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From analytical solutions of solute transport equations to
multidimensional time-domain random walk (TDRW)
algorithms
Jacques Bodin1

1IC2MP, Universit�e de Poitiers-CNRS, Poitiers, France

Abstract In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived
from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical sol-
utions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the
pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to
travel a specified distance in a homogeneous medium and the mass recovery at the observation point,
which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to
heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is
then decomposed along a series of intermediate checkpoints located on the medium interface boundaries.
The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of sol-
ute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous
medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive
transport and to advection-dispersion transport problems dominated by advection. Conversely, the method
is not recommended for highly dispersive transport problems because the accuracy of the advection-
dispersion TDRW algorithms degrades rapidly for a low P�eclet number, consistent with the accuracy limit of
the approximate analytical solutions. The proposed approach provides a unified methodology for deriving
multi-dimensional time-domain particle equations and may be applicable to other mathematical transport
models, provided that appropriate analytical solutions are available.

1. Introduction

Lagrangian (particle-tracking) methods are among the most popular techniques for simulating solute trans-
port in porous media. The primary advantage of these methods is the absence of numerical dispersion com-
pared with other alternatives such as Eulerian or mixed Eulerian-Lagrangian methods. For this reason,
Lagrangian methods are well suited to advection-dominated transport problems. A central feature of
Lagrangian methods is the representation of the solute mass by a large number of particles. Depending on
how these particles move, two distinct approaches may be used: (i) space-based particle-tracking methods
and (ii) time-domain particle methods. In the first approach, which may be regarded as ‘‘traditional,’’ the par-
ticles are moved in fixed time steps. The particle displacement during a given time step includes a deter-
ministic displacement along flow-path lines to simulate advection and may also include an additional
stochastic displacement to simulate dispersion (or diffusion), as in the well-known random walk (RW)
method. The reader is referred to Delay et al. [2005] and Salamon et al. [2006] for comprehensive reviews of
space-based particle-tracking methods, including theoretical, conceptual, and numerical developments in
the field of subsurface hydrology since the early works of Ahlstrom et al. [1977] and Prickett et al. [1981].
Additional recent publications of relevance include Bechtold et al. [2011] and Lejay and Pichot [2012].

As an alternative to space-based algorithms, various time-domain particle methods have been developed
since the early 1990s [Yamashita and Kimura, 1990; Banton et al., 1997; Delay and Bodin, 2001; James and
Chrysikopoulos, 2001; Delay et al., 2002; Reimus and James, 2002; Bodin et al., 2003; Bodin et al., 2007; Delay
et al., 2008; Painter et al., 2008; Dentz et al., 2012]. In contrast to space-based particle tracking, time-domain
algorithms first establish fixed checkpoints along the particle transport path and then directly calculate the
time required for the particle to move from one checkpoint to the next. This time may be deterministic, in
the case of purely advective transport, or stochastic, if dispersion (and/or diffusion) is considered.
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The presently available time-domain particle methods have been developed based on different conceptual
and theoretical backgrounds, which are briefly reviewed below. Yamashita and Kimura [1990] examined the
problem of solute transport in a single fracture embedded in a porous rock matrix. Assuming one-
dimensional advective transport (neglecting dispersion) in the fracture and one-dimensional diffusive trans-
port (normal to the fracture) into the matrix, the authors derived an expression for the cumulative probabil-
ity density function of the particle travel times in the fracture-matrix system from an analytical solution of
the corresponding transport equations. Applying the rejection method to this probability density function
allows for single-step computations of the stochastic travel time of particles through a fracture-matrix sys-
tem of a given length. Banton et al. [1997] were the first to develop a time-domain particle method for simu-
lating advection-dispersion transport problems. Considering the well-known log-normal shape of solute
breakthrough curves in advection-dominated transport problems, the authors proposed a stochastic algo-
rithm to compute the logarithms of particle travel times that consistently obey a Gaussian distribution. The
algorithm, termed the time-domain random walk (TDRW), was inspired by the RW method that simulates
Gaussian spreading in the space of solute particles subject to advection and dispersion. The TDRW method
was further developed to address diffusion into nonflowing pore spaces adjacent to advective-dispersive 1-
D flow channels (rock matrix and/or stagnant zones in fracture planes [Delay and Bodin, 2001; Bodin et al.,
2007]) as well as sorption with first-order kinetics [Delay et al., 2008]. Starting from a different theoretical
framework based on a Monte Carlo sampling of particle transit times, Painter et al. [2008] proposed an alter-
native TDRW method capable of accommodating a broad range of retention models and first-order decay
chains. As noted by the various aforementioned authors, the two major advantages of the TDRW approach
over the RW method are (i) a higher computational efficiency (only one calculation step is required to move
each particle between two distant locations, whereas the RW method requires several particle jumps to
accurately simulate the dispersion process) and (ii) a more facile management of particle transitions
through media with sharp discontinuities in their advection-dispersion properties, as the particle check-
points may be conveniently placed at the interfaces at which such discontinuities arise. Thus far, the pri-
mary limitation of TDRW methods is that they are suited only to 1-D transport problems because it appears
that it is very difficult to incorporate transverse dispersion into the existing algorithms. Because of this limi-
tation, TDRW methods have been primarily applied to fractured media conceptualized as networks of inter-
connected 1-D transport pathways [e.g., Bodin et al., 2003; Painter et al., 2008].

