

MA

PANOR

JOURNÉES DOCTORALES DES 22-24 JUIN 2016

Morphological Processing of Stereoscopic Image Superimpositions for Disparity Map Estimation

Jean-Charles Bricola, Michel Bilodeau & Serge Beucher

This work has been performed in the project PANORAMA, co-funded by grants from Belgium, Italy, France, the Netherlands, and the United Kingdom, and the ENIAC Joint Undertaking.

Correspondence Establishment & Superimpositions of Stereo Images

THE CROSS-CHECKING CRITERION

The initial disparity map must take the occlusion phenomenon into account.

Symbol Description

- x_1 Pixel abscissa with respect to the left view
- x_r Pixel abscissa with respect to the right view
- W Volume encoding the superimpositions between I_{l} and $I_{\rm r},$ such that
- $W: (x_{l}, x_{r}, y) \mapsto W[x_{l}, x_{r}, y] = |I_{l}[x_{l}, y] I_{r}[x_{r}, y]| = D[x_{l}, y, x_{l} x_{r}]$

Cross-checking ensures that disparity measures are synchronised between left and right views

$$d = x_1 - x_r$$

$$\operatorname{crossChecking}[x_1, y, d] = \left(x_r = \arg\min_x W[x_1, x, y]\right) \wedge \left(x_1 = \arg\min_x W[x, x_r, y]\right)$$

- → Among all the pixels belonging to the right view's scanline of ordinate *y*, it is (x_r, y) which is best superimposed with (x_l, y) in the left view <u>and</u> among all the pixels belonging to the left view's scanline of ordinate *y*, it is (x_l, y) which is best superimposed with (x_r, y) in the right view.
- → Points occluded in one of the images of the stereo pair should not satisfy « cross-checking »

[Fua, 1993]

Suppose we wish to determine which voxels may be used, so that their costs are aggregated to the voxel of coordinates (x,y,d). If (x,y) belongs to region \mathbf{R}_i in the left view, and (x-d,y) belongs to region \mathbf{R}_i in the right view, then :

$$\begin{split} \mathbf{S}_{(x,y,d)} &= \{ (\mathbf{d}_x, \mathbf{d}_y) \mid (x + d_x, y + d_y) \in \mathbf{R}_i \land (x + d_x - d, y + d_y) \in \mathbf{R}_j \} \\ \mathbf{D}[x, y, d] &\leftarrow \frac{1}{|\mathbf{S}_{(x,y,d)}|} \sum_{(d_x, d_y) \in \mathbf{S}_{(x,y,d)}} \mathbf{D}[x + d_x, y + d_y, d] \end{split}$$

TOWARDS A MORE ELABORATE AGGREGATION SYSTEM

- 1. Up to now, the aggregation is controlled by a **patch of limited scope**.
 - ***** Insufficient in texture-less areas
 - **×** Induces errors and intra-regional inconsistencies
- 2. Furthermore, the filtering operates independently on each disparity plane. Therefore, we assumed that the image areas covered by the patches are **fronto-parallel** to the cameras.
 - ***** Little imprecisions as long as patch size is small
 - ***** Problematic for tilted regions

- 17 -

Cost Aggregation

COST AGGREGATION (FRONTO-PARALLEL)

Consider the horizontal *moving average*, in the left direction :

$$\tilde{\mathbf{D}}_{n}^{(L)}[x, y, d] = \frac{1}{n+1} \sum_{i=0}^{n} \mathbf{D}[x-i, y, d]$$

We split the summation term as follows :

$$\begin{split} \tilde{\mathbf{D}}_{n}^{(L)}[\mathbf{x},\mathbf{y},\mathbf{d}] &= \frac{1}{n+1} \left(\mathbf{D}[\mathbf{x},\mathbf{y},\mathbf{d}] + \sum_{i=1}^{n} \mathbf{D}[\mathbf{x}-i,\mathbf{y},\mathbf{d}] \right) \\ I \text{ set } i = j+1 &= \frac{1}{n+1} \left(\mathbf{D}[\mathbf{x},\mathbf{y},\mathbf{d}] + \sum_{j=0}^{n-1} \mathbf{D}[(\mathbf{x}-1)-j,\mathbf{y},\mathbf{d}] \right) \\ &= \frac{1}{n+1} \left(\mathbf{D}[\mathbf{x},\mathbf{y},\mathbf{d}] + \mathbf{n} \cdot \tilde{\mathbf{D}}_{n-1}^{(L)}[\mathbf{x}-1,\mathbf{y},\mathbf{d}] \right) \\ I \text{ express the shift as } &= \frac{1}{n+1} \left(\mathbf{D}[\mathbf{x},\mathbf{y},\mathbf{d}] + \mathbf{n} \cdot \varepsilon_{\mathbf{B}_{L}} \left(\tilde{\mathbf{D}}_{n-1}^{(L)} \right) [\mathbf{x},\mathbf{y},\mathbf{d}] \right) \\ \tilde{\mathbf{D}}_{n}^{(L)} &= \frac{1}{n+1} \left(\mathbf{D} + \mathbf{n} \cdot \varepsilon_{\mathbf{B}_{L}} \left(\tilde{\mathbf{D}}_{n-1}^{(L)} \right) \right), \forall n \ge 1 \end{split}$$

