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Characterization of porous acoustic materials

W. Lauriks, L. Boeckx and P. Leclaire

Laboratorium voor Akoestiek en Thermische Fysica, Departement Natuurkunde
Celestijnenlaan 200D, 3001 Heverlee, België

An overview of the models and parameters of the acoustic wave propagation in porous media is
presented. The most common parameters (the porosity, the permeability or flow resistivity and the
densities) can be measured with standard methods. Ultrasonic methods for measuring the other
parameters (the tortuosity and characteristic lengths) related to the complex pore micro-structure
are reviewed. The ultrasonic methods are based on the transmission or reflection of airborne ul-
trasonic waves and on the signal analysis in the frequency and/or in the time domains. Ultrasonic
scattering is discussed at higher frequencies where the classical models are no longer valid. In
order to complete the characterization of porous acoustic materials, new techniques for evaluating
the elastic and viscoelastic properties are proposed. These techniques are based on the generation
of standing waves in a layer of material and on the spatial Fourier Transform of the displacement
profile of the upper surface. Two configurations are proposed: a layer of porous material glued
on a rigid substrate and a porous layer under Lamb conditions. Theoretical dispersion curves are
fitted to the experimental results and this procedure can provide information on the complex shear
modulus and of the complex Poisson ratio in a wide frequency range, typically between 50 Hz and
4 kHz.

1 Introduction

Porous media are of great interest in geophysics, in the petroleum research, in the automobile and building
industries or in medical sciences with ultrasonic propagation in bones. The interest for the wave propagation
in porous media started with Lord Rayleigh at the end of theXIXth century. Later, in the nineteen fourties,
Zwikker and Kosten [1] proposed a model of the wave propagation in porous materials with cylindrical pores
including viscous and thermal interactions between the solid and the fluid. In 1956, M. A. Biot [2] published an
elaborate model of the elastic wave propagation in fluid saturated porous media including the different coupling
mechanisms between the phases, the wave attenuation due to the viscous frictions and the elasticity of the solid
skeleton. Yet, Biot’s theory remained relatively ignored until the years 70-80. The scientific community realized
in these years the great potential of this theory. The interest for porous media has not ceased since then and
many acoustic models developed recently are derived from Biot’s theory.

Figure 1 shows an example of porous material, a highly porous reticulated (with open pores) polyurethane
foam often used in acoustic engineering. The porosity in such materials can be greater than 95 % (the porosity
is defined further down in this study). The choice of this example of material does not restricts the generality
of the following results.

Figure 1: Example of porous material: a highly porous reticulated polyurethane foam.

This type of material can be seen as a collection of solid bonds linked together and forming 3-D structures such
as dodecahedras. It is difficult for these materials to speak of ”pores”. However, lacking of more appropriate
terminology, we shall use this term for the rest of this study, the pore being ”the space not occupied by the
solid”.

The theoretical description of wave propagation in such materials has constantly progressed, particularly
since the years 70-80 with the contribution of many researcher. Along with the theoretical developments,
experimental techniques were invented for the measurement of the relevant basic physical parameters of porous
media. The measurement of porosity [4, 5], phase densities and flow resistivity [6] are now standard. However,
the main disadvantage of the most elaborate models was the necessity to determine certain other parameters
acting at high frequencies and closely related to the pore structure at the pore scale.
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In this article, an overview of the models and parameters of the acoustic wave propagation in porous media
is given. Techniques developed in K. U. Leuven and in Le Mans for determining high frequency physical
parameters and also the elastic properties of porous materials are then presented. The use of these technique
have resulted in the characterization of acoustic materials without adjustable parameters for the first time and
to the description of wave propagation at high frequencies where models based on effective phases (among
which is Biot’s theory) are no longer valid and must make way to diffusion models. The frequency domains are
defined in Figure 2.

cf0

Biot’s low
frequencies

df

Biot’s high
frequencies

Low frequencies of
the diffusion models

In the high frequency limit, the
viscous skin depth tends to zero
and the fluid can be considered
to be without viscosity

The Biot model is no longer valid
when the wavelengths are no longer
greater than the dimensions of the
scatterers (solid bonds)

The frequency fc separating Biot’s low
and high frequency domains depends
on the porosity, the permeability
and the fluid viscosity

Figure 2: Frequency domains in the Biot model.

