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ABSTRACT 
A wide range of commercial applications, in both building acoustics as well as automotive 

industry, can be found for sound packages containing poro-elastic materials. Accurate 
material characterization is vital for the use of these multilayered systems due to the 
increasing demands in acoustic comfort and legislation. There is however a distressing lack in 
raw, accurate material data and measurement methods concerning the characterization of 
these materials. Especially the effect of anisotropy and visco-elasticity on the acoustic 
properties of multilayered systems remains barely understood.  

Measuring and modeling methods for the characterization of these materials at an 
acoustically interesting frequency range will be presented. The experimental technique for the 
determination of the elastic properties is based upon the excitation of waveguides in 
anisotropic and visco-elastic porous materials. The other parameters of the Biot-Allard model 
are determined using the classical methods.  

Results concerning surface wave phase velocities show that anisotropy and visco-elasticity 
influence the acoustical properties of porous media which are calculated using a transfer 
matrix approach.   
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1 INTRODUCTION  
 
Demands involving legislation and acoustical comfort have lead to an optimization of 

modeling techniques regarding porous materials as being part of an overall solution of a noise 
problem. Advances in numerical techniques are however tampered with a lack of accurate 
measurement techniques and material data needed as input parameters for the numerical 
models. In many applications the materials are used in multilayered systems and the porous 
material itself is visco-elastic and/or anisotropic. The estimation of the material properties of 
a porous material, with respect to the multilayer, is therefore often the hardest task at hand. 
The acoustical behavior and the damping of the porous material play, on the other hand, often 
a critical role in the multilayered system. 

In the past years considerable research effort has gone to the determination of the 
parameters of the Biot-Allard [1] model which determine the airborne wave propagation 
throughout porous media. These parameters solely determine the acoustical behavior in many 
applications where a sound wave is impinging from the air directly onto the surface of an 
open-celled porous material; elastic coupling can in these cases often be neglected. Classical 
ultrasound methods [2, 3] provide an elegant tool for estimating the Biot-Allard parameters. 
They are fast, non-destructive and user-friendly. Furthermore ultrasonic characterization has 
the potential of being used as an inline technique for quality control and for the validation of 
the acoustical properties.  

 In many cases the porous material can not be treated as an equivalent fluid and accurate 
knowledge of the elastic constants of the porous material is needed for modeling purposes. 
For many applications it is also not clear in which geometrical configuration the porous 
material is combined with the other components of the multilayered system since the 
manufacturer differs from the end-user of the porous material. Furthermore, the elastic 
response of these materials is influenced by visco-elasticity, anisotropy and high attenuation. 
Elastic constants are therefore very difficult to measure accurately. Classical techniques [4] 
are limited to the lower frequency range and accuracy is often dependent on the size and 
shape of the sample under investigation. Complicated numerical inversion schemes (e.g. 3D 
finite element modeling) are often needed to obtain the elastic constants.  

 Recently surface waves [5] have been proposed as a good method for investigating the 
elastic response of porous materials. The use of surface waves as a tool for material research 
has some convenient advantages in that their application does not depend on the size and 
shape of the sample, their use is not restricted to the lower frequency range and the 
measurement techniques are non-destructive.  Indeed surface wave propagation depends only 
on the bulk wave propagation throughout the porous material and on the boundary conditions 
at the free surface.   

 An adapted formulation of the Christoffel wave equation for surface wave propagation in 
anisotropic porous media will be described in the next sections. Measurement results 
concerning surface wave phase velocities at the interface of a transverse isotropic material are 
presented. They indicate that the anisotropy of these materials influences their acoustical 
performance. 
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2 MEASURING AND MODELING SURFACE WAVES ON POROUS MEDIA 

2.1 Christoffel matrix for anisotropic porous materials 
Surface wave and guided wave propagation on elastic layers has been extensively 

investigated by many authors. Elaborate reviews can be found in [6, 7]. Only recently 
however these formalisms have been adapted to describe surface wave propagation in 
isotropic poro-elastic materials. Allard et al. [5] investigated surface waves at the interface 
between a fluid and a semi-infinite isotropic poro-elastic layer. The phase velocity of this 
Raleigh wave was estimated by searching the pole pk  of the plane wave reflection coefficient 

( )rR k  of a semi-infinite isotropic poro-elastic layer. Khurana and Vashishth [8, 9] presented 
a similar technique to derive surface wave propagation in the basal plane of transverse 
anisotropic porous media. 