With structuring element : $B_L = \{(-1, 0, 0)\}$

- 19 -

COST AGGREGATION & STOPPING CRITERION

Aggregation constrained by segmentation

We must *interrupt the aggregation* if we observe a change of region. How to proceed?

Data :

<u>Superimposition volume of partitions</u> : \mathcal{L}_V

$$\mathcal{L}_{\mathbf{V}}[\mathbf{x},\mathbf{y},\mathbf{d}] = \mathcal{L}_{\mathbf{l}}[\mathbf{x},\mathbf{y}] + \mathcal{L}_{\mathbf{r}}[\mathbf{x}-\mathbf{d},\mathbf{y}] \cdot \max_{\mathbf{x},\mathbf{y}} \mathcal{L}_{\mathbf{l}}[\mathbf{x},\mathbf{y}]$$

- 21 -

COMBINING DIRECTIONAL AGGREGATIONS

Aggregation directions are expressed with respect to the image plane.

The following directions are considered :

- Horizontal (left and right)
- Vertical (up and down)

The algorithm combines the directional aggregations as follows:

Note :

If there is no disparity variation along the aggregation paths,

then this algorithm implements a 2D moving average (constrained by segmentations), by exploiting the linear separability of the filter.

<section-header><section-header><section-header><section-header><image><image>

BEHAVIOUR OF THE DIFFUSION BLOCK FOR DIFFERENT PARAMETERS

Motorcycle (Middlebury 2014 database)

- 27 -

AustraliaP – Initial image

DISPARITY MAP CLUSTERING

AustraliaP – Bad clusters cover low gradient areas

- 35 -

FILTERING WITH DISPARITY MAP CLUSTERS

FATTENING EFFECT REMOVAL

Algorithm's main principles

- 1. Compute the following elements :
 - (a) Disparity clusters on a regional basis
 - (b) The first percentiles of the disparity measures available in each region. In our experiments, we go up to the 30^{th} percentile.
- 2. In each region, mark the pixels having a disparity measure equal to one of the percentiles computed for the considered region.
- 3. Reconstruct clusters holding marked pixels, with their disparities.

MULTI-SCALE AGGREGATION

Some observations :

- We now have filtered disparity maps, but relatively sparse.
- The density of measures found in these disparity maps is about 45 % on average.
- Above *n*=25 pixels, augmenting the aggregation scope neither increases the density of the measures, nor improves the results.
- A small aggregation scope leads to precise measures, but also very gross errors.
- A large aggregation scope reduces the number of gross errors, but yields more approximate disparity measures.

We propose a multi-scale extension in two steps :

- A « *coarse-to-fine* » refinement, which yields precise disparity measures, while preserving the regional consistency observed at the coarse level of aggregation.
- A « *fine-to-coarse* » densification, which leaves only the pixels found in occluded areas, without a disparity measure.

- 39 -

We impose a constraint on the filtered disparity space volume which, at iteration i+1, is:

$$\mathbf{D}_{\mathsf{OUT}}[x, y, d] \leftarrow \begin{cases} \mathbf{D}_{\mathsf{OUT}}[x, y, d] & \text{if } |\mathfrak{D}^{(i)}[x, y] - d| < \Delta^{(i)} \\ +\infty & \text{otherwise} \end{cases}$$

- 40 -

Adirondack (Refinement, *n*=15)

Adirondack (Refinement, *n*=5)

Evaluation

- 59 -

MIDDLEBURY 2014 BENCHMARK

Online evaluation system : http://vision.middlebury.edu/stereo

- 30 evaluated stereo pairs, with **<u>resolution choice</u>** :
 - → Full [F] 2872 x 1984 pixels
 - → Half [H] 1436 x 992 pixels
 - → Quarter [Q] 718 x 496 pixels (chosen)
- Wide-baseline (200 levels of disparity for resolution [Q], 800 levels for resolution [F])
- Accuracy measures (examples) :
 - → « Bad pixels 4 » : percentage of pixels with a disparity measure differing from 4 pixels or more, with respect to the ground truth at full resolution. At quarter resolution, the maximum disparity error threshold equals 1 pixel.
 - → « Average error » : the mean average error compared to the ground truth. (expressed according to resolution [F])
 - → « RMS error » : the root-mean-square error compared to the ground truth. (expressed according to resolution [F])
- Evaluation performed for our sparse and full disparity maps.
- Important: the level of densification must be taken into account for the sparse evaluation.