2 Models and parameters of the acoustic wave propagation in porous media

2.1 Biot’s theory

The main qualitative results of Biot’s theory are briefly recalled in this sections. For more details, the reader is
referred to the original article by Biot [2] or to the book by Allard [3] for example. The elastic wave propagation
in fluid-saturated porous media is considered for wavelengths greater than the characteristic dimensions of
the heterogeneities. When the fluid and the solid have compressibilities and densities of the same order of
magnitude, energy exchanges of two types can occur in a lossless propagation: the exchange of momentum and
the elastic couplings.

The elastic couplings are expressed in Biot’s coupled equation of poroelasticity and the momentum ex-
changes in Biot’s coupled equations of motion. In his first formulation, the solid and the fluid are treated on
equal foot as effective phases standing for the real phases. The problem is treated as an eigenvalue problem
with the existence of several modes that are solutions of the coupled equations of motion. Two compressional
and one shear waves are predicted in the general case when both the solid and the fluid the phases are connected
and percolating. The consequence of coupling in a mechanical system is the repulsion of the eigenvalues when
they get closer and attempt to cross each other. The eigenvalues of the coupled system (the velocities) cannot
cross and a fast and a slow waves are predicted. These were called respectively waves of the first kind and of
the second kind.

The phase velocity of each mode is obtained from the eigenvalues ofR̃−1ρ̃ whereR̃ is a rigidity matrix
and ρ̃ is a density matrix. The crossed terms in these matrices are the coefficients of the elastic coupling and
momentum exchange terms. The coefficients of these matrices are given in Refs [2, 7] and depend on the
material properties: the porosity, the solid and fluid densities and also the elastic moduli of the solid, of the
fluid and of the solid frame.

Wave attenuation by viscous friction are included in the model through the use of a frequency dependent
complex density matrix. The main parameter ruling the viscous losses is the permeability (or the flow resis-
tivity). This is a macroscopic measurable parameter. The viscous frictions can be considered to represent a
third type of coupling in porous media, in addition to inertial and elastic coupling. For air-saturated materials,
Champoux and Allard [8] and Lafarge et al. [9] have shown that thermal exchanges are non negligible and must
be included as an additional loss mechanism.

Biot has shown the existence of two frequency regimes separated by a characteristic frequency given by

fc =
ηφ2

k0
(1)

whereφ the porosity andk0 the static permeability. The relevant model parameters and the context in which
they were introduced are described in more details in the next sections. The fast wave is propagative in the all
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frequency range but is dispersive due to the couplings and the attenuation mechanisms. In the low frequency
regime (belowfc), the slow wave is diffusive, does not propagate and the fluid and solid displacements are in
phase opposition. Above the characteristic frequency, the slow wave is propagative.

It is important to notice that Biot’s theory describes Poiseuille viscous flows along the pores and is relevant
when the viscous skin depth is of the order or smaller than the characteristic size of the pores. The viscous skin
depth is given byδ = (2η/ωρf )1/2 whereη is the fluid dynamic viscosity,ρf the density of the fluid andω the
angular frequency. As an example, a material containing pores of a few dozens nanometer such as those used
in filtration in chemistry has a very low the permeabilityk0 is very low. Usual acoustic measurements will be
located very low in Biot’s low frequency range and the materials will behaves like non-porous homogeneous
material. The Biot model is valid for these materials but probably without much interest for relatively viscous
fluids.

At higher frequencies, the viscous skin depth becomes smaller than the pore size. The complexity of the
pore shape cannot be accounted for by the static permeability alone and the high frequency parameters of
Attenborough [10, 11], Johnson et al. [12] and of Allard [3] play an important role.

2.2 Wave propagation in the rigid frame approximation

In many situations for air-filled materials, the porous frame can be considered to be much more rigid and
heavier than air and a simplified model can be used. The main physical parameters can be introduced in this
approximation. The mechanical properties of the solid skeleton will be investigated later in this study.

In the rigid frame approximation, the solid is incompressible and does not move and only the fluid-borne
wave can propagate. Its complex density and compressibility are given by

ρ(ω) = α∞ρf

(
1 − j

ωc

ω
F (ω)

)
(2)

K(ω) =
γP0

γ − (γ − 1)
(
1 − j ωc

B2ω
G(B2ω)

)−1 (3)

whereα∞ the tortuosity,B2 the Prandtl number andγ the specific heat ratio of the fluid at constant pressure
and volume.F (ω) andG(B2ω) are respectively viscosity and thermal correction functions for high frequencies
including the high frequency parameters.