   An alternative approach to describe guided waves in slabs of isotropic porous materials 
was presented by [10]. The guided waves are described in terms of potential functions which 
describe bulk wave propagation throughout the isotropic porous material. A characteristic 
determinant was derived, which is an expression of the boundary conditions at free surface. 
The vanishing of this determinant corresponds to the existence of guided waves propagating 
through the slab of porous material. The frequency dependency of the guided wave phase 
velocities in the material was used to investigate the visco-elasticity of porous media. 

For anisotropic porous media however an alternative approach in terms of partial waves 
should be followed. The formalism is more or less similar to the one presented by [6, 7] for 
surface waves in anisotropic elastic materials. The coordinate system of interest is that in 
which a semi-infinite anisotropic poro-elastic material occupies a space 3 0x ≤ . The 3x -axis is 
taken as the outward normal to the free-surface and 1x  and 2x are chosen in some convenient 
direction. Similar to [8] we are interested in transverse isotropic porous media in which the 
symmetry axis is taken to be the 3x -axis. We are interested in a surface wave which decays 
exponentially with depth below 3 0x =  and which propagates according to a random direction 
n  in the 3 0x =  plane. In this case, surface waves are a linear combination in terms of: 

  
 ( ) ( )3 3 1 1 2 2exp expi iu ikn x ik n x n x vtα ⎡ ⎤= + −⎣ ⎦  (1) 
  

 1kn  and 2kn  are the projections of the wave vector on the 1x  and 2x  axis and iα  is the 
amplitude. Equation (1) has to satisfy simultaneously the wave equation for an anisotropic 
porous material and the boundary conditions imposed to the free surface. The quantity 3n  in 
each of the terms of the solution must be such that the amplitudes of the displacement 
components vanish as 3x →−∞ . 
 The wave equation for anisotropic elastic solids is usually given in terms of a 
6 6× Christoffel matrix ij⎡ ⎤Γ⎣ ⎦ , which describes the stress strain relations in an anisotropic 
solid. The Christoffel equation has the form:  
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 ( )2 0ij ij ivδ ρ αΓ − =  (2) 
 

ρ  is the density and v  is the phase velocity. Setting the determinant of the coefficients of 
the Christoffel equation equal to zero for a given direction ( )1 2 3, ,n n n  yields the bulk wave 
propagation. Adapting equation (2) for the description of wave propagation in porous 
materials with a random anisotropy in the fluid and solid phase of the porous material: 

 
2 2

2 2
0

SS SF S
ij ij ij ij ij ij

FFS FF
ij ij ij ij ij ij

SS v SF v

FS v FF v

δ ρ δ ρ α
αδ ρ δ ρ

⎡ ⎤⎡ ⎤ ⎡ ⎤− − ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥ =⎢ ⎥⎢ ⎥⎡ ⎤ ⎡ ⎤− − ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦
 (3) 

Sα , Fα are the amplitudes of respectively solid and fluid displacement. The 3 3× sub 
matrices 2SS

ij ij ijSS vδ ρ⎡ ⎤−⎣ ⎦ , 2FF
ij ij ijFF vδ ρ⎡ ⎤−⎣ ⎦ , 2SF

ij ij ijSF vδ ρ⎡ ⎤−⎣ ⎦ , 2FS
ij ij ijFS vδ ρ⎡ ⎤−⎣ ⎦  for a 

transverse anisotropic porous material are given in appendix A.  For any given value of v , eq. 
(3) gives a secular equation of degree 8 in terms of 3n  which corresponds to a solution of the 
form (1) travelling through both fluid and solid phases. In general there are only 4 lower-half-
plane roots of equation (3) which vanish at infinite depth. A surface wave is therefore given 
by a linear combination of partial waves of the form of equation (1):  

 
4

1 1 2 2 3 3
1

exp( )l l
i l i

l
u C ik n x n x n x vtα

=

⎡ ⎤= + + −⎣ ⎦∑  (4) 

The problem now is to determine the four weighting factors lC  in such a manner that the 
boundary conditions are satisfied everywhere on the free surface.  A surface wave can be 
found for only a specific value of v  and the corresponding values of 3

ln  that make the 
boundary-value determinant zero.  