MIDDLEBURY 2014 BENCHMARK Sparse results (compared to 44 methods) **MPSV** = Diffusion + Filtering, **MPSVe1** = Multi-scale diffusion + Filtering Set: training dense training sparse Metric: bad 0.5 bad 1.0 bad 2.0 bad 4.0 avgerr rms A50 A90 A95 A99 time time/MP time/GD Mask: <u>nonocc</u> all plot selected 🗌 show invalid Reset sort Adiron Artt. Jadepl Motor Motor E PianoL Piges Playrm Playt Date Avg Teddy Vintge Name MP: 2.7 MP: 5.1 nd: 256 nd: 76 n0 im1 GT n0 im GT nonocc nonoccc nonocc no cc no ₽₽ ₽₽ **① ① ① ①** 🔁 F 0.191 0.041 0.231 0.051 0.481 0.511 0.201 0.251 0.101 0.161 0.121 0.141 0.071 0.321 0.031 0.091 09/28/15 🗌 R-NCC F 2.35² 2.68⁹ 1.86⁴ 2.80⁵ 2.11² 1.88³ 2.31³ 2.82⁶ 2.36⁴ 2.45³ 4.66² 1.63² 2.47⁵ 3.25² 1.60⁵ 2.15³ 04/03/16 🗍 ICSG F 2.46³ 1.75⁵ 1.59³ 1.15² 2.50⁴ 2.00⁴ 2.16² 1.75³ 2.17³ 2.40² 13.0¹⁴ 1.79³ 1.22² 7.62⁴ 1.38⁴ 1.33² 07/28/14 SGM R H 2.544 1.654 2.235 1.313 2.313 1.642 3.846 1.292 2.364 2.464 6.354 2.654 2.053 8.955 0.822 2.754 10/07/14 DR 03/15/16 👿 MPSV 🔁 Q 3.465 2.256 1.342 1.434 4.7810 4.37 10 3.325 2.304 1.792 4.706 15.518 4.279 2.977 5.303 1.113 3.446 H 3.95⁶ 2.43⁷ 2.86⁷ 4.03⁸ 2.55⁵ 2.40⁶ 5.38¹⁰ 4.32⁸ 3.10⁶ 4.49⁵ 6.57⁵ 3.48⁵ 2.88⁶ 14.5¹² 2.06⁷ 6.58¹ 12/18/15 🗌 INTS 09/18/14 🗌 SNCC □ ➡ H 4.177 3.50 12 4.99 11 3.377 4.358 3.70 8 3.054 2.68 5 3.96 9 5.01 8 10.38 3.968 2.998 9.696 2.97 10 3.01 5 ☆ H 4.438 3.65 13 3.118 3.126 3.877 3.317 4.217 3.447 3.908 4.887 16.623 3.817 3.199 12.99 2.448 3.707 07/28/14 SGM 04/17/15 🗌 TMAP 07/28/14 Cens5 🔁 H 5.85 10 5.05 17 5.65 13 5.60 11 6.08 16 5.44 14 4.49 8 4.36 9 5.66 11 6.41 10 16.3 21 4.70 10 4.48 11 12.6 8 3.93 11 4.34 8 11/12/14 🗌 LCU 🛛 🔁 Q 6.91 11 2.62 8 6.52 14 7.39 14 4.70 9 4.87 12 10.2 14 7.77 11 6.45 13 8.73 12 10.3 9 6.77 13 3.84 10 24.5 19 2.75 9 9.06 1 F 7.02 12 5.62 20 2.85 6 4.58 9 5.55 13 4.72 11 8.97 12 10.2 13 3.78 7 8.13 11 12.8 12 6.31 11 9.79 27 20.0 14 2.00 6 16.12 02/18/16 LS-ELAS 07/25/14 🗌 SGM 🔁 Q 7.67 13 4.72 16 7.42 16 6.62 13 6.24 17 5.72 15 9.64 13 8.18 12 7.02 16 9.26 13 15.3 17 8.24 16 6.12 13 18.9 13 4.27 13 8.14 1 07/25/14 🗌 SGBM1 F 9.09 14 8.66 27 7.45 17 6.09 12 6.72 19 10.3 29 12.7 19 10.9 14 8.29 17 9.53 14 20.9 27 7.79 14 6.87 16 13.1 10 5.47 16 12.3 1 6/09/16 📃 MPSVe1 🔁 Q 10.0 15 8.73 28 5.50 12 7.47 15 4.90 11 4.01 9 11.3 16 11.6 15 6.12 12 13.3 18 35.7 38 9.23 17 8.59 21 35.7 32 4.11 12 13.9 1