The complex density is related to the existence of inertia and viscous forces while the complex bulk modulus
includes thermal exchanges between the solid and the fluid. All the necessary properties e.g. the propagation
constant, the phase velocity and the attenuation of the fluid borne wave can be deduced from the complex
density and bulk modulus.

2.3 Other models and parameters

The full Biot model is accepted as one of the most general model for the description of propagation porous
solid with elastic frame and most of the models developed after Biot are only concerned with the evaluation
of the functionsF (ω) andG(B2ω). This section gives a brief review of these models and of the parameters
introduced. These parameters were defined in the rigid frame approximation.

The first parameter of importance with the phase densities is the porosity. The open porosity is the ratio of
the volume of the pores connected together and to the exterior and the total volume of the sample:

φ = VPores/VTotal (4)

A closed porosity corresponding to inclusions in the solid is also defined.
In addition to the porosity and the densities, the flow resistivity or the flow permeability have rapidly been

identified as parameters of importance for the acoustic modeling, resulting in simple semi-empirical models
[15]-[18]. The flow resistivityσ is defined as the coefficient relating the pressure gradient∆P

l across a distance
(thickness)l to the resulting volume flow of fluid per unit areaQ.

∆P/l = σQ (5)
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The flow resistivity of polyurethane foams used in acoustics varies typically between103 Ns/m4 and105

Ns/m4. The (static) permeability is often used instead of the flow resistivity, in particular by geophysicists.
In acoustics, the static flow can be considered to be the low frequency limit of the dynamic flow associated
with the wave propagation. The dynamic flow corresponds to a fluid moving to and fro in the pores. The
permeability is defined as

k0 = η/σ (6)

This is a material constant and is independent of the saturating fluid.
In the framework of Biot’s theory, important contributions were offered by Attenborough, Johnson et al. and

Allard. Attenborough [10, 11] showed the importance oftortuosityand of parameters related to the complexity
of the pore geometry at high frequencies. The tortuosity characterizes the sinuous aspect of the fluid flow
associated with the passage of a wave in a porous medium. The tortuosity and the two characteristic lengths
presented next are defined in Biot’s high frequency limit (see Figure 2) when the viscous skin depth is small
compared to the pore size. It is therefore defined for a inviscid fluid as

α∞ =
1
V

∫
V v2dV(

1
V

∫
V 	vdV

)2 (7)

where the integration is carried out over a volumeV greater than the minimum volume of homogenization.v
is the microscopic flow velocity in the pores and	v is the velocity along the propagation vector. The tortuosity
can also be defined from the ratio of the path in the pores between two points on the propagation axis in
the porous medium separated by a great distance and the length of the straight line joining the points. The
tortuosity is always greater than 1. For cylindrical pores with a constant diameter and at an angleθ with the
propagation vector (Figure 3),α∞ = 1/cos2θ. Brown [13] has shown that the tortuosity can be evaluated from
the measurement of the electrical conductivity. The method has been optimized by Champoux [14].

Direction of propagation
�

Cylindrical pore

Figure 3: Cylindrical pore at an angleθ with the wave vector.

Johnson et al. [12] contributed substantially by introducing the concepts ofdynamic tortuosity and perme-
ability for the description of viscous interaction between the solid and the fluid at high frequencies. Johnson et
al. also introduced the concepts of viscous characteristic lengthΛ in order to integrate the complexity of the
pore shape at high frequencies during viscous flows. The viscous characteristic lengthΛ is defined as

2
Λ

=
∫
A v2(rw)dA∫
V v2(r)dV

(8)

wherev(r) and v(rw) are respectively the microscopic fluid velocities in the pore volume and on the pore
walls. Λ was introduced to account for viscous frictions between the solid and the fluid. For air-filled materials,
Champoux and Allard [8] defined a thermal characteristic lengthΛ′, Lafarge et al. [9] defined a dynamic
compressibility of the fluid including this length. The thermal characteristic lengthΛ′ is given by

2
Λ′ =

∫
A dA∫
V dV

(9)

which is similar to the viscous characteristic length with the difference that the weightv2 in the integrals have
disappeared. The thermal characteristic length therefore represents the average ratio of the pore volume to
their surface. Figure 4 shows an example of pore. The definitions ofΛ and ofΛ′ are such that the regions of
constriction (region 1 on Figure 4) have a great influence on the viscous length while open regions (region 2 on
Figure 4) mainly contribute to the thermal characteristic length. Indeed, the flow velocities are greater at the
constrictions and contribute more to the integrals (8) than more open regions. On the other hand, the average
pore volume-to-surface ratio is mainly determined by open regions where the exchange area between the solid
and the fluid is greater.
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12

Figure 4: Example of pore. Region 1: constriction, region 2: open region.

