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The cost of the control in the case of a minimal time of
control: the example of the one-dimensional heat equation

Pierre Lissy ∗†

9 juin 2016

Abstract

In this article, we consider the controllability of the one-dimensional heat equation with
an internal control depending only on the time variable and an imposed profile depending on
the space variable. It is well-known that in this context, there might exist a minimal time
of null-controllability T0, depending on the behavior of the Fourier coefficients of the profile.
We prove two different results. The first one, which is surprising, is that the cost of the
controllability in time T > T0 close to T0 may explode in an arbitrary way. On the other
hand, we prove as a second result that for a large class of profiles, the cost of controllability
at time T > T0 is bounded from above by exp(C(T0)/(T − T0)) for some constant C(T0) > 0
depending on T0. The main method used here is the moment method and some tools coming
from complex analysis.

Keyworlds: null controllability; parabolic equations; minimal time; controllability cost;
non-harmonic Fourier series; moment method.

AMS Classification: 35K05, 93B05, 42A70

1 Introduction
Let T > 0. In what follows, we will consider the following controlled heat equation on (0, T )×

(0, π): {
yt − yxx = f(x)u(t) in (0, T )× (0, π),

y(0, ·) = y0 in (0, π),
(1)

where y0 ∈ L2(0, π), u ∈ L2(0, T ) is the control and f ∈ H−1(0, π) is an imposed profile for this
control.

It is well-known that equation (1) is well-posed in the sense that there exists a unique solution
y ∈ C0([0, T ], L2(0, π))∩L2([(0, T ), H0

1 (0, π)) verifying moreover that there exists a constant C > 0
such that for every y0 ∈ L2(0, π), every f ∈ H−1(0, π) and every v ∈ L2(0, T ), we have

||y||C0([0,T ],L2(0,π)) + ||y||L2((0,T ),H0
1 (0,π)) 6 C(||y0||L2(0,π) + ||f ||H−1(0,π)||v||L2(0,T )),

which implies notably that the control operator u ∈ R 7→ f(·)u is admissible for the semigroup
et∆ with domain D(∆). The controllability properties of this equation has been widely studied
∗lissy@ceremade.jussieu.fr
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(see notably [11], [8] and [2]). The approximate controllability can be easily characterized by the
condition

fk 6= 0,∀k ∈ N∗, (2)

where
fk := 〈f, ek〉H−1(0,π),H1

0 (0,π). (3)

Assume from now on and until the end of the article that the condition (2) is satisfied. Con-
cerning the study of the null-controllability of (1), one very efficient tool in the one-dimensional
case is the celebrated moment method introduced in [10]. Let us consider the 1-D Laplace operator
∂xx with domain D(∆) := H2(0, π)∩H1

0 (0, π) and state space H := L2(0, π). It is well-known that
−∆ : D(∆)→ L2(0, π) is a positive definite operator with compact resolvent, the k-th eigenvalue
is λk = k2, an associated normalized eigenvector is

ek(x) :=

√
2√
π

sin (kπx) .

Let us decompose the initial condition y0 on the Hilbert basis ek:

y0(x) =

∞∑
k=1

akek(x), (4)

where (ak)k∈N∗ ∈ l2(N∗). Then, it is classical that imposing y(T, ·) = 0 is equivalent to saying
that for every k ∈ N∗ we have ∫ T

0

eλktu(t)dt = −ak
fk
. (5)

u is then solution of a moment problem which can be solved by finding a bi-orthogonal family to
the family of exponentials {exp(λkt)} on [0, T ]. Let us introduce the following quantities:

Ik(f) := − log(|fk|)
k2

(6)

and
T0 := lim sup

k→∞
Ik(f) ∈ [0,∞]. (7)

It is then proved in [2] that:
1. System (1) is null-controllable at any time T > T0.
2. System (1) is not null-controllable at any time T < T0.

Hence, there might exist a minimal time of controllability, depending on the action of the control
through the profile f .