- 61 -

MIDDLEBURY 2014 BENCHMARK

Sparse results (compared to 44 methods)

MPSV = Diffusion + Filtering, MPSVe1 = Multi-scale diffusion + Filtering

Set:	Set: training dense training sparse																	
Metric: bad 0.5 bad 1.0 bad 2.0 bad 4.0 avgerr rms A50 A90 A95 A99 time time/MP time/GD																		
Mask: <u>nonocc</u> all																		
□ plot	selected	show in	valid	Res	et sor	t												
Date	avgerr (pixels) Name	Res		Adiron	ArtL	ladepi	Motor	MotorE	Piano	PianoL	Pipes	Plavrm	Playt	PlaytP	Recvc	Shelvs	Teddy	Vintge
			-	MP: 5.7	MP: 1.5	MP: 5.2	MP: 5.9	MP: 5.9	MP: 5.4	MP: 5.4	MP: 5.7	MP: 5.3	MP: 5	MP: 5	MP: 5.6	MP: 5.9	MP: 2.7	MP: 5.5
				im0 im1														
				nonocc														
- む	① ①	① ①	₽Û	心心	① ①	①①	①①	- ÛÛ	①①	①①	① ①	₽₽	①①	①①	①①	① ①	① ①	① ①
09/28/15	R-NCC	₹ F	0.59 ¹	0.41 ¹	0.66 ¹	0.62 1	0.76 ¹	0.89 1	0.51 ¹	0.60 ¹	0.65 1	0.68 1	0.41 ¹	0.42 ¹	0.50 ¹	0.78 ¹	0.45 1	0.46 ¹
10/07/14	IDR IDR	ъ	1.74 ²	1.05 3	1.45 3	2.15 ²	1.16 2	1.05 ²	1.414	1.06 ²	2.03 3	1.30 ²	10.5 20	1.16 3	0.95 ³	2.70 3	0.71 ²	1.805
12/18/15		ъ	1.99 ³	1.11 5	1.935	4.715	1.494	1.55 4	1.55 5	1.69 5	2.524	1.66 4	3.17 ³	1.344	1.034	4.188	1.014	2.587
07/28/14	SGM	₿ F	2.064	1.79 10	1.29 ²	2.984	1.383	1.27 3	1.28 ²	1.60 4	1.75 ²	1.57 3	15.4 31	1.02 2	0.94 ²	2.48 ²	0.91 ³	1.19 ²
07/28/14	SGM	ъ	2.735	1.66 9	2.077	5.246	1.905	1.78 5	1.586	1.89 6	2.76 6	2.03 5	17.1 37	1.50 5	1.22 5	3.78 6	1.15 5	1.72 3
03/15/16	MPSV	₿ o	2.836	1.86 11	1.714	2.683	2.187	2.08 7	2.50 11	2.73 9	2.535	2.63 8	16.4 35	2.028	1.921	4.08 7	1.57 12	2.739
11/12/14		彩 o	3.057	1.35 6	3.17 11	6.817	2.6710	2.81 10	2.5113	2.417	4.7914	2.87 9	3.464	2.07 11	1.47 9	6.58 16	1.166	3.3611
09/18/14	SNCC	ъ	3.26 ⁸	2.52 19	2.7810	7.208	2.29 ⁸	2.19 8	1.40 3	1.54 3	3.017	2.60 7	20.038	2.1612	1.317	3.28 4	1.237	1.754
04/17/15		Ън	3.51 ⁹	1.08 4	1.94 6	10.5 12	2.05 6	2.05 6	2.048	5.16 19	3.85 ⁹	2.34 6	15.2 30	1.556	1.22 5	6.54 15	1.48 10	2.87 10
07/25/14	SGM	彩 <u>o</u>	3.8810	2.01 12	4.10 15	8.94 10	3.2216	3.02 13	2.8614	3.51 10	5.15 15	3.26 10	11.9 22	2.4313	1.7711	5.67 13	1.50 11	2.728
07/28/14	Cens5	ъ	4.3311	3.02 21	3.92 14	11.4 13	3.14 14	3.06 14	1.937	2.50 ⁸	4.52 12	3.35 11	23.5 41	2.05 9	1.8112	4.28 9	1.479	2.036
02/18/16	LS-ELAS	₹ F	4.35 12	3.95 25	2.35 9	11.914	2.9913	2.81 10	2.95 16	4.80 16	3.128	3.78 13	9.94 19	2.05 9	3.49 27	6.93 20	1.388	9.16 26
06/09/16	MPSVe1	₹ o	4.4013	2.32 16	3.37 12	7.77 9	2.82 11	2.50 9	3.47 21	3.94 11	4.36 11	3.57 12	13.8 26	2.4815	2.50 19	11.8 38	2.26 20	9.21 27
		-																

