans(<JP:F>[-<start>:]<JP>, <cond>) →

trans(<JP:F>.*<JP>, <cond>) SLICE(<JP:F>, -<start>)
(b) trans(<JP:F>[:<end>]<JP>, <cond>) →

trans(<JP:F>.*<JP>, <cond>) SLICE(<JP:F>, <end>)
trans(<JP:F>[0:<end>]<JP>, <cond>) →
trans(<JP:F>.*<JP>, <cond>) SLICE(<JP:F>, <end>)

R6 Calculated array index, e.g., $.p[(@.length - 1)].q

(a) trans(<JP1>[(<num expr>)]<JP2>, <cond>) → NOT SUPPORTED
if <JP1> contains a wildcard or a JavaScript filter expression

(b) trans(<JP:F>[(<num expr>)], <cond>) → AND(
EXISTS(<JP:F>),
WHERE(‘this<JP:F>[replaceAt(“this<JP:F>”, <num expr>)] CONDJS(<cond>’)))

(c) trans(<JP:F1>[(<num expr>)]<JP:F2>, <cond>) → AND(
EXISTS(<JP:F1>),
WHERE(‘this<JP:F1>[replaceAt(“this<JP:F1>”, <num expr>)]<JP:F2>

CONDJS(<cond>’)))

R7 Heading wildcard
(a) trans(.*<JP>, <cond>) → ELEMMATCH(trans(<JP>, <cond>))
(b) trans([*]<JP>, <cond>) → ELEMMATCH(trans(<JP>, <cond>))

R8 Heading field name or array index
(a) trans(.p<JP>, <cond>) → FIELD(p) trans(<JP>, <cond>)
(b) trans([“p”]<JP>, <cond>) → FIELD(p) trans(<JP>, <cond>)
(c) trans([i]<JP>, <cond>) → FIELD(i) trans(<JP>, <cond>)

R9 No other rule matched, expression <JP> is not supported
trans(<JP>, <cond>) → NOT SUPPORTED

10

M1 ← trans(C1) = trans($.code, isNotNull):
R0: M1 ← trans(.code, isNotNull)
R8 then R1: M1 ← field(code) cond(isNotNull)

M2 ← trans(C2) =
trans($.teams[0,1][(@.length-1)].name, equals("H. Dunbar"))

R0: M2 ← trans(.teams[0,1][(@.length-1)].name, equals("H. Dunbar"))

R2 splits the alternative "[0,1]" into two members of an or clause:
M2 ← or(trans(teams.0.[(@.length-1)].name, equals("H. Dunbar")),

trans(teams.1.[(@.length-1)].name, equals("H. Dunbar"))).

R6(c) processes the calculated array index "(@.length-1)" in each OR member:
M2 ← or(and(exists(.teams.0),

where(‘this.teams[0][this.teams[0].length-1)].name=="H. Dunbar"’)),
and(exists(.teams.1),
where(‘this.teams[1][this.teams[1].length-1)].name=="H. Dunbar"’)))

4.3 Rewriting of the abstract MongoDB query representation into
a concrete MongoDB query

Rules R0 to R9 translate a condition on a JSONPath expression into an abstract
MongoDB query. Yet, several potential issues hinder the rewriting into a concrete
query: (i) a not supported clause may indicate that a part of the JSONPath
expression could not be translated into an equivalent MongoDB operator; (ii)
a where clause may be nested beneath a sequence of and and/or or clauses
although the MongoDB $where operator is valid only in the top-level query;
(iii) unnecessary complexity such as nested ors, nested ands, etc., may hamper
performances. Those issues are addressed by two sets of rewriting rules, O1 to
O5 and W1 to W6. They require the addition of the union clause to those
in Listing 1.4. union is semantically equivalent to the or clause but, whereas
ors are processed by the MongoDB database, unions shall be computed by the
query processing engine.

