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Fast and accurate evaluation

of a generalized incomplete gamma function

Rémy Abergel and Lionel Moisan

Université de Paris, MAP5, CNRS, F-75006 Paris - France.

Abstract

We present a computational procedure to evaluate the integral
∫ y
x
sp−1 e−µs ds for 0 ≤ x < y ≤ +∞,

µ = ±1, p > 0, which generalizes the lower (x = 0) and upper (y = +∞) incomplete gamma functions. To
allow for large values of x, y, and p while avoiding under/overflow issues in the standard double precision
floating point arithmetic, we use an explicit normalization that is much more efficient than the classical ratio
with the complete gamma function. The generalized incomplete gamma function is estimated with continued
fractions, integrations by parts, or, when x ≈ y, with the Romberg numerical integration algorithm. We
show that the accuracy reached by our algorithm improves a recent state-of-the-art method by two orders of
magnitude, and is essentially optimal considering the limitations imposed by the floating point arithmetic.
Moreover, the admissible parameter range of our algorithm (0 ≤ p, x, y ≤ 1015) is much larger than competing
algorithms and its robustness is assessed through massive usage in an image processing application.

Keywords: Incomplete gamma function, incomplete gamma integral, continued fraction, numerical cancella-
tion, Romberg’s method.

1 Introduction

In this work, we focus on the computation of a generalized incomplete gamma function that will be defined
below. Let us first recall the definition of Euler’s gamma function,

∀p > 0, Γ(p) =

∫ +∞

0

sp−1 e−s ds . (1)

The lower and upper incomplete gamma functions are respectively obtained by allowing the integration domain
to vary in (1),

∀p > 0, ∀x ≥ 0, γ(p, x) =

∫ x

0

sp−1 e−s ds and Γ(p, x) =

∫ +∞

x

sp−1 e−s ds . (2)

The gamma function is usually viewed as an extension of the factorial function since it satisfies Γ(p) = (p− 1)!
for any positive integer p. Note that the gamma function can also be defined for all complex numbers p with
positive real part, using the same convergent improper integral as in (1), and can be extended by analytic
continuation to all complex numbers except the nonpositive integers, that is, to p ∈ C \ {0,−1,−2,−3, . . . }.

These special functions arise in many areas, such as astronomy and astrophysics Cannon and Vardavas [1974],
Hills [1975], Collins [1989], Rayleigh scattering Kissel et al. [1980], quantum gravity Bleicher and Nicolini [2010],
networks Moreno et al. [2002], financial mathematics Linetsky [2006], image analysis Robin et al. [2010], etc.
(see Chaudhry and Zubair [2001] for more examples). From the mathematical viewpoint, the computation
of incomplete gamma functions is typically required in applications involving the evaluation of χ2 distribution
functions, exponential integrals, error functions (erf), cumulative Poisson or Erlang distributions. Their practical
numerical evaluation is still subject to some flourishing research in the modern literature. The first algorithm
dedicated to the numerical evaluation of the incomplete gamma functions was, to the best of our knowledge,
proposed in Bhattacharjee [1970], and later in Press et al. [1992]. It evaluates the ratio γ(p, x)/Γ(p) using a
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series expansion when 0 < p ≤ x < 1 or 0 ≤ x < p, or the ratio Γ(p, x)/Γ(p) using a continued fraction in the
remaining part of the whole domain {x ≥ 0, p > 0}. Note that since

γ(p, x) + Γ(p, x) = Γ(p), (3)

one of the incomplete gamma functions can be deduced from the other as soon as we assume that Γ(p) is known.
Gautschi [1979] proposed another computational procedure, based on Taylor’s series and continued fractions,
to evaluate those two functions in the region {x ≥ 0, p ∈ R} (in fact, for p ≤ 0, Tricomi’s version Tricomi
[1950], Gautschi [1998] of the lower incomplete gamma function, which remains real for any real numbers x, p,
is considered). The criterion proposed in Bhattacharjee [1970] to decide which one of the two integrals should
be computed according to the value of (x, p) is refined, and a more suitable normalization is employed, which
slightly extends the range over which those two functions can be represented within standard double precision
arithmetic. More recently, Winitzki [2003] focused on the computation of the upper incomplete gamma function
and used some series expansions, a continued fraction (due to Legendre), some recurrence relations, or, for large
values of x, an asymptotic series. The precision of the approximation is controlled by estimating the number
of terms required to reach a given absolute precision according to the values of x and p. However, the study
is not considered from a practical point of view, and no algorithm or experimental validation are provided
to assess the numerical stability of the proposed method. In Guseinov and Mamedov [2004], the lower and
upper incomplete gamma functions are computed using backward and forward recurrence relations ; however,
we experimentally noticed that a faster convergence was achieved with continued fractions. More recently, Gil
et al. [2012] proposed new algorithms to compute the lower and upper ratios γ(p, x)/Γ(p) and Γ(p, x)/Γ(p), and
to solve for x given one of these ratios. The ratios are computed using Taylor expansions, continued fractions or
uniform asymptotic expansions, depending on the values of p and x. They claim a relative accuracy of 7.9 ·10−13