Set:	<u>training den</u>	se ti	rain	ing s	sparse														
Metric: Mask:	bad 0.5 bad	d 1.0	ba	ad 2.	<u>0 bac</u>	<u>14.0</u>	<u>avge</u>	rr rn	<u>ns A5</u>	<u>0 A9</u>	<u>0 A9</u>	<u>5 A9</u>	<u>9 tin</u>	<u>ne ti</u>	me/M	<u>P</u> tin	ne/GD		
🗆 plot	selected	show	inv	valid	Rese	et sor	t)												
Date	rms (pixels) Name	R	es	Weight Avg	Adiron MP: 5.7 nd: 290 im0 im1	ArtL MP: 1.5 nd: 256 im0 im1	Jadep MP: 5.2 nd: 640 im0 im1	Motor MP: 5.9 nd: 280 im0 im1	MotorE MP: 5.9 nd: 280 im0 im1	Piano MP: 5.4 nd: 260 im0 im1	PianoL MP: 5.4 nd: 260 im0 im1	Pipes MP: 5.7 nd: 300 im0 im1	Playrm MP: 5.3 nd: 330 im0 im1	Playt MP: 5 nd: 290 im0 im1	PlaytF MP: 5 nd: 290 im0 im1	Recyc MP: 5.6 nd: 260 im0 im1	Shelvs MP: 5.9 nd: 240 1 im0 im1	Teddy MP: 2.7 nd: 256 im0 im1	Vintg MP: 5. nd: 76 im0 im
几分	几介	1	۱ŵ	₰₽	GT nonocc 几介	GT nonocc 几介	GT nonocc 几介	GT nonocc 几介	GT nonocc 几介	GT nonocc 几介	GT nonocc 几介	GT nonocc 几介	GT nonocc 几介	GT nonocc 几介	GT nonocc 几介	GT nonocc 几介	GT nonocc 几介	GT nonocc 几介	GT nonoc 几介
09/28/15		È	F 2	.911	0.981	3.851	6.731	4.331	5.11 1	1.241	1.681	5.461	2.40 1	1.691	1.981	1.141	2.641	0.841	0.93
10/07/14	DIDR	Ŕ	н 8	8.41 ²	5.85 5	6.713	18.83	5.82 ²	6.00 ²	5.483	4.99 ²	12.54	5.78 ²	37.6 2	4.51 2	4.21 3	7.59 3	2.99 ²	8.56
03/15/16	MPSV	彩	Q 8	8.70 ³	6.39 7	5.76 <mark>2</mark>	17.7 ²	6.13 ³	6.24 ³	8.381	9.79 9	10.4 ²	6.68 4	27.71	4.793	5.50 ⁹	12.0 1	5.158	8.70
12/18/15	INTS	Ŕ	н 9	0.094	5.47 ²	8.56 ⁶	29.65	8.105	8.89 5	5.08 <mark>2</mark>	6.10 ³	13.35	6.27 3	10.64	5.56 ⁵	3.63 <mark>2</mark>	10.4 6	3.824	9.95
07/28/14	SGM	彩	F 9	9.84 ⁵	10.6 16	6.894	24.14	7.344	7.44 4	6.317	7.87 6	10.83	8.50 5	38.4 30	6.027	4.846	7.00 ²	4.135	7.18
11/12/14	🗌 LCU	Ŕ	Q 1	1.16	5.59 ³	10.6 ⁹	32.07	12.51	12.8 11	6.246	7.52 5	18.312	9.45 8	9.59 ³	6.39 ⁸	5.167	14.7 10	3.05 3	11.1
07/28/14	SGM	沒	н 1	1.87	8.43 12	8.927	32.9 ⁸	9.76 ⁶	9.73 6	6.38 ⁸	8.007	14.16	8.85 7	44.5 3	7.34 1	5.30 ⁸	9.59 5	5.19 ⁹	7.70
06/09/16	MPSVe1	₹¥	Q 1	2.98	6.186	10.810	31.06	11.38	10.5 7	9.001	10.1 10	15.69	9.64 9	22.51	5.686	6.73 ¹	22.1	9.83 20	23.8