The more recent refinements include the concepts of thermal permeability [19] related to the trapping
constants [20] and a modification of the model of Johnson et al. providing a new low frequency limit for the
dynamic permeability [21].

Umnova et al. [22] have proposed a model of the propagation in granular media based on the existence of
a cell of influence around the particles.

Burridge and Keller [23] have shown that Biot’s equations of poroelasticity could be obtained under certain
conditions on the viscosity from a homogenization method. Auriault et al. [24] have also applied a homog-
enization method to a periodic deformable medium to obtain results similar to Biot’s and a generalization of
Darcy’s law providing generalized permeability coefficients. The homogenization theory is beyond our domain
of investigation and only the physical parameters of Biot’s theory and of the models derived from this theory
are studied.

3 Impedances and acoustical properties of porous layers

The acoustical properties of porous layer e.g. their surface impedance, reflection coefficients, absorption coef-
ficients can be deduced from the complex density and the compressibility (Equation 3 and 4). From these, the
complex wave velocity is given by

Vϕ =
√

K(ω)/ρ(ω) (10)

The characteristic impedance is defined for an infinite porous medium as the ratio of the pressure and the
of particle velocity. In the rigid frame approximation, it is given by

ZC = ρ(ω)Vϕ(ω) =
√

ρ(ω)K(ω) (11)

Consider at the interface between a fluid and a porous medium two pointsM1 andM2 infinitely close from
one another, one being in the fluid and the other in the porous medium. From references [25, 3], it can be shown
that the relationship between the impedances atM1 andM2 is

Z(M2) = Z(M1)/φ (12)

This relationship is very useful for calculating the surface impedance of finite thickness materials mounted in
certain conditions. As an example, the surface impedance of a porous layer of thicknessd applied on a rigid
substrate is given by

Z(M2) = −jZCcot (k(ω)d) /φ (13)

where the complex wavenumber is given by

k(ω) = ω/Vϕ (14)

M1M2

Porous
Medium

Fluid

Figure 5: Interface between a fluid and a porous medium.

Following, the same method, it is possible to calculate the transmission and reflection coefficients of a
porous layer surrounded by air. It can also be shown that the pressure and particle velocity on one side of the
porous layer can be expressed as a function of the pressure and velocity on the opposite side through a transfer
matrix [26, 3]. This elegant formulation yields the acoustical properties of multilayer porous systems.
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4 Evaluation of high frequency parameters by ultrasonic measurements

4.1 The method of Allard et al. [27] for measuring the tortuosity

The phase velocity and attenuation of the wave can be calculated from the expression of the complex wave
velocity and plotted versus frequency as shown in the example of Figure 6.

��

��c

Varies in

�

�

�

0c
c �

�c

�

Figure 6: Phase velocity and attenuation of the fluid borne wave in a rigid frame porous medium.c0 is the
sound speed in air

The wave is highly dispersive at low frequencies (belowωc = 2πfc) and its phase velocity tends at high
frequencies to a limit that is lower than the free velocity in air. The attenuation increases with frequency.
However, the rate of increase of attenuation is higher at low frequencies, which means that the attenuation per
cycle is greater at low frequencies. In the high frequency limit, it can be shown that the attenuation varies as
the square root of frequency. At sufficiently high frequencies i.e. when the viscous skin depth is sufficiently
smaller than the pore size, the wavenumber tends to

k(ω) = ω

√
α∞
c0

[
1 +

δ(1 − j)
2

(
1
Λ

+
γ − 1
Λ′B

)]
(15)

The high frequency limit of the phase velocity has been used by Allard et al. [27] for determining the tortu-
osity. Their experimental principle is simple. It consists in deducing information in the frequency domain from
the signal transmitted in an air saturated porous layer in the high frequency limit. The ultrasonic emitter and
receiver used are air coupled capacitive transducer with vibrating mylar membranes. The ultrasonic frequency
range investigated depends on the thickness of the mylar membranes. Figure 7 shows an example of reference
signal (without sample between the transducers) and transmitted signal.
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Figure 7: Signal received by the ultrasonic receiver a) without sample between the emitter and receiver, b) after
transmission through a porous layer

The method of Sachse and Pao [28] is used for the determination of the phase velocity from experimental
results. The phase velocity is obtained from the phase difference between the signal obtained without sample
between the transducers (reference signal) and the signal received when the wave has crossed the sample. The
attenuation is deduced from the magnitudes of the spectra of the reference and received signals.