on the domain (0, 500]2, which we found a bit optimistic, as we shall see in Section 2.5.
One difficulty encountered in the numerical evaluation of Gamma functions (incomplete or not) is their

exponential growth that easily causes numerical overflow. Thus, before designing an algorithm, it is necessary
to choose an appropriate normalization to avoid this phenomenon. A classical normalization, used in most of
the above-mentioned algorithms, computes the lower and upper incomplete Gamma function ratios

P (p, x) =
γ(p, x)

Γ(p)
and Q(p, x) =

Γ(p, x)

Γ(p)
. (4)

Since P and Q are nonnegative and satisfy P + Q = 1 (as a consequence of (3)), we have P,Q ≤ 1 so that
no overflow can occur with these ratios. However, this normalization is not really satisfactory either because it
produces severe underflow. When one of p or x is small and the other grows, min(P,Q) rapidly decays far below
the smallest positive floating point number (around 10−308 in IEEE 754 double precision standard arithmetic),
so that the best possible numerical approximation, 0, produces a relative error of 100%. A simple example is
P (200, 1) ' 10−375. In other terms, any algorithm estimating the gamma integrals (2) from a computation of
P and Q in double precision arithmetic will fail in a subpart of the (p, x) plane. On the domain (0, 500]2, the
value of min(P,Q) is representable for only 90% of the domain. On the domain (0, 105]2, this ratio drops to less
than 15%, and rapidly approaches 0% when the domain grows further. This “underflow region” is represented
in Fig. 1 (a).

In the present paper, we shall use a different normalization, which considerably extends the range of admis-
sible values of p and x. More precisely, we consider the single function

∀x ≥ 0, p > 0, G(p, x) = ex−p log x ×

{
γ(p, x) if x ≤ p;

Γ(p, x) otherwise.
(5)

From G(p, x) and Γ(p) it is straightforward to compute γ(p, x) and Γ(p, x) using (3). Moreover, we can see in
Fig. 1 (b) that G is not subject to underflow or overflow issues on a very large domain, much larger than the
domain (0, 1015]2 here considered. In the following, it will be useful to extend the definition (5) of G to the case
x < 0, p ∈ N∗ with

G(p, x) = ex−p log |x|
∫ |x|

0

sp−1 es ds = ex−p log |x|(−1)pγ(p, x), (6)

where γ(p, x) is naturally extended to negative values of x with Equation (2). The possibility of evaluating the
lower incomplete gamma function for negative values of x is explored by Thompson [2013], but in a situation
different to ours, since he focused on the case p = n+ 1

2 , n ∈ Z. Gil et al. [2016] consider the more general case
x < 0 and p ∈ R, but since they directly estimate γ(p, x) (without normalization), under- and overflow issues
dramatically restrict the range of admissible values of x and p.
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(a) values of min(P,Q) (b) isovalues of G
and the large “underflow region”

Fig. 1. Comparison between two normalizations of the incomplete gamma function. (a): values of min(P (p, x), Q(p, x))
(see Equation (4)) as a function of x and p, with values below the smallest positive double precision floating point number (' 10−308)
marked as underflow. (b): isovalues curves of the function G(p, x) defined in Equation (5), represented on the same domain (0, 1015]2

(log scale). While min(P,Q) suffers from severe underflow issues as soon as p ≥ 103 or x ≥ 103, G slowly varies in the whole
domain, without any risk of under- or overflow. From a numerical point of view, G is thus a much better normalization of the
incomplete gamma function.