MIDDLEBURY 2014 BENCHMARK

Full results (compared to 44 methods)

MPSVe1 =	Multi-scale	diffusion	+ Filtering
	maner beare	amasion	· · · · · · · · · · · · · · · · · · · ·

	avgerr (pixels)		Weight	8 8			a3				10 M		14 1 2 3				1	
Date	Name	Re	s Avg	Adiron MP: 5.7 nd: 290 im0 im1 GT nonocc	ArtL MP: 1.5 nd: 256 im0 im1 GT nonocc	Jadepl MP: 5.2 nd: 640 im0 im1 GT nonocc	Motor MP: 5.9 nd: 280 im0 im1 GT nonocc	MotorE MP: 5.9 nd: 280 im0 im1 GT nonocc	Piano MP: 5.4 nd: 260 im0 im1 GT nonocc	PianoL MP: 5.4 nd: 260 im0 im1 GT nonocc	Pipes MP: 5.7 nd: 300 im0 im1 GT nonocc	Playrm MP: 5.3 nd: 330 im0 im1 GT nonocc	Playt MP: 5 nd: 290 im0 im1 GT nonocc	PlaytP MP: 5 nd: 290 im0 im1 GT nonocc	Recyc MP: 5.6 nd: 260 im0 im1 GT nonocc	Shelvs MP: 5.9 nd: 240 im0 im1 GT nonocc	Teddy MP: 2.7 nd: 256 im0 im1 GT nonocc	Vintge MP: 5.5 nd: 760 im0 im2 GT nonocc
① ①	① ①	Û,	0₽ (① ①	贝 ①	 ① ①	 ① ①	 ① ①	 ① ①	贝 ①	贝 ①	 ① ①	 ① ①	① ⑦	小	心心	① ⑦	① ①
05/12/16	PMSC	З н	4.901	1.02 1	4.884	24.77	2.981	2.94 1	2.503	4.391	6.271	4.18 2	1.811	2.001	1.341	5.44 4	1.883	5.784
) <mark>1/19/1</mark> 6	I NTDE	<mark>з н</mark>	5.23 ²	1.38 ²	4.743	25.89	3.262	3.35 2	2.291	4.60 2	7.172	4.13 1	3.632	2.683	1.582	5.06 3	2.165	4.671
1/12/14		図 a	5.90 3	1.75 4	5.508	19.71	3.924	4.06 6	3.26 <mark>8</mark>	5.89 9	8.584	4.85 4	4.744	2.996	2.268	6.85 8	1.852	17.4 3
2/18/15		р К	5.914	1.90 5	5.427	22.75	4.216	4.33 9	3.036	6.08 11	8.695	4.65 3	6.598	3.219	1.723	7.47 10	2.5612	7.478
1/03/15	MC-CNN+RBS	い い で し	6.675	2.227	8.42 23	22.24	3.95 5	3.87 3	2.342	4.74 4	13.9 32	9.76 25	4.805	3.6615	2.389	4.63 2	5.90 30	5.132
4/12/16	MeshStereoExt	з н	7.226	2.27 8	11.2 27	21.42	5.0716	5.56 18	3.38 10	4.93 5	11.417	12.3 29	5.167	4.80 25	2.104	6.01 5	5.34 29	7.006
4/19/15	MeshStereo	い い で	7.597	2.39 9	6.4413	36.4 24	5.40 22	5.71 20	3.257	5.457	11.618	6.34 11	4.926	2.734	2.257	11.1 28	1.904	5.623
7/28/14	SGM	з н	7.638	2.49 13	5.045	25.910	4.388	4.15 7	3.56 12	6.62 12	9.478	5.33 5	26.839	3.4011	2.8414	8.82 14	2.307	16.12
5/28/16	APAP-Stereo	р Ч	7.82 9	4.90 27	5.709	44.5 34	3.863	3.98 5	3.025	4.64 3	8.023	9.01 23	4.563	4.04 18	3.12 17	3.361	2.5813	6.525
4/17/15	ТМАР	з н	7.881	0 2.44 11	5.8810	30.914	4.72 11	4.41 10	3.8614	13.7 29	9.257	6.12 8	16.6 26	3.137	2.226	10.9 26	2.7315	10.51
1/05/15	GCSVR	З н	8.191	1 2.13 6	9.75 26	33.3 20	4.409	4.58 12	2.874	6.07 10	10.7 12	5.86 7	13.4 18	3.19 ⁸	2.215	11.1 29	1.671	18.83
4/08/15	REAF	р К	8.491	2 4.07 21	7.29 19	32.417	4.7612	4.70 13	5.00 22	11.7 27	10.913	8.61 20	15.1 22	4.04 18	2.54 11	9.72 21	3.30 21	9.291
7/25/14	SGM	R C	8.511	2.46 12	7.84 22	32.116	5.1718	4.95 15	5.12 24	8.42 17	11.316	6.15 9	18.5 30	3.5913	2.84 14	8.35 12	2.549	15.5 ²
7/28/14	SGM S	お F	8.531	4.90 27	4.651	30.313	4.70 10	4.32 8	3.7713	5.76 8	10.49	7.04 12	25.4 37	4.27 21	4.36 26	9.34 19	2.338	17.73
0/07/14	D IDR	迎っ	8.571	2.60 14	5.97 12	30.012	4.267	3.90 4	4.3917	10.8 25	10.410	6.30 10	39.643	2.612	2.4210	10.2 22	2.549	9.091
6/09/16	MPSVe1	2 0	8 61 1	3 26 17	7 19 18	23.96	6 73 26	5 41 23	5 01 23	0 20 16	13 6 30	7 60 13	14 3 21	3 63 14	3 79 27	12 7 35	3 96 24	17 43