Along with methods for advection and dispersion, various algorithms have been specifically developed for
purely diffusive transport. James and Chrysikopoulos [2001] proposed 1-D, 2-D, and 3-D algorithms based on
empirical expressions of the mean and standard deviation of travel-time probability densities derived from tra-
ditional RW simulations. Reimus and James [2002] proposed a more exact algorithm based on a truncated
infinite-series solution of the one-dimensional diffusion equation and extended their algorithm to account for
both advection and diffusion (dispersion), but the resulting method appears to be less numerically efficient
than the TDRW method of Banton et al. [1997] because it requires more computational steps. Following a dif-
ferent approach based on a finite-volume formulation of the diffusion equation, Delay et al. [2002] developed
a time-domain particle method to simulate diffusion in a 2-D heterogeneous porous medium discretized as a
regular grid. Dentz et al. [2012] formalized this method within the continuous-time random walk (CTRW)
framework and further developed it to handle spatially variable multirate mass-transfer properties.

The above literature review shows that none of the currently available time-domain particle methods are suffi-
ciently flexible to address both multidimensional advection-dispersion transport problems and purely diffusive
transport problems. The purpose of this technical note is to propose such a unified approach. This note is struc-
tured as follows. Following this introduction, section 2 presents the general methodology for the derivation of
new TDRW equations from suitable analytical solutions of solute transport equations. In section 3, we elaborate
the method for 2-D advective-dispersive transport and then extend the approach to multidimensional
advective-dispersive and purely diffusive transport. In section 4, the accuracy of the new TDRW algorithms is
verified against exact analytical solutions of solute transport in homogeneous media. Section 5 discusses the
extension of the method to heterogeneous media, and the conclusions are presented in section 6.

2. Methodological Approach

The proposed TDRW method does not attempt to solve the partial differential equation and associated ini-
tial and boundary conditions describing the transport problem of interest. Instead, the strategy is to
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simulate (mimic) the concentration-time curve at the observation point as given by the corresponding
analytical solution, if existing. For this purpose, the proposed approach is inspired by the rejection
method initially suggested by Yamashita and Kimura [1990] and subsequently used by a number of
authors [e.g., Tsang and Tsang, 2001; Zhang et al., 2006; Zafarani and Detwiler, 2013]. We generalize this
method to multidimensional purely diffusive and advective-dispersive transport by identifying two key
parameters of suitable analytical solutions of the corresponding transport equations: first, the probability
density function of the particle travel times, and second, a recovery-ratio function accounting for the
complete or partial mass recovery at the observation point resulting from 2-D or 3-D dispersion/diffusion.
The proposed method can be applied to any transport problem provided that the following three condi-
tions are fulfilled. First, an analytical solution exists (or can be derived) either for the case of first-type (or
Dirichlet) boundary condition with constant concentration C0 ML23

� �
or for the case of third-type (or

Cauchy) boundary condition of constant strength QC0 MT21
� �

. Note that in the latter case, the physical
meaning of Q differs between (i) advection-dispersion (flowing) transport problems, in which it represents
a volumetric injection rate, and (ii) purely diffusive (non flowing) transport problems, in which Q is the
rate at which the diffusing substance is continuously liberated, e.g., due to the fixed dissolution rate of a
solid pollutant.

Second, this analytical solution can be written in the following generic form:

C x; tð Þ5QC0C xð ÞW x; tð Þ (1)

where C ML23
� �

is the solute concentration; t Tð Þ is the time variable; x Lð Þ represents the one, two, or three-
dimensional spatial coordinate(s); and W x; tð Þ is a mathematical expression that tends toward 1 as time
approaches infinity. This condition permits W x; tð Þ to be treated as the cumulative probability density func-
tion of the particle travel times and C xð Þ to be the recovery-ratio function that controls the infinite-time
asymptotic value of the concentration at the observation point xð Þ for a fixed boundary condition. Note
that the identification between equation (1) and analytical solutions corresponding to the first-type bound-
ary condition in which the term Q does not exist may be performed by canceling this term through the
function C, e.g., by defining C xð Þ51=Q.