The aim of this paper is to propose a numerical algorithm to efficiently and accurately compute the gener-
alized incomplete gamma function

Iµ,px,y =

∫ y

x

sp−1 e−µs ds (7)

for 0 ≤ x < y ≤ +∞, µ = ±1 and p > 0. When µ = −1, we also impose the restriction that y 6= +∞ and p is
an integer in order to ensure that the integral is real and finite. Notice that for more general values of µ ∈ R∗,
we have ∫ y

x

sp−1 e−µs ds = |µ|−p Iε,p|µ|x,|µ|y, with ε =
µ

|µ|
, (8)

hence the hypothesis µ = ±1 does not cause any loss of generality.
The numerical evaluation of the integral Iµ,px,y has found applications in the field of astronomy, for instance,

in Hills [1975], where its computation was needed to model the dynamical evolution of stellar clusters. It is
also needed as a renormalization factor as soon as the truncated version gamma (or Erlang) distribution is
considered (see, for example, Verbelen et al. [2015], Philippe [1997] and the references therein). It was also
recently needed in the field of image processing in Abergel et al. [2015], where the accurate computation of Iµ,px,y

for a large range of parameters was at the heart of a denoising algorithm for the restoration of images corrupted
with Poisson noise.

The generalized incomplete gamma function (7) was actually previously introduced in Fullerton [1972] under
the slightly different form

Jpx1,x2
= ex1

∫ x2

x1

|s|p−1 e−s ds , for (x1, x2) ∈ R2 and p > 0 . (9)

The integrals I and J are closely related since

∀x, y, 0 < x < y, ∀p > 0, Iµ,px,y =

{
e−xJpx,y if µ = 1 ,

eyJp−y,−x if µ = −1 .
(10)

Unfortunately, Fullerton’s algorithm, which was not validated for a large range of parameters, presents several
weaknesses. As pointed out in Schoene [1978], for some values of the parameters, the algorithm suffers from
numerical instabilities, yielding for instance, a computed integral with incorrect sign, or zero digits of precision.
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We also observed some overflow issues when we tested the algorithm on a higher range of parameters (typically
when p ≈ 102 or higher, but also for many other parameter settings).

Note also that a function dedicated to the evaluation of I1,p
x,y, Gamma[p,x,y], is available in the scientific

computing software MathematicaTM (see Wolfram Research Inc [1988], and Wolfram Research Inc [1998] for
the online evaluation of I1,p

x,y). Unfortunately, Mathematica’s algorithms are not currently disclosed to the public.
It is possible to estimate Iµ,px,y from the classical incomplete gamma functions, since for µ = 1 one has

Iµ,px,y = γ(p, y)− γ(p, x) = Γ(p, x)− Γ(p, y) = Γ(p)− γ(p, x)− Γ(p, y), (11)

while for µ = −1,

Iµ,px,y = (−1)p
(
γ(p,−y)− γ(p,−x)

)
. (12)

However, the effective computation of Iµ,px,y using (11) or (12) raises several numerical issues:

1. For some values of the parameters, the lower and upper incomplete gamma functions cannot be well
approximated in the computer floating point arithmetic because they take values outside admissible bounds
(about 10±308 for IEEE 754). This is why it is important to choose an appropriate normalization, as we
discussed earlier. In the present work, we will use the function G defined in Equation (5). In practice,
because Iµ,px,y itself may not be directly representable, we will represent it under a mantissa-exponent form
ρ · eσ, where ρ and σ are floating point numbers with double precision;

2. Computing G(p, x) efficiently depends on the values of p and x. We shall present a simple division of the
plane (p, x) into 3 regions and, in each region, a numerical procedure based on a continued fraction or on
recursive integration by part;

3. When Iµ,px,y is computed as the difference A−B, the result may be inaccurate if A and B are close to each
other (the well-known cancellation effect in floating-point arithmetic), which happens in (11)-(12) when
x and y are very close to each other. In that case, the integral Iµ,px,y will be computed using Romberg’s
recursive numerical integration algorithm.

Note that the issue (1) detailed above is of great importance when some integrals of the kind Iµ,px,y appear in
more complicated mathematical expressions, such as in Abergel et al. [2015], where the computation of a ratio
of sums of generalized incomplete gamma functions is involved, with a numerator and a denominator that may
both exceed the highest representable double floating point number, although the ratio itself is representable in
the standard computer floating-point arithmetic.