Query Optimization. Rules O1 to O5 in Table 3 perform several query op-
timizations. Rules O1 to O4 address issue (iii) by flattening nested or, and
and union clauses, and merging sibling wheres. Rule O5 addresses issue (i) by
removing the clauses of type not supported while still making sure that the
query returns all the correct answers:
- O5(a): If a not supported clause occurs in an and clause, it is simply re-
moved. Let C1, ...Cn be any clauses and N be a not supported clause. Since
C1 ∧ ... ∧Cn ⊇ C1 ∧ ... ∧Cn ∧N , the rewriting widens the condition. Hence, all
matching documents are returned. However, non-matching documents may be
returned too, that shall be ruled out later on.
- O5(b): A logical and implicitly applies to members of an elemmatch clause.
Therefore, removing the not supported has the same effect as in O5(a).
- O5(c) and (d): A not supported is managed differently in an or or union
clause. Since C1 ∨ ... ∨ Cn ⊆ C1∨...∨Cn∨N , removing N would return a subset
of the matching documents. Instead, we replace the whole or or union clause

11

Fig. 3. Optimization of an abstract MongoDB query
O1 Flatten nested AND, OR and UNION clauses:

and(c1,... cn, and(d1,... dm,)) → and(c1,... cn, d1,... dm)
or(c1,... cn, or(d1,... dm,)) → or(c1,... cn, d1,... dm)
union(c1,... cn, union(d1,... dm,)) → union(c1,... cn, d1,... dm)

O2 Merge ELEMMATCH with nested AND clauses:
elemmatch(c1,... cn, and(d1,... dm,)) → elemmatch(c1,... cn, d1,... dm)

O3 Group sibling WHERE clauses:
or(..., where("w1"), where("w2")) → or(..., where("(w1) ‖ (w2)"))
and (..., where("w1”), where("w2")) → and(..., where("(w1) && (w2)"))
union(..., where("w1"), where("w2")) → union(..., where("(w1) ‖ (w2)"))

O4 Replace AND, OR or UNION clauses of one term with the term itself.

O5 Remove NOT SUPPORTED clauses:
(a) and(c1,... cn, not supported) → and(c1,... cn)
(b) elemmatch(c1,... cn, not supported) → elemmatch(c1,... cn)
(c) or(c1,... cn, not supported) → not supported
(d) union(c1,... cn, not supported) → not supported
(e) field(...)... field(...) not supported → not supported

Fig. 4. Pulling up WHERE clauses to the top-level query
W1 or(c1,...cn, w) → union(or(c1,...cn), w)

W2 or(c1,...cn, and(d1,...dm, w)) → union(or(c1,...cn), and(d1,...dm, w))

W3 and(c1,...cn, w) → (c1,...cn, w)
if the AND clause is a top-level query object or under a UNION clause.

W4 and(c1,...cn, or(d1,...dm, w)) →
union(and(c1,...cn, or(d1,...dm)), and(c1,...cn, w))

W5 and(c1,...cn, union(d1,...dm)) →
union(and(c1,...cn, d1),... and(c1,...cn, dm))

W6 or(c1,...cn, union(d1,...dm)) → union(or(c1,...cn), d1, ...dm))

with a not supported clause. This way, the not supported issue is raised up
to the parent clause and shall be managed at the next iteration. Iteratively, the
not supported clause is raised up until it is eventually removed (cases and
and elemmatch above), or it ends up in the top-level query. The latter is the
worst case in which the query shall retrieve all documents.

- O5(e): Similarly to O5(c), a sequence of fields followed by a not supported
clause must be replaced with a not supported clause to raise up the issue to
the parent clause.

Pulling up WHERE Clauses. By construction, rule R6 ensures that where
clauses cannot be nested in an elemmatch, but they may show in and and or
clauses. Besides, rules O1 to O4 flatten nested or and and clauses, and merge
sibling where clauses. Therefore, a where clause may be either in the top-level
query (in this case the query is executable) or it may show in one of the following
patterns (where W stands for a where clause):

12

OR(...,W,...), AND(...,W,...), OR(..., AND(...,W,...), ...), AND(..., OR(...,W,...), ...).
In such patterns, rules W1 to W6 (Table 4) address issue (ii) by “pulling up”
where clauses into the top-level query. Here is an insight into the approach:

- Since OR(C, W) is not a valid MongoDB query, it is replaced with query UNION(C,

W) which has the same semantics: C and W are evaluated separately against the
database, and the union is computed later on by the query processing engine.