Let us mention that in [8], a comprehensive study of (1) is performed in the particular case
where f(x) := δx0

∈ H−1(0, π), where x0 ∈ (0, π). In this particular case, one readily obtain that
the minimal time of controllability is given by

T0(x0) := lim sup
k→∞

− log(| sin(kx0)|)
k2

.

The dependance with respect to x0 of T0 is then carefully studied and it can notably be proved
that:

1. For almost all x0 ∈ (0, π), T0(x0) = 0,
2. For every τ ∈ [0,∞], {x0 ∈ (0, π)|T0(x0) = τ} is dense in (0, π).
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This notably means that the minimal time of controllability can take any value between 0 and∞.
Let us mention that the existence of a minimal time of control for parabolic equations or systems
may occur in many other situations, for other examples see notably [1] and [2].

In the case where T > T0, one can easily prove (see for example [7, Chapter 2, Section
2.3]) that for every y0 ∈ L2(0, π), there exists a unique optimal (for the L2(0, T )-norm) control
uopt ∈ L2(0, T ) bringing y0 to 0, the map y0 7→ uopt is then linear continuous. The norm of this
operator is called the optimal null control cost at time T (or in a more concise form the cost of the
control), denoted by CH(T ). By definition, CH(T ) is the smallest constant amongst the constants
C > 0 such that for every y0 ∈ L2(0, π), there exists some control u driving y0 to 0 at time T with

||u||L2(0,T ) 6 C||y0||L2(0,π).

In the case where there is no minimal time of control and under appropriate conditions on the fk
that should not decrease too fast (what we will call “the usual case” from now on), the cost of fast
controls for linear parabolic equations or systems with distributed (or equivalently in this case
boundary) control has been widely studied (see notably [14], [19], [22], [9], [16], [3] and [17]) and is
now quite well-understood in the one-dimensional case, even if there are still some open problems.
We mention that understanding the behavior of the cost of controllability is crucial because it
can be used to deduce some results in higher dimension (see [3]) and to obtain nonlinear results
(see notably [12]). It is shown that in the context of the usual case, the cost of fast controls is
roughly of the form exp(C/T ) as T → 0, were C is some appropriate constant depending on the
geometry. Let us mention that for all the cases studied up to now, the cost of fast controls was a
purely high-frequency phenomena, depending only on the asymptotic behavior of the eigenvalues
at infinity (for a precise study, see notably [16], [17] and [18]).

Let us also mention that the multi-dimensional case seems to be out of reach for the moment:
there are only few results of existence of minimal time, always in particular geometries (see notably
for the case of hypoelliptic diffusions [4] or [5]) and sometimes this minimal time is not even known
precisely. Concerning the cost of the control, even in the usual case of the heat equation with
boundary or distributed control, there are only some partial results coming from [19], the upper
bound being obtained under very strong geometric restrictions. Hence, taking into account the
lack of comprehension of the multi-dimensional case, the author thinks that it is very reasonable
and interesting to have a look first at the one-dimensional case, which is maybe simpler from the
multi-dimensional case but cannot be considered as trivial though.

In this context, a natural question arising is the following: for equation (1), what is the behavior
of CH(T ) when T → T+

0 ? Up to our knowledge, this question has never been investigated in the
context of the existence of a minimal time on control in the parabolic case. One could expect that
the cost is of the form exp(C(T0)/(T −T0)) as T → T+

0 , by analogy with the usual case. However,
it is not always the case, as highlighted by the following Theorem:

Theorem 1.1 For every function g : R+∗ → R+∗ supposed to be increasing and verifying g(x)→
+∞ for x → +∞, for every T0 ∈ [0,∞), there exists f ∈ H−1(0, π) such that for any T close
enough to T0, one has

CH(T ) >
1√
T
g

(
1

T − T0

)
.