The method of Allard et al. [27] for measuring the tortuosity consists in determining the high frequency
limit of the phase velocity in Figure 8. When the viscous skin depth tends to zero in equation 16, this limit
velocity isc0/

√
α∞
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Figure 8: Phase velocity and attenuation in a polyurethane foam

4.2 Methods for measuringα∞, Λ and Λ′

These methods are inspired from the works by Johnson et al. [12, 29, 30] on the wave propagation in porous
media saturated by super fluid He, of Nagy [31] and of Allard et al. [27] on the propagation in air-saturated
materials at ultrasonic frequencies.

4.2.1 TheQδ method

TheQδ method is based on the behavior of the quality factorQ in the high frequency limit. The quality factor
is a function of the real and imaginary parts of the complex wavenumberQ = k′/2k′′. From the expression 16
for the wavenumber, it can be seen that the productQδ tends to [32]

lim
ω→∞Qδ =

[
1
Λ

+
γ − 1
B Λ′

]−1

(16)

and depends only on known gas constants (γ, B) and on the lengthsΛ andΛ′. This limit value (the length
[1/Λ + (γ − 1)/(BΛ′)]−1) is shown by the arrow in Figure 9a.
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Figure 9: a) High frequency limit of theQδ product. b)Qδ product measured in a porous material saturated
successively by two different gases

Now, if the ultrasonic experiments are carried out in porous materials saturated successively by different
gases, say air and then helium, the following system is obtained [33]:

lim
ω→∞ (Qδ)air =

[
1
Λ

+
γair − 1
Bair Λ′

]−1

(17)

lim
ω→∞ (Qδ)he =

[
1
Λ

+
γhe − 1
Bhe Λ′

]−1

(18)

providing two different limits for theQδ product as shown in Figure 9b. Reading the two limit values and
solving the system above yields values ofΛ andΛ′ with the same precision.
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4.2.2 Then2 method

This method is based on the refraction indexn i.e. the ratio of the reference velocity in the free gas and the
velocity in the porous medium. It can be shown that at high frequencies [33]:

n2 = α∞
[
1 + δ

(
1
Λ

+
γ − 1
Λ′B

)]
(19)

since the viscous skin depth varies as the inverse of the square root of frequency, plottingn2 as a function
of f−1/2 provides a straight line with a slope proportional to the quantity[1/Λ + (γ − 1)/(BΛ′)] while the
intercept with the vertical axis yields the tortuosity [34]. Here again, the experiments in two saturating gases
yield the two unknownsΛ andΛ′ with the same precision [33]. Figure 10 shows an example of experimental
result, with the determination ofα∞, Λ andΛ′
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1 .16

H elium

A ir
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)

Tortuosity

n
2

Figure 10:n2 as a function off−1/2 in helium and in air

Table 1 summarizes results obtained from different methods for three different polyurethane foams. The
last column of the table corresponds to BET measurements made in Laboratoire de Chimie des Surfaces de
l’université Pierre et Marie Curie. The BET method is named after Brunauer, Emmet and Teller [35, 36]. The
Qδ and then2 methods show a good consistency for the values ofΛ and ofΛ′ while the BET method seems to
slightly overestimate the value ofΛ′.

Λ(Qδ) Λ(n2) Λ′(Qδ) Λ′(n2) Λ′(BET )
Foam 1 180 202 429 367 610
Foam 2 132 134 292 318 370
Foam 3 249 273 650 672 750

Table 1: Results on different foams (all values are inµm).

4.2.3 Measurement ofφ and α∞ from ultrasonic reflection and time domain analysis of the signal

Fellah and Depollier [40] have proposed a time domain approach of the transient wave propagation in porous
media including the description of the transient behavior. Following this work and the ultrasonic methods
cited above, new methods were developed [38, 39], based on the reflection or transmission of ultrasonic waves.
Low permeability materials such as non reticulated materials have generally a higher reflection coefficient than
materials with open cells and working in reflection results in a higher signal to noise ratio for these materials.