- AND(C,OR(D,W)) is rewritten into OR(AND(C,D), AND(C,W)) and the or is replaced
with a union: UNION(AND(C,D), AND(C,W)). Since an logical and implicitly applies
to the top-level terms, we can finally rewrite the query into UNION((C,D), (C,W))

which is valid since W now shows in a top-level query.

Rewriting rules W1 to W6 are a generalization of these examples. They ensure
that a query containing a nested where can always be rewritten into a union of
queries wherein the where shows only in a top-level query. Hence we formulate
Theorem 1, for which a proof is provided in [15].

Theorem 1. Let C be an equality or not-null condition on a JSONPath expres-
sion. Let Q = (Q1 ... Qn) be the abstract MongoDB query produced by trans(C).
Rewritability: It is always possible to rewrite Q into a query Q

′
= union(Q

′

1,
.., Q

′

m) such that ∀i ∈ [1,m] Q
′

i is a valid MongoDB query, i.e. Q
′

i does not
contain any not supported clause, and a where clause only shows at the
top-level of Q

′

i.

Completeness: Q
′

retrieves all the documents matching condition C. If Q con-
tains at least one not supported clause, then Q

′
may retrieve additional doc-

uments that do not match condition C.

Running Example. For the sake of readability, below we denote the JavaScript
conditions in M1 and M2 as follows: JScond0 stands for
this.teams[0][this.teams[0].length-1)].name=="H. Dunbar", and JScond1 for
this.teams[1][this.teams[1].length-1)].name=="H. Dunbar".

In section 4.2 we have translated conditions C1 and C2 into abstract Mon-
goDB queries M1 and M2. The MongoDB documents needed to answer the
SPARQL query shall be retrieved by the query and(m1, m2) =

and(field(code) cond(isNotNull), or(
and(exists(.teams.0), where(‘JScond0’))
and(exists(.teams.1), where(‘JScond1’))))

Applying subsequently rules W2 and O4 replaces the inner or with a union:
and(field(code) cond(isNotNull), union(

and(exists(.teams.0), where(‘JScond0’))
and(exists(.teams.1), where(‘JScond1’))))

Rule W5 pulls up the union clause:
union(

and(field(code) cond(isNotNull), and(exists(.teams.0), where(‘JScond0’))),
and(field(code) cond(isNotNull), and(exists(.teams.1), where(‘JScond1’))))

Finally, O1 merges the nested ands and W3 removes the resulting top-level and:

13

union(
(field(code) cond(isNotNull), exists(.teams.0), where(‘JScond0’)),
(field(code) cond(isNotNull), exists(.teams.1), where(‘JScond1’)))

The abstract query can now be rewritten into a union of two valid queries:
{"code":{$exists:true, $ne:null}, "teams.0":{$exists:true},

$where:‘this.teams[0][this.teams[0].length-1)].name == "H. Dunbar"’}
{"code":{$exists:true, $ne:null}, "teams.1":{$exists:true},

$where:‘this.teams[1][this.teams[1].length-1)].name == "H. Dunbar"’}
The first query retrieves the document below, whereas the second query returns
no document.

{ "project ":" Customer Relation", "code ":"crm",

"teams ":[[{"name ":"R. Posner"}, {"name ":"H. Dunbar "}]]}

Finally, the application of triples map <#TmLeader> to the query result produces
one RDF triple that matches the triple pattern tp:
<http://example.org/project/crm> ex:teamLeader "H. Dunbar".

5 Discussion, Conclusion and Perspectives

In this document we proposed a method to access arbitrary MongoDB documents
with SPARQL. This relies on custom mappings described in the xR2RML map-
ping language which allows for the reuse of existing domain ontologies. First, we
introduced a method to rewrite a SPARQL query into a pivot abstract query in-
dependent of any target database, under xR2RML mappings. Then, we devised
a set of rules to translate this pivot query into an abstract representation of a
MongoDB query, and we showed that the latter can always be rewritten into a
union of concrete MongoDB queries that shall return all the documents required
to answer the SPARQL query.