This theorem means that the cost of the control can increase arbritrarily fast as T goes to the
minimal time T0, which is very surprising. This can be explained by the fact that contrary to the
usual case, the cost of the control depends not only on the behavior of Ik(f) (defined in (6)) at
infinity but also on how it differs from its limit superior T0. The proof relies on tools coming from
complex analysis in the spirit of [6] (see also [17] and [13]). The main idea (that differs from what
was done in the previous references) is to consider the optimal control associated to an initial
condition with one pure eigenmode which is not necessarily the first one and that is adapted to
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the time of control T . f is then chosen is such a way that the sequence fk decreases “very slowly”
to the minimal time T0, the rate of convergence depending on the choice of the function g. One
serious consequence of this result is that it may be hard to obtain sharp results in the semi-linear
case in this context.

Our second theorem provides an upper bound on CH(T ) under some adequate assumption on
the sequence (fk)k∈N.

Theorem 1.2 Assume that f is chosen such that

Ik(f) 6 T0,∀k ∈ N∗. (8)

Then there exists a constant C(T0) > 0, depending only on T0, such that

CH(T ) 6 exp

(
C(T0)

T − T0

)
.

Here we use the moment method in the spirit of what was done in [22]. The idea is to use the
Paley-Wiener strategy, the main difficulty is to “catch” precisely the minimal time of control, which
requires a careful study and a new estimate on the multiplier of [22]. Let us mention that in [2],
the strategy used by the authors was slightly different since it was based on an idea coming from
[21], the main drawback of the argument being that we cannot estimate precisely the constants
appearing and hence Schwartz’s strategy is useless in order to estimate precisely the cost of the
control. Let us mention that condition (8) is likely far from being sharp to obtain the conclusion
of Theorem 1.2 since for T0 = 0, we obtain a different (and in general more restrictive) condition
than in the usual case, where the cost of the control is always of the form exp(C/T ).

Concerning some extensions and open problems arising after this study, we can mention the
following:

— For a given profile f , can we obtain precise estimates on CH(T ) for T close to T0? Notably,
is it possible to give a lower bound that is true for every profile f? If this lower bound
exists, is it of the form exp(C/(T − T0))?

— We chose in this paper to study a very particular, which is of interest because of the
unexpected behavior it highlights. An interesting question would be: can we generalize
the study to other cases where there exists a minimal time of control, notably in the case
where the minimal time of control occurs because of the condensation of the eigenvalues as
in the system presented in [2, Section 6.2]? More generally, can we extend the study in the
abstract case given in [2]? (this is more challenging since even in the case where there is no
minimal time of control, it seems to the author that there is no general results concerning
the cost of fast controls)

2 Proofs of Theorems 1.1 and 1.2

2.1 Proof of Theorem 1.1
In all what follows, C will always be a numerical constant independent of the parameter T .

Let us fix some T > T0, where T0 ∈ [0,∞) is given by (7).
Let n ∈ N∗ to be chosen later (depending on T ). We define y0 ∈ L2(0, π) as follows:

y0(x) := sin (nx) . (9)

One readily verifies that there exists some numerical constant C (independent on n) such that

||y0||L2(0,π) 6 C. (10)
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We consider u the optimal control associated to this initial condition, which verifies by definition
and thanks to estimate (10)

||u||L2(0,π) 6 CH(T )||y0||L2(0,π) 6 CCH(T ). (11)

Thanks to the moment problem verified by any control, we obtain that for any k ∈ N we have

fk

∫ T

0

u(t) exp
(
k2t
)
dt = −

∫ π

0

sin (nx) sin (kx) dx. (12)

Let us define the complex function v by

v(z) :=

∫ T/2

−T/2
u

(
t+

T

2

)
exp(−izt)dt. (13)

Using (12) and (13), we deduce that

v(in2) = − π

2fn
exp

(
−n

2T

2

)
, (14)

and for every k ∈ N with k 6= n we have

v(ik2) = 0. (15)

We deduce, using (13), (11) and the Cauchy-Schwarz inequality, that

|v(z)| 6 exp

(
T |Im(z)|

2

)∫ T

0

|u(t)|dt

6 CH(T )
√
T exp

(
T |Im(z)|

2

)
||y0||L2(0,π)

6 CCH(T )
√
T exp

(
T |Im(z)|

2

)
.