A particularly interesting application is the measurement of the porosity and or the tortuosity from ultra-
sonic wave reflected at high frequencies at the interface between a highly resistive porous material and air.
Fellah at al [39] have established an expression of the normal incidence reflection coefficient in the high fre-
quency limit

R =

α∞cosθ

φ
√

α∞−sin2θ
− 1

α∞cosθ

φ
√

α∞−sin2θ
+ 1

(20)
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whereθ is the angle of incidence. This expression can be used to determine the tortuosity if the porosity is
known for example. The time signals of the incident and reflected waves are similar in shape to those of Figure
7.

4.3 Ultrasonic scattering and high frequency limit of the classical models

Figure 9b shows that the productQδ drops from a frequency around 250 kHz for the experiment in air and 760
kHz in helium. This behavior is a consequence of an extra attenuation, not predicted by Biot’s theory or other
classical models and occurring at higher frequencies. The consequence is a decrease of the quality factor (the
inverse of the attenuation per cycle) and of the productQδ. This additional attenuation was first observed in
natural and artificial air-saturated porous sandstones by Nagy [31].

Leclaire et al. [37] have shown that only scattering is responsible for the extra attenuation observed in
highly porous polyurethane foams and have proposed a scattering model where a collection of identical rigid
cylinders (Neuman cylinders) are considered as scatterers. The model only considers simple scattering and
is valid for a low concentration of scatterers and in the low frequency domain of the scattering models. A
fairly good theoretical/experimental match was obtained as the assumptions made apply fairly well to materials
studied.

Although extremely interesting for the physical description of the wave propagation in porous media at
frequencies above Biot’s high frequency regime, scattering is an undesired phenomenon in the measurement of
the high frequency parameters.

5 Elastic and viscoelastic properties of porous materials

The elastic properties of the solid frame play a role in the full Biot model, with elastic frame. In order to com-
plete the characterization of porous acoustic materials, new techniques for evaluating the elastic and viscoelastic
properties are presented.

5.1 Classical methods

Classical methods for measuring the elastic coefficients of porous materials exist. These are based on a transfer
functionH(ω) between the source and the detector and involve the excitation of a sample of a certain shape (e.g.
a rod, a cube, a plate...). The sample has a finite size with respect to the wavelengths involved i.e. its dimensions
are smaller or of the order of the wavelengths studied. Examples are reported by T. Pritz and other authors
[41, 42, 43]. Figure 11 shows possible devices for the measurement of Young’s modulus and of the Poisson
ratio. The properties (resonance frequencies, damping, dynamic behavior) of the complex transfer function
between the response and the excitation yield the mechanical properties of the structure excited. However, the
frequency described in these methods are fairly low (typically below 500 Hz for some materials).

5.1.1 The transfer function method

In Figure 11a, a shaker (shaker 1) fed with a white noise signal excites with compressional waves a sample with
the shape of a rod. Neglecting the effect of the air in the pores, the Young’s modulus of the porous frame is
then evaluated from the transfer functionH(ω) between the two accelerometer glued at the extremities of the
rod, one accelerometer being attached to the source. A second shaker can also be used (independently from the
first shaker) to generate torsions in the sample, providing information on the shear modulus and on the Poisson
ratio. In this case, a second pair of accelerometers oriented differently are used.

Figure 11b shows a setup used for evaluating the shear modulus. Two identical pieces of sample are glued to
a rigid metal frame and to a thin, movable plate connected to a shaker. The shaker generates shear waves in the
sample and an impedance head measures the force applied. The transfer function between the force F applied
and the accelerationa at the output of the impedance head shows the resonance frequencies in the sample. From
the resonance frequencies of the transfer function, the density and the thickness of the sample, the magnitude of
the shear modulus can be determined. From the width at half height of the resonance peaks, the loss angle can
be determined. By performing the experiment with samples with different thicknesses, information about the
frequency dependence of the shear modulus can be obtained. Figure 12 shows a typical transfer function for the
measurement of shear modulus. Up to three resonance frequencies can be observed, decreasing in amplitude
due to the damping in the sample.
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Figure 11: Possible setups for the measurement of a) Young’s modulus, b) shear modulus.
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Figure 12: Shape of the transfer function between force and acceleration in the experiment of Figure 11b.