This paper is organized as follows. In Section 2, we describe a new algorithm to evaluate the function
G(p, x). It is based on a partition of the parameter plane, which drives three different numerical procedures
using continued fractions or recursive integrations by parts. We systematically evaluate the precision of this
algorithm on a large domain, and show that it generally outperforms Gil et al. [2012] algorithm by two orders of
magnitude, independently of the normalization issues encountered in the latter. We then consider in Section 3
the computation of the (un-normalized) incomplete gamma functions, and derive a theoretical accuracy bound
from the limited precision of double precision floating point numbers associated with the required mantissa-
exponent representation of these integrals. We then show that our estimates essentially achieve this optimal
bound. We also compare several algorithms used for the evaluation of the (complete) Gamma function, which
may be required by our algorithm. In Section 4, the more general case of the integral Iµ,px,y is considered, and we
describe an algorithm based on differences or on Romberg’s numerical integration method (and an automatic
selection of the most appropriate method). This algorithm is compared on several examples with Fullerton’s
algorithm in Section 5, and its robustness is tested through massive usage in a recent image denoising application
in Section 6.

2 Numerical computation of the function G

2.1 Series expansions

If p denotes a positive integer, writing the Taylor series expansion of the exponential function, with order p− 1
and integral remainder, we get

ex =

p−1∑
k=0

xk

k!
+

∫ x

0

(x− t)p−1

(p− 1)!
et dt =

s=x−t
ex −

+∞∑
k=p

xk

k!
+

ex

(p− 1)!

∫ x

0

sp−1 e−s ds .
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For x ≤ p, we deduce that

G(p, x) =

+∞∑
k=0

Γ(p) · xk

Γ(k + p+ 1)
, (13)

and this formula remains valid for non-integer values of p > 0. Although the power series (13) defined above
has an infinite radius of convergence, its convergence can be quite slow and numerically unstable depending on
the values of p and x. It is suggested in Press et al. [1992] that the lower ratio P should be evaluated using

the series expansion as long as |x|
p+1 < 1; however, according to our experiments, a better convergence rate can

be obtained for the function G by using a continued fraction. Thus, we shall not use (13) in the algorithm we
propose.

2.2 Continued fractions

We describe here several formulations of our function G based on continued fractions taken from the literature.
First, we focus on the computation of G in the domain x ≤ p. Let us consider the confluent hypergeometric
function M , defined by

M(a, b, z) =

+∞∑
n=0

a(n)

b(n)

zn

n!
, where α(0) = 1 and α(n) = α(α+ 1) · · · (α+ n− 1) for n ≥ 1.

Since for any (b, z) we have M(0, b, z) = 1, when x ≤ p, we can rewrite (13) as

G(p, x) =
M(1, p+ 1, x)

p ·M(0, p, x)
. (14)

As detailed in Olver et al. [2010], DLMF, Cuyt et al. [2008], Jones and Thron [1980], the ratio M(a,b,z)
M(a+1,b+1,z) can

be continued for any z ∈ C, as long as a 6∈ Z \N and a− b 6∈ N. Under this assumption (which will be satisfied
here, since we will consider the setting a = 0, b = p > 0), and using the usual notation for continued fractions,

α1

β1+

α2

β2+

α3

β3+
· · · = α1

β1 + α2

β2+
α3

β3+...

,

we get
M(a, b, z)

M(a+ 1, b+ 1, z)
= 1 +

u1

1+

u2

1+

u3

1+
. . . ,

with

∀n ≥ 0, u2n+1 =
(a− b− n)z

(b+ 2n)(b+ 2n+ 1)
and u2n =

(a+ n)z

(b+ 2n− 1)(b+ 2n)
.

Writing the inverse ratio (with a = 0 and b = p), and after basic manipulations of the continued fraction, we
obtain

M(1, p+ 1, x)

p ·M(0, p, x)
=

a1

b1+

a2

b2+

a3

b3+
. . . ,

where a1 = 1 and ∀n ≥ 1, a2n = −(p− 1 + n) · x, a2n+1 = n · x and bn = p− 1 + n. Therefore, Equation (14)
becomes

G(p, x) =
a1

b1+

a2

b2+

a3

b3+
. . . (15)

The evaluation of G(p, x) in the domain x ≤ p using the continued fraction (15) can be performed using the
modified Lentz’s method Lentz [1976], Thompson and Barnett [1986], which we recall in Algorithm 1 for the
reader’s convenience, with a slight adaptation of the initialization process since we observed some instabilities
when using the implementation described in Press et al. [1992] (see note in Algorithm 1).

The continued fraction (15) converges for any value of x, but leads to numerical instabilities (due to the
fact that its value becomes huge) when x is chosen too large compared to p. However, since we restrict its
use to x ≤ p, this instability does not arise in our algorithm. The convergence of (15) in the domain x ≤ p is
fast as it requires in general less than 20 approximants to converge (the number of iterations being estimated
automatically). The number of required approximants may be higher when x ≈ p, or when x < 0 and p is
small. For the latter case, we will switch to a faster estimation method based on recursive integration by parts
(Section 2.3).
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Algorithm 1: Modified1 Lentz’s method for continued fractions evaluation.