- 65 -

MIDDLEBURY 2014 BENCHMARK

Full results (compared to 44 methods)

MPSVe1 = Multi-scale diffusion + Filtering

Set: training dense training sparse																		
Metric:	bad 0.5 bad	1.0 k	ad 2.	<u>0 bac</u>	<u>d 4.0</u>	avge	rr m	15 A5	<u>0 A9</u>	0 <u>A9</u>	5 <u>A9</u>	9 tim	<u>ie ti</u>	me/M	<u>e tim</u>	e/GD		
Mask: nonocc all																		
□ plot selected □ show invalid Reset sort																		
	rms (pixels)		Weight										-					
Date	Name	Res	Avg	Adiron	ArtL MP: 15	Jadepi	Motor MD: 5.9	MotorE MD: 5 0	Piano	PianoL MP: 5.4	Pipes	Playrm MP:53	Playt MD:5	PlaytP MD: 5	Recyc MD: 5.6	Shelvs	Teddy	Vintge
				nd: 290	nd: 256	nd: 640	nd: 280	nd: 280	nd: 260	nd: 260	nd: 300	nd: 330	nd: 290	nd: 290	nd: 260	nd: 240	nd: 256	nd: 760
				im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1	im0 im1
				nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc	nonocc
① ①	① ①	①①	₽ Û	①①	①①	①①	① ①	①①	① ①	① ①	① ①	① ①	小心	100				
11/12/14		彩 q	16.81	7.01 3	14.63	57.2 ²	16.1 ²	16.2 ²	7.333	15.5 10	24.4 3	12.9 ¹	12.1 ²	8.993	7.724	14.6 6	5.12 ¹	36.2 24
05/12/16	PMSC	Żн	17.4 ²	6.70 1	19.117	72.69	15.5 ¹	15.4 ¹	8.49 ⁸	13.7 6	21.0 ¹	16.0 5	7.05 1	8.48 ²	4.83 1	12.9 4	8.3913	25.4 11
01/19/16	□ NTDE	Ън	17.7 3	7.61 4	14.64	73.610	16.63	17.0 4	6.08 ¹	12.5 3	23.8 ²	13.1 ²	13.9 ³	9.747	6.16 3	11.3 3	9.9816	20.95
12/18/15		₿н	18.44	8.84 6	16.37	66.2 ⁶	18.5 11	19.3 14	8.127	14.2 7	26.37	13.8 4	19.57	10.6 11	5.85 ²	15.9 9	9.1615	18.83
11/03/15	MC-CNN+RBS	Ън	20.95	10.18	21.1 23	56.91	16.84	16.7 ³	6.49 ²	13.34	39.1 36	36.0 27	18.85	13.9 20	9.5513	11.2 ²	21.8 30	17.12
07/28/14	SGM	秘 н	21.26	10.1 10	14.5 ²	68.37	17.86	17.5 8	10.5 13	16.2 11	25.96	16.6 6	55.940	11.0 15	11.0 18	18.6 17	7.85 9	34.1 19
04/19/15	MeshStereo	Ън	21.47	10.7 12	18.7 16	86.7 24	21.7 22	23.0 21	8.96 9	12.5 ²	30.3 18	17.5 9	14.54	9.22 5	8.44 9	25.2 36	6.11 3	16.81
06/09/16	MPSVe1	2 o	22.18	9.707	18.2 12	62.63	22.9 24	22.3 20	11.8 19	19.4 18	32.3 20	21.1 16	23.710	9.316	10.115	23.4 32	14.6 26	36.4 25