5.1.2 The Oberst beam method

This method consists in setting the sample in the configuration of a multilayer cantilever beam including the
base beam (e.g. aluminum or steel beam), the unknown material on top of the base beam and optionally, a
third layer of another material. The rest of the method follows the transfer function method. An analytical or
numerical model can be used to describe the vibration of the multilayer system and to relate it to the elastic
properties of the unknown material. More details and variants of this method in one or two dimensions were
recently given by Jaouen [44]. The method has been applied to a highly porous Melamine foam.

5.1.3 The temperature - frequency equivalence

It has been observed that the behavior of a viscoelastic material at high temperature for low frequencies is
equivalent to the behavior of the same material at lower temperature and for proportionally higher frequencies.
This equivalence is illustrated in Figure 13 and can be exploited to overcome the problem of high damping at
higher frequencies in the experiment. However in this method, the data points are not truly ’measured’.
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emperature

Frequency
Tg

T

Loss
factor

Figure 13: Real part of the elastic modulus and loss factor of a polyurethane foam during the glass transition.
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5.2 The Rayleigh wave method

Allard et al. [45] have studied the Rayleigh structure borne surface wave in soft porous materials, with the
determination of the shear modulus at very high frequencies as a direct application.

A shaker excites the surface of a large thick block of foam with a narrow-band sine burst at a high fre-
quency. The vertical velocity component of the surface is measured at incrementing distances from the source
with the help of a Polytec vibrometer. The surface wave is non dispersive and the signal is simply delayed
(and attenuated) as the detector moves away fro the source. The calculation of the cross-correlation between
the signal at different position provides the phase velocity. Results have been obtained in a frequency range
typically between 3 and 4 kHz on a block of highly porous polyurethane foam.

5.3 The guided wave method

Extending the work of Allard et al., Boeckx et al. [46, 47] have recently presented results on the propagation
of guided waves in layers of poroelastic materials. These experiments, together with a complete theoretical
description have provided information on the complex shear modulus in a frequency range that covers both
the low frequencies of the classical methods and the high frequency limit of the Rayleigh wave method. A
new experimental method was proposed for the determination of the dispersion curves of guided waves in
poroelastic layers. This method is based on the excitation and detection of standing wave and on the spatial
Fourier transformation of the standing wave profile of the surface.

The standing waves are generated by line source attached to a shaker producing a continuous sinusoidal
wave with frequencies that can be varied. The particle velocity of the surface of the layer is measured with a
laser Doppler vibrometer. The laser beam at the output of the laser is collimated and a mirror/lens arrangement
insures that the beam is always focused on the surface at any position of the beam. The measurement point can
be moved by moving the mirror/lens arrangement. A strip of reflective tape is used to reflect the laser beam in
the path of the scanning beam. For each frequency, the path is scanned with a typical step of 1 to 5 mm and the
amplitude and phase of the signal are recorded at each position.

Once the data are recorded, the spatial Fourier Transform of the displacement profile in the vicinity of the
rigid end can be calculated. The different amplitude peaks in the spatial spectrum provide the wavenumbers of
all the guided modes propagating in the layer and the phase velocities are obtained from dividing the frequency
by these wavenumbers.

The use of guided waves and an excitation by continuous sine wave present the advantages of concentrating
the energy in a layer of material and at a single frequency. This results in the possibility to increase the
propagation distance and in maximizing the signal to noise ratio.

Two experimental configurations were proposed: a layer of porous material glued on a rigid substrate and
a porous layer under Lamb conditions (Figure 14). Figure 15 shows the calculated dispersion curves for the
porous layer under Lamb conditions. The experimental dispersion curves obtained from the measurement
described above are shown in Figure 16 and compared to the theoretical results for 2 different materials.

The fitting of at least two theoretical dispersion curves to the experimental data allows to investigate both the
real and imaginary parts shear in the frequency range between the classical vibration method and the Rayleigh
wave propagation method (Figure 17). In addition to the frequencies, the exploitation of the amplitudes of
the different modes in the wavenumber space (spatial Fourier Transform of the standing wave pattern) should
provide more information and allow the study of both the real and imaginary parts of the shear modulus and of
Young’s modulus.

Figure 14: Experimental configurations for the study of guided waves in porous layers.
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Figure 15: Theoretical dispersion curves for a layer of porous material saturated by air under Lamb conditions.

Figure 16: Experimental results on the dispersion curves.
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Figure 17: Fitted real and imaginary parts of the shear modulus of a highly porous foam (Melamine). The
configuration used is that of a layer on a rigid substrate.