Third, the following equation can be solved for the time variable:

W x; tð Þ5U01 (2)

where U01 is a random number drawn from a uniform distribution between 0 and 1. The solution to equa-
tion (2) with respect to time gives the stochastic travel time of the particle, as suggested by Yamashita and
Kimura [1990], whereas C xð Þ is used to calculate the Lagrangian concentration at a given time from the his-
togram of particle arrival times.

The complete TDRW algorithm can be summarized by the following steps:

1. Release N particles at the source location, which defines the origin of the spatial coordinate system in
which the location x of the observation point is specified.

2. For each particle, generate a random number U01 and solve equation (2) for the particle’s travel time.

3. Determine the minimum and maximum travel times tmin and tmax for the entire set of particles.

4a. Calculate the Lagrangian concentration for x at time t as follows:

C x; tð Þ5 QC0

N
C xð ÞMc tð Þ (3)

where Mc tð Þ is the number of particles with a travel time less than t.

4b. Alternatively, the concentration corresponding to an instantaneous release of mass m0 at t50 can be
calculated as follows:

C x; tð Þ5 m0

NDt
C xð ÞMi t;Dtð Þ (4)

where Dt is a time step and Mi t;Dtð Þ is the number of particles that arrived at x between t2Dt=2 and
t1Dt=2.
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5. Repeat step 4a or 4b for a series of time values t within the time interval tmin $ tmax½ � to obtain the
breakthrough curve at x.

As generally discussed in the literature [Kreft and Zuber, 1978; Parker and van Genuchten, 1984], two con-
cepts may be used to define the concentration of a solute in a flowing fluid: (i) resident concentration,
which "expresses the mass of solute per unit volume of fluid contained in an elementary volume of the sys-
tem at a given instant," and (ii) flux concentration, which "expresses the mass of solute per unit volume of
fluid passing through a given cross section at an elementary time interval" [Kreft and Zuber, 1978]. Obvi-
ously, the concept of flux concentration has no physical relevance in the case of purely diffusive trans-
port and the distinction between resident and flux concentration is only appropriate for advection-
dispersion transport problems. Another case in which this distinction is not meaningful is that of
advection-dominated transport problems, as the numerical difference between resident and flux con-
centration can be considered negligible for high P�eclet numbers [Parker and van Genuchten, 1984].
According to the above definitions, the concentration-time curves generated by the present TDRW algo-
rithm clearly represent flux concentration in the case of advection-dispersion transport. However, as dis-
cussed later in section 4, the multidimensional TDRW method is mainly intended for advection-
dominated transport problems and the calculated concentrations may therefore also be treated as resi-
dent concentrations.

3. Multidimensional TDRW Equations

3.1. Transport Equations
The advection-dispersion equation (ADE) for solute transport in a homogeneous porous medium with a uni-
form and steady flow can be formulated as follows [e.g., Fetter, 1993]:

@C x; tð Þ
@t

52urC x; tð Þ1Dr2C x; tð Þ (5)

where u is the advection velocity vector and D is the dispersion tensor. Additional terms describing the
effects of reactions and sorption are commonly included for noninert solutes but are neglected here for
simplicity. For two-dimensional x; yð Þ and three-dimensional x; y; zð Þ problems, the x axis is generally ori-
ented along the flow direction, which simplifies the forms of u and D as follows:

in 2-D : u5

u

0

0
B@

1
CA and D5

Dx 0

0 Dy

0
B@

1
CA

in 3-D : u5

u

0

0

0
BBBB@

1
CCCCA and D5

Dx 0 0

0 Dy 0

0 0 Dz

0
BBBB@

1
CCCCA

(6)

where u LT21
� �

is the scalar value of the advection velocity, Dx L2T21
� �

is the longitudinal dispersion coeffi-
cient and Dy L2T21

� �
and Dz L2T21

� �
are the transverse dispersion coefficients.

Considering now the case of purely diffusive transport, the basic transport equation is Fick’s second law,
which can be written in the following form:

@C x; tð Þ
@t

5Der2C x; tð Þ (7)

where De L2T21
� �

is the effective diffusion coefficient, which accounts for the effects of pore geometry.