Conclusion

Main aspects of the proposed method

- Geometrical constraints such as low baseline, fronto-parallelism for segmented objects, and ordering constraint, are not required.
- ✓ We distinguish disparity measurement from disparity estimation.
- ✓ The method is quite robust to occlusions.
- The cost aggregation takes into account the segmentations of the left and right images of the stereo pair.
- The multi-scale extension improves the regional consistency of the disparity function, without affecting its precision.
- A morphological filter detects and prunes bad measures, by using the concept of disparity clusters and by analysing disparity distributions on a regional basis.
- ✓ Results are comparable to the state-of-the-art.
- The RMSE remains quite low compared to the ground truth, for both sparse and full results.
- ✓ Disparity maps are visually appealing.

- 67 -

CONCLUSION

Perspectives

- The algorithm will be optimised and applied to higher image resolutions. An increase in performance is expected.
- → Disparity function should be better regularised across homogeneous regions.
- It would be interesting to ameliorate the multi-scale extension so as to take several hierarchies of segmentations into account during the aggregation phase, rather than relying on a single segmentation.

Thank you for your attention

REFERENCES

- Aydin, T., Akgul, Y.S.: Stereo depth estimation using synchronous optimization with segment based regularization. Pattern Recognition Letters **31**(15) (2010) 2389–2396
- Prince, S.: Models for grids. In: Computer vision: models, learning, and inference. Cambridge University Press (2012)
- Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11) (2001) 1222–1239
- Sun, J., Li, Y., Kang, S.B., Shum, H.Y.: Symmetric stereo matching for occlusion handling. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005. Volume 2., IEEE (2005) 399–406
- Yang, Q., Wang, L., Yang, R., Stewénius, H., Nistér, D.: Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling. IEEE Transactions on Pattern Analysis and Machine Intelligence **31**(3) (2009)
- Facciolo, G., de Franchis, C., Meinhardt, E.: Mgm: A significantly more global matching for stereovision. In: Proceedings of the British Machine Vision Conference (BMVC), BMVA Press (2015) 90.1–90.12
- Bobick, A.F., Intille, S.S.: Large occlusion stereo. International Journal of Computer Vision 33(3) (1999) 181–200
- 8. Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Transactions on Pattern Analysis and Machine Intelligence (2008)
- 9. Zbontar, J., LeCun, Y.: Stereo matching by training a convolutional neural network to compare image patches. arXiv preprint 1510.05970 (2015)

References

- Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. Optical Engineering 34 (1992) 433–481
- Hosni, A., Bleyer, M., Gelautz, M.: Near real-time stereo with adaptive support weight approaches. In: International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT). (2010) 1–8
- Cigla, C., Alatan, A.A.: Information permeability for stereo matching. Signal Processing: Image Communication 28(9) (2013) 1072–1088
- Vachier, C., Meyer, F.: The viscous watershed transform. Journal of Mathematical Imaging and Vision 22(2-3) (2005) 251–267
- Zabih, R., Woodfill, J.: Non-parametric local transforms for computing visual correspondence. In: Third European Conference on Computer Vision 1994 Proceedings, Volume II. Springer Berlin Heidelberg (1994) 151–158
- 15. Fua, P.: A parallel stereo algorithm that produces dense depth maps and preserves image features. Machine vision and applications 6(1) (1993) 35–49
- $16.\ :\ Middlebury\ stereo\ database.\ http://vision.middlebury.edu/stereo/$
- Scharstein, D., Hirschmüller, H., Kitajima, Y., Krathwohl, G., Nešić, N., Wang, X., Westling, P.: High-resolution stereo datasets with subpixel-accurate ground truth. In: Pattern Recognition. Springer (2014) 31–42
- Sinha, S.N., Scharstein, D., Szeliski, R.: Efficient high-resolution stereo matching using local plane sweeps. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE (2014) 1582–1589

- 71 -