2.2 Measured phase velocities at a transverse isotropic porous medium  
Surface waves were excited on a thick (20 cm) slab of porous material. The material 

properties were measured and can be found in Table 1 of [5]. The measurement setup is 
depicted on the left hand side of Figure 1. A detailed description of a similar measurement 
setup to induce surface waves or guided waves at the interface of a porous material can be 
found in reference [10]. Due to the fabrication process, sound absorbing foams are transverse 
isotropic in the direction dependent physical properties of the solid and fluid phase. For 
simplicity only transverse isotropy of the elastic properties is considered here. However 
anisotropy in the fluid parameters (e.g. flow resistivity) can be taken into account by adapting 
the appropriate densities ( 33

SSρ , 33
SFρ and 33

FFρ ) with the introduction of a flow resistivity, a 
tortuosity and a viscous characteristic length measured parallel and perpendicular to the 
symmetry axis of the material.  The surface wave phase velocities were measured with a 
Laser Doppler in the 3 0x =  plane and in the 1 0x =  plane in a concentric circle around the 
location of a point source (an LDS shaker, right hand side of Figure 1). A sine burst of 20 
periods centred at 2 kHz. was used to excite the surface waves.  
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Fig. 1:  Measurement setup for measuring surface waves in porous materials. 

As expected no variation was noticed in 3 0x =  plane (isotropic plane, perpendicular 
to the 3x -axis).This is indicated by the dashed line of Figure 2. However, a decrease of the 
surface wave velocity was measured with an increasing angle from the 3x -axis in the 1 0x =  
plane (indicated by the full circles in Figure 2). Measured phase velocities were best fitted 
using values for f=1.2 and l=0.8, f and l were defined in [8]. The magnitude of f and l 
corresponds to the case of “strong” anisotropy as described in [8]. The small variations in 
surface wave phase velocity tend to suggest however that the material is only slightly 
anisotropic in comparison to materials like e.g. glass wool [11].  
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Fig. 2: Surface wave phase velocity as a function of the angle from the x1-axis (x3=0 plane) (dashed 
line) and from x3-axis(x1=0 plane) (full circles). Crosses (× ) indicate calculated values 

3 CONCLUSIONS 
An adapted version of the Christoffel equation (2) was presented for the investigation of 

surface waves at the interface of anisotropic porous media. The model was used to describe 
measured surface wave phase velocities at the basal and sagittal plane of a transverse 
anisotropic sound absorbing material. The anisotropic constants that were obtained 
correspond to the case of a “strong” anisotropic material as described by [8]. The estimated 
magnitude of anisotropic constants f and l indicate that the anisotropy of the material does 
have a measurable influence on the absorption and transmission coefficients of this sound 
absorbing foam, as was predicted by [8].  
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APPENDIX A 

( ) ( )
( ) ( )
( ) ( ) ( )

2 2 2 2
1 2 3 11 1 2 1 3

2 2 2 2 2
1 2 2 1 3 22 2 3

2 2 2 2
1 3 2 3 1 2 3 33

,

SS

SS SS
ij ij ij

SS

Pn Nn Ln v P N n n F L n n
SS v P N n n Pn Nn Ln v F L n n

F L n n F L n n L n n Cn v

ρ
δ ρ ρ

ρ

⎡ ⎤+ + − − +⎢ ⎥
⎡ ⎤− = − + + − +⎢ ⎥⎣ ⎦ ⎢ ⎥

+ + + + −⎢ ⎥⎣ ⎦

     

2 2
1 11 1 2 1 3

2 2 2 2
1 2 2 22 2 3

2 2
1 3 2 3 3 33

,

SF

TSF SF FS
ij ij ij ij ij ij

SF

Mn v Mn n Mn n
SF v Mn n Mn v Mn n FS v

Qn n Qn n Qn v

ρ
δ ρ ρ δ ρ

ρ

⎡ ⎤−
⎢ ⎥⎡ ⎤ ⎡ ⎤− = − = −⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥−⎣ ⎦

 

2 2
1 11 1 2 1 3

2 2 2
1 2 2 22 2 3

2 2
1 3 2 3 3 33

.

FF

FF FF
ij ij ij

FF

Rn v Rn n Rn n
FF v Rn n Rn v Rn n

Rn n Rn n Rn v

ρ
δ ρ ρ

ρ

⎡ ⎤−
⎢ ⎥⎡ ⎤− = −⎢ ⎥⎣ ⎦
⎢ ⎥−⎣ ⎦

 

The constants P, N, Q, F, M, L, C and R can be found in [8], where A=P-2N with P given 
by equation (A1) in [5]. Using 11ρ , 12ρ  and 22ρ  (equations (A5-A7) of [5]) the densities can 
be identified as 11

SS
iiρ ρ= , 12

FS SF
ii iiρ ρ ρ= =  and 22

FF
iiρ ρ= . 
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