3.2. Example Derivation of TDRW Equations for 2-D Advective-Dispersive Transport
The analytical solution of equation (5) for the case of continuous injection in a 2-D infinite medium was
derived by Wilson and Miller [1978] as follows:
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C x; y; tð Þ5 QC0

4pnb
ffiffiffiffiffiffiffiffiffiffi
Dx Dy

p exp
x
B

� �
W g;

r
B

� �
(8)

where n dimensionlessð Þ is the effective porosity of the porous medium; b Lð Þ is the thickness of the two-
dimensional system, in which the solute is assumed to be uniformly injected along the z axis at the point

x50; y50ð Þ; Q L3T21
� �

is the volumetric injection rate; and

B5
2Dx

u
(9)

g5
r2

4Dx t
(10)

r5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21

Dx

Dy
y2

s
(11)

W g;
r
B

� �
5

ð1
g

1
h

exp 2 h1
r2

4B2h

� �	 

dh (12)

Unfortunately, the exact analytical solution expressed by equations (8–12) cannot be used for the method
described in section 2 because equation (8) cannot be cast in the general form of equation (1). However,
Wilson and Miller [1978] also provided an approximation of the function W g; r=Bð Þ for the case of advection-
dominated problems:

W g;
r
B

� �
ffi

ffiffiffiffiffiffi
pB
2r

r
exp 2

r
B

� �
erfc

2g2r=B
2
ffiffiffi
g
p

� �
(13)

According to the authors, the error incurred by this approximation is on the order of 10% for r=B > 1 and
1% for r=B > 10. The resulting approximate analytical solution expressed by equations (8–11) and (13) is
well suited to the proposed approach, as the following identifications can easily be determined through
comparison to equation (1):

W x; y; tð Þ5 1
2

erfc
2g2r=B

2
ffiffiffi
g
p

� �
(14)

C x; yð Þ5 1

2nb
ffiffiffiffiffiffiffiffiffiffiffiffi
pruDy

p exp
u x2rð Þ

2Dx

� �
(15)

Substituting equation (14) in equation (2), we obtain

r2utffiffi
t
p 52

ffiffiffiffiffi
Dx

p
erfc21 2U01ð Þ (16)

where erfc21 is the inverse complementary error function. Solving equation (16) for the time variable yields
the following solution:

t5
r
u

1
Z21Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z214ur
p

2u2
(17)

where

Z52
ffiffiffiffiffi
Dx

p
erfc21 2U01ð Þ (18)

Substituting equation (15) into equation (3) yields the expression for the Lagrangian concentration for con-
tinuous injection:

C x; y; tð Þ5 QC0

2nbN
ffiffiffiffiffiffiffiffiffiffiffiffi
pruDy

p exp
u x2rð Þ

2Dx

� �
Mc tð Þ (19)

The following expression for the case of instantaneous injection can be obtained by substituting equation
(15) into equation (4):
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C x; y; tð Þ5 m0

2nbNDt
ffiffiffiffiffiffiffiffiffiffiffiffi
pruDy

p exp
u x2rð Þ

2Dx

� �
Mi t;Dtð Þ (20)

3.3. Extension to Multidimensional Advection-Dispersion and Pure-Diffusion TDRW Algorithms in
Homogeneous Media
Following the same methodology described above, new TDRW equations can be derived from approximate
analytical solutions of the 1-D and 3-D advection-dispersion equations and from exact analytical solutions
of the 1-D, 2-D, and 3-D pure-diffusion transport equations. The analytical solutions that have been considered
and the resulting TDRW equations are summarized in Table 1. The case of 2-D purely diffusive transport is

somewhat specific because the equation W x; y; tð Þ5U01, where W x; y; tð Þ5erfc x
2
ffiffiffiffiffi
De t
p erfc jyj

2
ffiffiffiffiffi
De t
p , cannot be ana-

lytically solved for the time variable. Fortunately, this equation is easy to solve numerically using standard iter-
ative methods. In the present work, a Newton-Raphson algorithm [e.g., Press et al., 1993] is used.

Although not addressed in this technical note for the sake of clarity, the TDRW equations can be easily
adapted to account for particle retardation caused by linear instantaneous sorption/desorption. As dis-
cussed in many textbooks [e.g., Fetter, 1993], the coupling of linear sorption with advection-dispersion can
easily be mathematically modeled by applying a retardation factor to both the advection velocity and the
dispersion coefficients. For purely diffusive transport, the effects of linear sorption may be similarly
accounted for by substituting the effective diffusion coefficient with an apparent diffusion coefficient. Other
transport processes that can be straightforwardly addressed include time-varying source conditions, by
appropriately defining the particle-release times at the source, and first-order decay reactions, by decreas-
ing the time-series concentration values in accordance with the decay constant.