Due to the limited expressiveness of the MongoDB find queries, some JSON-
Path expressions cannot be translated into equivalent MongoDB queries. Conse-
quently, the query translation method cannot guarantee that query semantics be
preserved. Yet, we ensure that rewritten queries retrieve all matching documents,
possibly with additional non-matching ones. The RDF triples thus extracted are
subsequently filtered by evaluating the original SPARQL query. This preserves
semantics at the cost of an extra SPARQL query evaluation.

In a recent work, Botoeva et al. proposed a generalization of the OBDA prin-
ciples to support MongoDB [6]. Both approaches have similarities and discrep-
ancies that we outline below. Botoeva et al. derive a set of type constraints (lit-
eral, object, array) from the mapping assertions, called the MongoDB database
schema. Then, a relational view over the database is defined with respect to that
schema, notably by flattening array fields. A SPARQL query is rewritten into a
relational algebra (RA) query, and RA expressions over the relational view are
translated into MongoDB aggregate queries. Similarly, we translate a SPARQL
query into an abstract representation (that is not the relational algebra) un-
der xR2RML mappings. The mappings are quite similar in both approaches

14

although xR2RML is slightly more flexible: class names (in triples ?x rdf:type

A) and predicates can be built from database values whereas they are fixed in [6],
and xR2RML allows to turn an array field into an RDF collection or container.
To deal with the tree form of JSON documents we use JSONPath expressions.
This avoids the definition of a relational view over the database, but this also
comes with additional complexity in the translation process. Finally, [6] pro-
duces MongoDB aggregate queries, with the advantage that a SPARQL 1.0 query
may be translated into a single target query, thus delegating all the processing
to MongoDB. Yet, in practice, some aggregate queries may be very inefficient,
hence the need to decompose RA queries into sub-queries, as underlined by the
authors. Our approach produces find queries that are less expressive but whose
performance is easier to anticipate, thus putting a higher burden on the query
processing engine (joins, some unions and filtering). In the future, it would be
interesting to characterise mappings with respect to the type of query that shall
perform best (single vs. multiple separate queries, find vs. aggregate). A lead
may be to involve query plan optimization logics such as the bind join [12] and
the join reordering methods applied in the context of distributed SPARQL query
engines [20].

More generally, the NoSQL trend pragmatically gave up on properties such
as consistency and rich query features, as a trade-off to high throughput, high
availability and horizontal elasticity. Therefore, it is likely that the hurdles we
encountered with MongoDB shall occur with other NoSQL databases.

Implementation and evaluation. To validate our approach we have de-
veloped a prototype implementation9 available under the Apache 2 open source
licence. Further developments on query optimization are on-going, and in the
short-term we intend to run performance evaluations. Besides, we are work-
ing on two real-life use cases. Firstly, in the context of the Zoomathia research
project10, we proposed to represent a taxonomic reference, designed to support
studies in Conservation Biology, as a SKOS thesaurus [7]. It is stored in a Mon-
goDB database, and we are in the process of testing the SPARQL access to
that thesaurus using our prototype. Secondly, we are having discussions with
researchers in the fields of ecology and agronomy. They intend to explore the
added value of Semantic Web technologies using a large MongoDB database of
phenotype information. This context would be a significant and realistic use case
of our method and prototype.

References

1. M. Arenas, A. Bertails, E. Prud’hommeaux, and J. Sequeda. A Direct Mapping of
Relational Data to RDF, 2012.

2. N. Bikakis, C. Tsinaraki, I. Stavrakantonakis, N. Gioldasis, and S. Christodoulakis.
The SPARQL2XQuery interoperability framework. WWW, 18(2):403–490, 2015.

9
https://github.com/frmichel/morph-xr2rml

10
http://www.cepam.cnrs.fr/zoomathia

15

3. S. Bischof, S. Decker, T. Krennwallner, N. Lopes, and A. Polleres. Mapping between
RDF and XML with XSPARQL. J. Data Semantics, 1(3):147–185, 2012.