(16)

In what follows, we call

bk := ik2. (17)

Using the usual representation of the functions of exponential type given for example in [15,
Theorem p.56], we have, for every z such that Im(z) > 0,

ln(|v(z)|) =

∞∑
1

ln

(
|z − al|
|z − al|

)
+ σx2 +

x2

π

∫
R

ln(|v(τ)|)
|τ − z|2

dτ,

where the ak are all the roots of v of positive imaginary part and σ is the type of v, which
verifies thanks to (16) that

σ 6
T

2
. (18)

We apply this equality at point bn = in2, then we use (17) (remark that bn is a pure imaginary
number) and (18) to obtain

ln(|v(bn)|) 6
∞∑
l=1

ln

(
|bn − al|
|bn − al|

)
+
Tn2

2
+
|bn|
π

∫
R

ln(|f(τ)|)
τ2 + |bn|2

dτ. (19)

Let us study the right-hand side of this equality.
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1. First term of the right-hand side: We study
∞∑
l=1

ln

(
|bn − al|
|bn − al|

)
.

It is easy to prove that, if (z1, z2) ∈ C2, then

|z1 − z2|
|z1 − z2|

6 1 if and only if Im(z1)Im(z2) > 0.

Hence, we readily infer that
∞∑
l=1

ln

(
|bn − al|
|bn − al|

)
6 0. (20)

2. Concerning the last term of the right-hand-side, an easy change of variables gives

|bn|
∫
R

dτ

τ2 + |bn|2
= π.

Hence, using the fact that τ is real and (16), we deduce that

|bn|
π

∫
R

ln |v(τ)|
τ2 + b2n

dτ 6 ln(CCH(T )
√
T ). (21)

Using (14), (19), (20) and (21), we deduce that

ln

(
π

2|fn|

)
− n2T

2
6
n2T

2
+ ln(CCH(T )

√
T ), (22)

hence there exists a numerical constant C > 0 such that

CH(T ) >
C

|fn|
√
T

exp
(
−n2T

)
. (23)

Now, let us consider any positive and increasing function h : R+∗ → R+∗ such that h(x)→∞
as x→∞. Such a function is necessarily bijective and we call h−1 its reciprocal function. Let us
consider (fn)n∈N∗ ∈ l2(N∗) defined in such a way that

In(f) = T0 +
1

h−1(n2)
.

One can for example consider

fn := exp

(
−n2

(
T0 +

1

h−1(n2)

))
∈ l2(N∗).

In this case it is clear that lim supn→∞ In(f) = limn→∞
log( 1

|fn| )
n2 = T0. Then we have thanks

to (23)

CH(T ) >
C√
T

exp

(
n2

(
T0 − T +

1

h−1(n2)

))
. (24)

Let us now explain how to choose n. We assume that T is close enough to T0. Now, we choose n
such a way that (for example)

1

2(T − T0)
> h−1(n2) >

1

4(T − T0)
, (25)
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which is always possible (at least for T close enough to T0) since h−1 is increasing and goes to ∞
at ∞.

Hence, we deduce using (24) and (25) that

CH(T ) >
C√
T

exp

(
(T − T0)h

(
1

4(T − T0)

))
.

One then easily obtain the desired result by choosing h in such a way that

g(x) = C exp

(
1

x
h
(x

4

))
, i.e. h(x) = 4x log

(
g(4x)

C

)
,

because it is clear that if g is positive, increasing and goes to ∞ at ∞ then h is well-defined at
least for large enough x (which is sufficient for our purpose), is increasing and goes to ∞ at ∞.

2.2 Proof of Theorem 1.2
In all what follows, C will always be a numerical constant independent of all parameters. We

consider some time T > T0. We will construct our bi-orthogonal family by using the celebrated
Paley-Wiener Theorem. Let us recall that T0 is given by (7).