4. Verification Cases

The accuracy of a numerical model can be verified through comparison with (exact) analytical and/or alter-
native numerical solutions. In the present case, good agreement is logically expected between the TDRW
simulations and the analytical solutions on which the particle algorithms are based. The accuracy of the 1-
D, 2-D, and 3-D purely diffusive algorithms, which are based on exact analytical solutions, is therefore
expected to be stochastically exact, whereas the accuracy of the 1-D, 2-D, and 3-D advection-dispersion
algorithms is expected to be comparable to that of the approximate analytical solutions on which they are

Table 1. Approximate C x; tð Þ ffið Þ and Exact C x; tð Þ5ð Þ Analytical Solutions and TDRW Equations for 1-D, 2-D, and 3-D Advective-Disper-
sive Transport (ADE) and for 1-D, 2-D, and 3-D Purely Diffusive Transport (Diff)

Transport Analytical Solution [Reference]
Mass Recovery Ratio

Function C xð Þ TDRW Transit Time

1-D ADE, first-type
boundary condition

C x; tð Þ ffi C0
2 erfc x2ut

2
ffiffiffiffiffi
Dx t
p

� �
[Ogata

and Banks, 1961]

C xð Þ5 1
Q t5 x

u 1 Z2 1Z
ffiffiffiffiffiffiffiffiffiffiffiffi
Z2 14ux
p

2u2 where

Z52
ffiffiffiffiffiffi
Dx
p

erfc21 2U01ð Þ
2-D ADE, third-type

boundary condition
C x; y; tð Þ ffi QC0

4nb
ffiffiffiffiffiffiffiffiffi
pruDy

p exp u x2rð Þ
2Dx

� �
erfc 2g2r=B

2
ffiffi
g
p

� �
where

r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 Dx

Dy
y2

q
; g5 r2

4Dx t; B5 2Dx
u

[Wilson and Miller, 1978]

C x; yð Þ5 1
2nb

ffiffiffiffiffiffiffiffiffi
pruDy

p exp u x2rð Þ
2Dx

� �
t5 r

u 1 Z2 1Z
ffiffiffiffiffiffiffiffiffiffiffi
Z2 14ur
p

2u2 where

Z52
ffiffiffiffiffiffi
Dx
p

erfc21 2U01ð Þ

3-D ADE, third-type
boundary condition

C x; y; z; tð Þ ffi QC0

8pnr
ffiffiffiffiffiffiffiffi
Dy Dz

p exp

u x2rð Þ
2Dx

� �
erfc r2ut

2
ffiffiffiffiffi
Dx t
p

� �
where r5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 Dx
Dy

y21 Dx
Dz

z2
q

[Hunt, 1978]

C x; y; zð Þ5 1
4pnr

ffiffiffiffiffiffiffiffi
Dy Dz

p exp u x2rð Þ
2Dx

� �
t5 r

u 1 Z2 1Z
ffiffiffiffiffiffiffiffiffiffiffi
Z2 14ur
p

2u2 where

Z52
ffiffiffiffiffiffi
Dx
p

erfc21 2U01ð Þ

1-D Diff, first-type
boundary condition

C x; tð Þ5C0erfc x
2
ffiffiffiffiffi
De t
p

� �
[Crank,

1975]

C xð Þ5 1
Q t5 1

De

x
2 erfc21 U01ð Þ

� �2

2-D Diff, first-type
boundary condition

C x; y; tð Þ5C0erfc x
2
ffiffiffiffiffi
De t
p erfc jyj

2
ffiffiffiffiffi
De t
p

[Etori, 1992]

C xð Þ5 1
Q

t5 numerical root of equation

erfc x
2
ffiffiffiffiffi
De t
p erfc jyj

2
ffiffiffiffiffi
De t
p 5U01

h i
3-D Diff, third-type

boundary condition
C x; y; z; tð Þ5 QC0

4pnDe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 1y2 1z2
p erfcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21y2 1z2
p

2
ffiffiffiffiffi
De t
p [Crank, 1975]

C x; y; zð Þ5 1
4pnDe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21y21z2
p t5 x21y2 1z2

4De erfc21 U01ð Þ½ �2
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based. To demonstrate these claims, 5 test cases are presented below to provide comparisons to exact ana-
lytical solutions. The values of the parameters used for the calculation of both the analytical curves and the
TDRW simulations are listed in Table 2.

In test 1, a source is assumed to supply a continuous injection of constant concentration in a one-
dimensional semi-infinite homogeneous porous medium in which transport is purely diffusive. Considering
the following initial and boundary conditions,

C x; tð Þ50; x > 0; t50 (21)

C x; tð Þ5C0; x50; t > 0 (22)

the exact analytical solution is [e.g., Crank, 1975]

C x; tð Þ5C0erfc
x

2
ffiffiffiffiffiffiffi
Det
p

� �
(23)

Test 2 addresses the case of two-dimensional diffusion in a semi-infinite plane y; x > 0ð Þ from a prescribed
constant concentration at the injection point C x50; y50; tð Þ5C0. The corresponding analytical solution can
be written as follows [e.g., Etori, 1992]:

C x; y; tð Þ5C0erfc
x

2
ffiffiffiffiffiffiffi
Det
p erfc

jyj
2
ffiffiffiffiffiffiffi
Det
p (24)

Test 3 addresses the case of an instantaneous point source in a three-dimensional medium. The corre-
sponding analytical solution is [e.g., Charbeneau, 2000]

C x; y; z; tð Þ5 m0

n 4pDetð Þ3=2
exp 2

x21y21z2

4Det

� �
(25)

Test 4 addresses the case of advection-dispersion in a 1-D semi-infinite medium with a continuous-source
boundary condition. The exact analytical solution for this transport scenario was derived by Ogata and
Banks [1961] as follows:

Table 2. Input Parameters for Test 1 (1-D Purely Diffusive Transport, Continuous Source), Test 2 (2-D Purely Diffusive Transport, Continu-
ous Source), Test 3 (3-D Purely Diffusive Transport, Instantaneous Point Source), Test 4 (1-D Advective-Dispersive Transport, Continuous
Injection), and Test 5 (2-D Advective-Dispersive Transport, Instantaneous Injection)

Test Parameters Values

1 Effective diffusion coefficient De 1310210 m2/s
Prescribed concentration C0 1 g/m3

Travel distance x between the source and observation points 5 m
2 Effective diffusion coefficient De 1310210 m2/s

Prescribed concentration C0 1 g/m3

Coordinates x; yð Þ of the source (0, 0)
Coordinates x; yð Þ of the observation point (5, 4) m

3 Effective diffusion coefficient De 1310210 m2/s
Effective porosity n 0.05
Injected mass m0 300 g
Coordinates x; y; zð Þ of the source (0, 0, 0)
Coordinates x; y; zð Þ of the observation point (10, 5, 2) m

4 Prescribed concentration C0 1 g/m3

Travel distance x between the injection and observation points 5 m
Advection velocity u 231025 m/s
Longitudinal dispersion coefficient Dx , test 4a Pe5100ð Þ 131026 m2/s
Longitudinal dispersion coefficient Dx , test 4b Pe530ð Þ 3.331026 m2/s
Longitudinal dispersion coefficient Dx , test 4c Pe510ð Þ 131025 m2/s
Longitudinal dispersion coefficient Dx , test 4d Pe51ð Þ 131024 m2/s
Longitudinal dispersion coefficient Dx , test 4e Pe50:1ð Þ 131023 m2/s

5 Injected mass m0 20 g
Aquifer thickness b 10 m
Advection velocity u 431025 m/s
Effective porosity n 0.05
Longitudinal dispersion coefficient Dx 231025 m2/s
Transverse dispersion coefficient Dy 131026 m2/s
Coordinates x; yð Þ of the injection point (0, 0)
Coordinates x; yð Þ of the observation point (5, 1) m
r=B ratio 6.71
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C x; tð Þ5 C0
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To assess the accuracy of the advection-dispersion algorithms, which are based on approximate analytical
solutions, five different values of the longitudinal dispersion coefficient Dx are considered in test 4. These
values correspond to P�eclet numbers Pe5ux=Dxð Þ ranging from 0.1 to 100.

Test 5 addresses the case of an instantaneous injection in a two-dimensional medium. The corresponding
analytical solution was derived by Wilson and Miller [1978] as follows:

C x; y; tð Þ5 m0

4pnbt
ffiffiffiffiffiffiffiffiffiffi
Dx Dy

p exp 2
x2utð Þ2

4Dx t
2

y2

4Dy t

 !
(27)

As expected and as illustrated in Figure 1, the numerical and analytical results coincide very well for purely
diffusive transport. Because the corresponding TDRW algorithms were derived from exact analytical solu-
tions, these algorithms do no suffer from any particular application restriction. Conversely, as demonstrated
in Figure 2, the advection-dispersion TDRW curves deviate from the exact analytical solutions for low Pe val-
ues while conforming to the approximate analytical solution in each case. This finding demonstrates that
the inaccuracies for low Pe values do not originate from the proposed methodological approach but
instead correspond to the inherent limitations of the approximate analytical solutions from which the
advection-dispersion TRDW equations were derived. In other words, the accuracy of the TDRW algorithms
derived following the general methodological approach described in section 2 is strictly comparable to that
of the considered analytical solutions. For an exact analytical solution, the TDRW algorithms are stochasti-
cally exact. If the TDRW algorithms are based on approximate analytical solutions, their accuracy is on the
same order as that of the analytical approximation. Therefore, the stochastic accuracy of the 1-D, 2-D, and
3-D advection-dispersion TDRW algorithms summarized in Table 1 are inherently equivalent to the relative
accuracy of the approximate analytical solutions reported by Ogata and Banks [1961], Wilson and Miller
[1978], and Hunt [1978], respectively, with respect to the exact analytical solutions provided by the same
authors. Because of the analytical similarities between the 1-D, 2-D, and 3-D ADE solutions, the general error
estimation provided by Wilson and Miller [1978] for the 2-D case (see discussion in section 3.2) can be gener-
alized to 1-D and 3-D. The error of the 1-D, 2-D, and 3-D advection-dispersion TDRW algorithms is therefore

less than 10% for r=B > 1, where r5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 Dx