References

[1] O. C. Zwikker and C. W. Kosten,Sound-Absorbing Materials, Elsevier, 1949.

[2] M. A. Biot, Theory of elastic wave propagation in a fluid saturated porous solid, J. Acoust. Soc. Am.28,
pp. 168-191, 1956.

[3] J. F. Allard,Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials, Chapman &
Hall, London, 1993.

[4] L. L. Beranek,Acoustic impedance of porous materials, J. Acoust. Soc. Am.13, pp. 248-260, 1942.

[5] Y. Champoux, M. R. Stinson and G. A. Daigle,Air-based system for the measurement of porosity, J.
Acoust. Soc. Am.89, pp. 910-916, 1991.

[6] ISO 9053:Acoustics - Materials for acoustical applications - Determination of airflow resistance, 1991.

[7] M. A. Biot and D. G. Willis,The elastic coefficients of the theory of consolidation, J. Appl. Mech.24, pp.
594-601, 1957.

12



SAPEM December 7-8-9, 2005, Lyon–France

[8] Y. Champoux and J. F. Allard,Dynamic tortuosity and bulk modulus in air saturated porous media, J.
Appl. Phys.70, pp. 1975-1979, 1991.

[9] D. Lafarge, P. Lemarinier, J. F. Allard and V. Tarnow,Dynamic compressibility of air in porous structures
at audible frequencies, J. Acoust. Soc. Am.102, pp. 1995-2006, 1997.

[10] K. Attenborough,Acoustical characteristics of porous materials, Physics reports82, pp. 179-227, 1982.

[11] K. Attenborough,Acoustical characteristics of rigid fibrous absorbents and granular materials, J. Acoust.
Soc. Am.73, pp. 785-799, 1983.

[12] D. L. Johnson, J. Koplik and R. Dashen,Theory of dynamic permeability and tortuosity in fluid-saturated
porous media, J. Fluid. Mech.176, pp. 379-402, 1987.

[13] R. Brown,Connection between the formation factor for electrical resistivity and fluid-solid coupling fac-
tors in Biot’s equations for acoustic waves in fluid-filled porous media, Geophysics45, pp. 1269-1275,
1980.
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Acad. Sci. Paris322 Śerie IIb, pp. 121-127, 1996.

[35] S. Brunauer, P. H. Emmet and E. Teller,Adsorption of gases in multimolecular layers, J. Am. Chem. Soc.
60, pp. 309-319, 1938.

[36] P. Lemarinier, M. Henry, J. F. Allard, J. L. Bonardet and A. Gdon,Connection between the dynamic bulk
modulus of air in a porous medium and the specific surface, J. Acoust. Soc. Am.97, pp. 3478-3482, 1995.

[37] P. Leclaire, L. Kelders, W. Lauriks, J. F. Allard and C. Glorieux,Ultrasonic wave propagation in reticu-
lated foams saturated by different gases - High frequency limit of the classical models, Appl. Phys. Lett.
69, pp. 2641-2643, 1996.

[38] Z. E. A. Fellah, C. Depollier, S. Berger, W. Lauriks, P. Trompette and J. Y. Chapelon,Determination
of transport parameters in air-saturated porous materials via reflected ultrasonic waves, J. Acoust. Soc.
Am. 114, pp. 2561-2569, 2003.

[39] Z. E. A. Fellah, S. Berger, W. Lauriks, C. Depollier, C. Aristegui and J. Y. Chapelon,Measuring the
porosity and the tortuosity of porous materials via reflected waves at oblique incidence, J. Acoust. Soc.
Am. 113, pp. 2424-2433, 2004.

[40] Z. E. A. Fellah and C. Depollier,Transient acoustic wave propagation in rigid porous media: A time-
domain approach, J. Acoust. Soc. Am.107, pp. 683-688, 2000.

[41] T. Pritz, Transfer function method for investigating the complex modulus of acoustic materials: rod-like
specimen, J. Sound Vib.81, pp. 359-376, 1982.

[42] A. Sfaoui,On the viscoelasticity of the polyurethane foam, J. Acoust. Soc. am.97, pp. 1046-1052, 1995.

[43] T. Pritz,Dynamic Young’s Modulus and loss factor of plastic foams for impact sound isolation, J. Sound
Vib. 178, pp. 315-322, 1994.
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