First of all, we define

F (z) :=

∞∏
k=1

(1 +
iz

k2
) =

sin(π
√
−iz)

π
√
−iz

. (26)

F will be used in what follows for the construction of the biorthogonal family to (eλkt)k∈N∗ .
Now, we introduce the multiplier, which is very similar to the one studied in [22]. Let ν > 0

and δ ∈ (0, 1) some parameters. From now on we call

β :=
T (1− δ)

2
. (27)

We introduce
σν(t) := exp

(
− ν

1− t2

)
prolonged by 0 outside (−1; 1). We call

Hβ(z) := Cν

∫ 1

−1

σν(t)e−itβzdt, (28)

where
Cν := 1/||σν ||1.

Looking carefully at the proof of [22, Lemma 4.3], we can easily deduce

1

2
eν 6 Cν 6

3

2

√
ν + 1eν , (29)

|Hβ(z)| 6 e
T
2 |Im(z)|, (30)

Hβ(x) 6 C
√
νβ|x||

√
ν + 1e3ν/4−

√
νβ|x|. (31)

The main new estimate that will interest us (and that differs from what is done in [22]) is the
following:

Lemma 2.1 For any x ∈ R+ and any r ∈ (1/2, 1), we have

Hβ(ix) > C(1−
√
r)e−

ν
1−r+βrx. (32)
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Proof of Lemma 2.1 Let r ∈ (1/2, 1) be some parameter destined to tend to 1, let η ∈ (0, 1)
and µ ∈ (0, 1) some other parameters that will be linked to r afterwards. Then, using the
expression of Hβ given in (28), we obtain by restricting the integral over ((1− µ)η, η) that

|Hβ(ix)| > µηCνe
−ν

1−η2
+βxη(1−µ)

. (33)

Now, we choose η =
√
r ∈ (0, 1) and µ = 1−

√
r ∈ (0, 1), so that η(1− µ) = r.

We obtain thanks to (33) and (29) that

Hβ(ix) > C
√
r(1−

√
r)e−

ν
1−r+βrx > C(1−

√
r)e−

ν
1−r+βrx.

Let us know define what will be the Fourier transform of our bi-orthogonal family. We set

Φk(z) :=
F (z)

(z + ik2)F ′(ik2)

Hβ(z)

Hβ(ik2)
. (34)

Using the definition of F given in (26), it is clear that

Φk(iλn) = δk,n. (35)

Let us prove that Φk is of exponential type T/2. This is the purpose of the next lemma.

Lemma 2.2 There exists some constant Ck > 0 such that for every z ∈ C, one has

F (z)

(z + ik2)F ′(ik2)
6 Cke

π
√
|z|. (36)

Consequently, Φk is of exponential type T/2.

Proof of Lemma 2.2 Since

z 7→ F (z)

(z + ik2)F ′(ik2)
is continuous on C,

it is enough to prove inequality (36) for |z| large enough. For instance, for |z| > 2k2, we have

|F (z)|
|z + ik2||F ′(ik2)|

6 C|F (z)| 6 Ceπ
√
|z|.

Using (36) together with (30) and the definition of β given in (27), we deduce that Φk is of
exponential type T/2, and the proof is complete.

Let us know give a precise estimate of z 7→ F (z)
(z+ik2)F ′(ik2) on the real axis.

Lemma 2.3 For x ∈ R, one has

|F (x)|
|(z + ik2)F ′(ik2)|

6 Ceπ
√
|x|
2 . (37)

Proof of Lemma 2.3 Since x ∈ R, we have

|F (x)|
|(x+ ik2)F ′(iλk)|

6
|F (x)|

k2|F ′(ik2)|
. (38)
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Let us estimate |F (x)|. One more time we use that we know explicitly the form of F and the
fact that Re

√
i = 1/

√
2 to deduce that

|F (x)| 6 eπ
√
|x|
2 .

It remains us to estimate |F ′(iλk)|.
From (26), one easily infer that

|F ′(ik2)| = 1

2k2

which enables us to conclude as wished thanks to (38).

Let us know give the final estimate of our multiplier.