Dy
y21 Dx

Dz
z2

q
and B5 2Dx

u , which is actually verified in tests 4a, 4b

and 4c. However, as illustrated
by tests 4d and 4e, the error
increases rapidly for r=B ratios
less than 1, which indicates
that the advection-dispersion
TDRW algorithms are not
suited to highly dispersive
transport problems.

5. Extension to
Multidimensional
TDRW Simulations in
Heterogeneous Media

Because of the homogeneity
assumption inherent in the ana-
lytical solutions from which the
algorithms given by equations
(3) and (4) and Table 1 were
derived, these algorithms can
only be used to simulate trans-
port in homogeneous porous
media. However, contaminant

Figure 1. Comparison between TDRW simulations and analytical solutions for 1-D (test 1,
continuous source), 2-D (test 2, continuous source), and 3-D (test 3, instantaneous point
source) purely diffusive transport. The number of particles used in the TDRW simulations is
13104 for test 1 and test 2, and 53105 for test 3.
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transport problems in natural
subsurface systems are typically
influenced by spatial variability
in the flow and transport proper-
ties. In this section, the extension
of the algorithms to heterogene-
ous media conceptualized as a
piecewise collection of homoge-
neous media separated by sharp
interfaces is addressed. The key
step is the determination of the
location of particle transition
points across the medium inter-
faces; these locations are used as
intermediate checkpoints at
which the particle travel time is
updated. Ideally, the particle
checkpoints should correspond
to the intersections between the
interface boundaries and the
"natural" particle transport paths
as determined by a conventional
(i.e., space-based) random-walk
simulation. This issue is straight-

forward for 1-D heterogeneous media, and the proposed 1-D TDRW algorithms can indeed be used to simulate
advective-dispersive or purely diffusive transport in such media, similar to the application of the method of Ban-
ton et al. [1997] by Bodin et al. [2003] to interconnected 1-D transport pathways. For 2-D and 3-D heterogeneous
media, the placement of the checkpoints depends on the underlying transport mechanisms. For purely diffusive
transport, the particle motion may be considered to obey a purely random process. Therefore, starting from a
known particle location xn, the next particle location xn11 can be defined as the intersection between a straight
line of random direction starting from xn and the surrounding medium boundaries. For advective-dispersive
transport, the proposed approach is to first compute the intersection x? between the advective pathline and the
downstream interface boundary and then to compute a stochastic translation of x? along the boundary accord-
ing to the conventional transverse random-walk equations DxT 5Z1

ffiffiffiffiffiffiffiffiffiffi
2Dy�t

p
and DxV 5Z2

ffiffiffiffiffiffiffiffiffiffi
2Dz�t
p

, where DxT ;DxV

are the spatial translations in the transverse horizontal and vertical directions; �t5L=u is the advective travel time,
where L is the length of the advective pathline from xn to x? ; and Z1, Z2 are two random numbers drawn from a
standardized normal distribution. Note that the translation from x? to xn11 is in 1-D in a 2-D heterogeneous
medium and in 2-D in 3-D heterogeneous media.

Regardless of the considered transport scenario and because the particle displacement is then decomposed
into a series of jumps in a collection of homogeneous media, the TDRW transit time equations presented in
Table 1 can be used to compute the particle travel time between two successive particle locations and
therefore, by simple summation, the total travel time from the injection point to the observation point. The
main difference between homogeneous and heterogeneous media is that particles may come from differ-
ent locations for their last jump toward the observation point. Equations (3) and (4) must therefore be modi-
fied to account for the distinct C values relative to each particle transport path. Because the elementary
mass associated with each particle is preserved during transport, only the last particle jump toward the
observation point must be considered in the calculation of C. Therefore, the new equations that must be
used in place of equations (3) and (4) can be written, respectively, as

C x; tð Þ5 QC0

N

XN

j51

Cj tð Þ (28)

where
XN

j51
Cj tð Þ is the sum of the C values corresponding to the last jump of particles arriving at x with a

travel time less than t, and

Figure 2. Comparison between TDRW simulations and exact analytical solutions for 1-D
(test 4, continuous injection) and 2-D (test 5, instantaneous injection) advective-dispersive
transport. The number of particles used in the TDRW simulations is 13104 for test 4 and
53105 for test 5.
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C x; tð Þ5 m0

NDt

XN

j51

Cj t;Dtð Þ (29)

where
XN

j51
Cj t;Dtð Þ is the sum of the C values corresponding to the last jump of particles arriving at x

between t2Dt=2 and t1Dt=2.