4. C. Bizer and R. Cyganiak. D2R server - Publishing Relational Databases on the
Semantic Web. In ISWC, 2006.

5. E. Botoeva, D. Calvanese, B. Cogrel, M. Rezk, and G. Xiao. A formal presentation
of MongoDB (Extended version). Technical report, 2016.

6. E. Botoeva, D. Calvanese, B. Cogrel, M. Rezk, and G. Xiao. OBDA beyond rela-
tional DBs: A study for MongoDB. In Int. Ws. DL 2016, volume 1577, 2016.

7. C. Callou, F. Michel, C. Faron-Zucker, C. Martin, and J. Montagnat. Towards
a Shared Reference Thesaurus for Studies on History of Zoology, Archaeozoology
and Conservation Biology. In SW For Scientific Heritage, Ws. of ESWC, 2015.

8. A. Chebotko, S. Lu, and F. Fotouhi. Semantics preserving SPARQL-to-SQL trans-
lation. Data & Knowledge Engineering, 68(10):973–1000, 2009.

9. S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB to RDF mapping language,
2012.

10. A. Dimou, M. Vander Sande, P. Colpaert, R. Verborgh, E. Mannens, and R. Van de
Walle. RML: A generic language for integrated RDF mappings of heterogeneous
data. In LDOW, 2014.

11. B. Elliott, E. Cheng, C. Thomas-Ogbuji, and Z. M. Ozsoyoglu. A complete trans-
lation from SPARQL into efficient SQL. In IDEAS’09, pages 31–42. ACM, 2009.

12. L. Haas, D. Kossmann, E. Wimmers, and J. Yang. Optimizing Queries across
Diverse Data Sources. In VLDB, pages 276–285, 1997.

13. A. Husson. Une sémantique statique pour MongoDB. In 25th Journées Franco-
phones des Langages Applicatifs (JFLA), pages 77–92, 2014.

14. F. Michel, L. Djimenou, C. Faron-Zucker, and J. Montagnat. Translation of Rela-
tional and Non-Relational Databases into RDF with xR2RML. In WebIST, pages
443–454, 2015.

15. F. Michel, C. Faron-Zucker, and J. Montagnat. Mapping-based SPARQL access
to a MongoDB database. Technical report, CNRS, 2015. https://hal.archives-
ouvertes.fr/hal-01245883.

16. F. Michel, C. Faron-Zucker, and J. Montagnat. A Generic Mapping-Based Query
Translation from SPARQL to Various Target Database Query Languages. In We-
bIST, 2016.

17. F. Priyatna, O. Corcho, and J. Sequeda. Formalisation and experiences of R2RML-
based SPARQL to SQL query translation using Morph. In WWW, 2014.

18. M. Rodŕıguez-Muro, R. Kontchakov, and M. Zakharyaschev. Ontology-based data
access: Ontop of databases. In The Semantic Web-ISWC 2013. Springer, 2013.

19. M. Rodŕıguez-Muro and M. Rezk. Efficient SPARQL-to-SQL with R2RML map-
pings. J. Web Semantics, 33:141–169, 2015.

20. A. Schwarte, P. Haase, K. Hose, R. Schenkel, and M. Schmidt. Fedx: Optimization
techniques for federated query processing on Linked Data. In ISWC. 2011.

21. J. F. Sequeda and D. P. Miranker. Ultrawrap: SPARQL execution on relational
data. J. Web Semantics, 22:19–39, 2013.

22. D. Tomaszuk. Document-oriented triplestore based on RDF/JSON. In Logic,
philosophy and computer science, pages 125–140. University of Bialystok, 2010.

23. J. Unbehauen, C. Stadler, and S. Auer. Accessing relational data on the web with
sparqlmap. In Semantic Technology, pages 65–80. Springer, 2013.

	A Mapping-based Method to Query MongoDB Documents with SPARQL
	Introduction
	The xR2RML Mapping Language
	Translating SPARQL Queries into Abstract Queries under xR2RML Mappings
	Translating an Abstract Query into MongoDB Queries
	The MongoDB Query Language
	Query Translation Rules
	Rewriting of the abstract MongoDB query representation into a concrete MongoDB query

	Discussion, Conclusion and Perspectives