Proposition 2.1 For some well-chosen ν (depending on δ and T ), Φk ∈ L1(R) ∩ L2(R) and

||Φk||L1(R) 6 C

√
ν + 1

1−
√
r
e( 3

4 + 1
1−r )ν−rβλk . (39)

Proof of Proposition 2.1 Putting together (37), (31) and (32), we obtain that for x ∈ R,
we have

|Φk(x)| 6 C

√
ν + 1

√
νβ|x||

1−
√
r

eπ
√
|x|
2 +( 3

4 + 1
1−r )ν−

√
νβ|x|−rβλk .

Let us now choose ν. We choose ν in such a way that√
βν =

1√
2

+ 1,

i.e.

ν :=
(1 +

√
2)2

(1− δ)T
. (40)

We deduce that

|Φk(x)| 6 C

√
ν + 1

√
|x||

1−
√
r

e( 3
4 + 1

1−r )ν−
√
|x|−rβλk .

Hence, we have that Φk ∈ L1(R) ∩ L2(R) and

||Φk||L1(R) 6 C

√
ν + 1

1−
√
r
e( 3

4 + 1
1−r )ν−rβλk .

Proof of Theorem 1.2. We are now able to construct the control. Using the version of the
Paley-Wiener Theorem given in [20, Th. 19.3, p. 370], we can state that for every k ∈ N∗, Φk is
the Fourier transform of a function wk ∈ L2(R) with compact support [−T/2, T/2]. Moreover, by
construction {wk} is biorthogonal to the family {e−k2t} on [−T/2, T/2]. Then, one can create the
control thanks to the family {hk}. Going back to expression (5), we consider a control u defined
by

u(t) := −
∞∑
k=1

ak
fk

exp

(
−Tk

2

2

)
wk

(
t− T

2

)
. (41)

9



Let us remark that going back to the expression of T0 given in (7), the expression of u is meaningful
as soon as δ is small enough and r is close enough to 1(depending on T − T0), thanks to (27) and
(39), which will be assumed from now on.

By construction, the corresponding solution y of (1) verifies y(T, ·) ≡ 0. Moreover, one easily
verifies that u ∈ C0([0, T ],R). Using (41), (27) and inequality (39), we obtain

||u(t)||L∞(0,T ) 6 C

√
ν + 1

1−
√
r
e( 3

4 + 1
1−r )ν

∑
k

|ak|
|fk|

e−k
2(
rT (1−δ)

2 +T
2 ),

that we rewrite as

||u(t)||L∞(0,T ) 6 C

√
ν + 1

1−
√
r
e( 3

4 + 1
1−r )ν

∑
k

|ak|ek
2(Ik(f)− rT (1−δ)

2 −T2 ).

Hence, using condition (8), we deduce

||u(t)||L∞(0,T ) 6 C

√
ν + 1

1−
√
r
e( 3

4 + 1
1−r )ν

∑
k

|ak|ek
2(T0− rT (1−δ)

2 −T2 ). (42)

The equation (in the variable r)

T0 −
rT (1− δ)

2
− T

2
= −T − T0

2

has a unique solution r0 ∈ (0, 1) given by

r0 :=
T0

T (1− δ)
(43)

as soon as
0 < δ <

T − T0

T
. (44)

Going back to (42) and using the particular value of r given in (43) together with the Cauchy-
Schwarz inequality we obtain that

||u(t)||L∞(0,T ) 6
C√

T − T0

√
ν + 1

1−√r0
e( 3

4 + 1
1−r0

)ν(
∑
k

|ak|2)1/2. (45)

We now choose δ = T−T0

2T , which verifies condition (44), so that by (43) we obtain

r0 =
2T0

T + T0
. (46)

Hence, for T close enough to T0, taking into account (45), the definition of ν given in (40), (46),
and the fact that all the terms appearing in the right-hand side of (45) in front of the exponential
are at most powers of T − T0, we obtain

||u(t)||L∞(0,T ) 6 e
C(T0)
T−T0 ||y0||H .
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