It must be acknowledged that the above-proposed approach for advection-dispersion TDRW simulations is
supposed to be rigorously valid only when the medium interface boundaries are both infinite and perpen-
dicular to the advective pathlines. To illustrate this point, let us consider the counter-case of a particle dis-
placement between two locations within medium 1 close to the interface with medium 2 and with
advective pathlines more or less parallel to the medium interface boundary. In this case, the real particle
transport path may cross the interface between the two media because of transverse dispersion and be par-
tially transported in medium 2 before returning to medium 1. The particle travel time between the two loca-
tions in medium 1 can therefore be partially affected by the transport properties of medium 2. However,
the TDRW algorithm for 2-D and 3-D heterogeneous media will not "see" medium 2 because the advective
pathline does not cross the medium interface boundary, and the TDRW particle travel time will therefore be
biased. Further developments may therefore be needed to rigorously address this issue. However, as dis-
cussed in the previous section, the multidimensional TDRW method is mainly intended for advection-
dominated transport problems. In these cases, accuracy errors due to lateral heterogeneities are expected
to be negligible.

Figure 3 illustrates the synthetic transport problem employed to verify the validity of the proposed
approach. In this problem, a finite mass of solute is assumed to be released instantaneously and then sub-
jected to advection-dispersion in a 2-D heterogeneous medium. The flow direction is assumed to be uni-
form in the x direction, and the solute spreading in the x and y directions is affected by longitudinal and
transverse dispersion, respectively. The purpose is to simulate the solute breakthrough curves at three
observation points located downstream and beyond a discontinuity within the medium transport proper-
ties. The finite difference transport model MT3DMS [Zheng, 2009] was selected for comparison with the mul-
tidimensional TRDW method. The simulation domain was discretized using a 5 m 3 5 m finite-difference
grid. The flow field was solved using MODFLOW [Harbaugh et al., 2000], assigning no-flow boundaries at
the top and bottom and fixed-head boundaries on the left and right sides such that a lateral head gradient
was produced. The third-order total-variation-diminishing (TVD) scheme available in the MT3DMS code was

Figure 3. Comparison between TDRW and MT3DMS simulations of advective-dispersive transport in a synthetic 2-D heterogeneous medium. (left) description of the transport problem;
(right) simulated breakthrough curves at three different observation points.
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selected as the advection solver package. As illustrated in Figure 3, the breakthrough curves from the TDRW
method and MT3DMS simulations are in good agreement, which demonstrates the applicability of the
TDRW method to multidimensional heterogeneous media.

The general methodology and resulting TDRW algorithms presented here represent a significant theoretical
improvement over existing time-domain particle-tracking methods and broaden the potential applications
of such methods. For example, the 2-D and 3-D TDRW equations may be advantageously incorporated into
Lagrangian models of multispecies reactive transport [e.g., Paster et al., 2013; Ding et al., 2013] because they
provide a simple method of calculating the probability density for two reactant particles at the same loca-
tion at the same time; these equations may also be useful for routing particles through 2-D and 3-D fracture
intersections [e.g., Zafarani and Detwiler, 2013].

6. Conclusions

A set of new time-domain particle-tracking algorithms has been derived from approximate analytical solu-
tions of the advection-dispersion equation and from exact analytical solutions of the pure-diffusion equa-
tion. These algorithms allow one to compute both the time required for a particle to travel a specified
distance in a homogeneous medium and the mass recovery at the observation point, which may be incom-
plete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media
represented as a piecewise collection of homogeneous media. The particle motion is then decomposed
along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of
the multidimensional TDRW method is verified against (i) exact analytical solutions of solute transport in
homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of sim-
ple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to
advection-dispersion transport problems dominated by advection. Conversely, the method is not recom-
mended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW
algorithms degrades rapidly for low P�eclet number, consistent with the accuracy limit of the approximate
analytical solutions.

The 1-D advection-dispersion algorithm proposed in this note may be regarded as an alternative to the
TDRW method of Banton et al. [1997], and the new 2-D and 3-D advection-dispersion algorithms constitute
a significant improvement over existing time-domain particle methods, which are strictly limited to 1-D
transport problems. Furthermore, the proposed approach provides a unified methodology for deriving
multi-dimensional time-domain particle equations and may be applicable to other mathematical transport
models (e.g., reactive solute transport, multiple-porosity media, or non-Fickian transport), provided that
appropriate analytical solutions are available.
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