Input: Two real-valued sequences {an}n≥1 and {bn}n≥1, with b1 6= 0.

Requirements: εmachine (machine precision, 2.22 · 10−16 in double precision)

Output: Accurate estimate f of the continued fraction a1
b1+

a2
b2+

a3
b3+
· · ·

Initialization:
dm ← 10−300 // Number near the minimal floating-point value

f ← a1
b1

; C ← a1
dm

; D ← 1
b1

; n← 2 // see note1 below

repeat
D ← D · an + bn
if D = 0 then D ← dm
C ← bn + an

C

if C = 0 then C ← dm
D ← 1

D

∆← C ·D
f ← f ·∆
n← n+ 1

until |∆− 1| < εmachine

return f

1 In the initialization step, we manually performed the first pass n = 1 of the modified Lentz’s algorithm, since we observed some
instabilities with the initialization f = C = dm, D = 0, presented in Press et al. [1992]. Indeed, the setting C = dm may yield
C = +∞ after the pass n = 1 (when a1/dm exceed the highest representable number), and then ∆ = f = +∞, which propagates
through the next iterations. By computing the first pass manually, even when the initialization C = a1/dm yields C = +∞, the
pass n = 2 yields C = b2 + a2/C = b2, which has a finite value.

In the domain x > p, the evaluation of G(p, x) can be performed using another continued fraction. Indeed,
as detailed in Abramowitz and Stegun [1964], Press et al. [1992], for x > p, we can write G(p, x) as

G(p, x) =
α1

β1+

α2

β2+

α3

β3+
· · · , (16)

with α1 = 1, αn = −(n− 1) · (n− p− 1) for any n > 1, and βn = x+ 2n− 1− p for any n ≥ 1. The continued
fraction (16) can also be evaluated numerically using Algorithm 1.

2.3 Recursive integrations by parts

In the domain x < 0, we observed that the use of (15) to compute G(p, x) may lead to long computation times
for small values of p. Since in the case x < 0 we restricted the study of G(p, x) to integer values of p, we can
consider, as an alternative to (15), the use of a recursive integration by parts closed-form formula to compute
G(p, x). We remark that a similar approach is adopted by Guseinov and Mamedov [2004] who make use of
backward and forward recurrence relations to evaluate the standard lower incomplete gamma function, γ(p, x),
for positive values of x. Considering the case x < 0 and p integer, we obtain

G(p, x) =
1

x

(
(p− 1)! ex

xp−1
−
p−1∑
k=0

(p− 1)!

(p− 1− k)!
x−k

)
. (17)

Although the computation of (17) is not efficient in general, it happens to be faster than (15) for small values
of p. We must however be careful when computing the alternating sum (17) since, as usual with alternating
sums, it may suffer from dramatic errors caused by cancellation. In the following, we set t = −x > 0 and we
rewrite (17) as

G(p, x) =
t=−x

1

t

(
(−1)p(p− 1)! e−t

tp−1
+ s(t)

)
, where s(t) =

p−1∑
k=0

(−1)k
(p− 1)! t−k

(p− 1− k)!
. (18)

By grouping the consecutive terms in pairs with indexes k = 2l and k = 2l + 1 of the alternating sum s(t), we
get

s(t) = s̃(t) :=

bp−2
2 c∑
l=0

(p− 1)! t−(2l+1)

(p− 1− 2l)!
(t− (p− 1− 2l)) + εp(t) , (19)
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where bzc denotes the integer part of z, and the residual term εp(t) is defined by

εp(t) =

{
(p− 1)! t−(p−1) if p is odd

0 otherwise.

Let us now assume that t ≥ max (1, p− 1). First, using t ≥ p − 1, we see that all terms in the sum s̃(t) are
nonnegative, so that we can evaluate the alternating sum (19) without any cancellation. It follows that, when
p is even, (18) becomes

G(p, x) =
1

t

(
(p− 1)!e−t

tp−1
+ s̃(t)

)
,

which is a sum of positive terms, so that no cancellation can occur. When p is odd, (18) yields

G(p, x) =
1

t

(
− (p− 1)!e−t

tp−1
+ s̃(t)

)
. (20)

Noting α(t) = (p−1)!e−t

tp−1 and using the fact that t ≥ 1, we get

s̃(t)

α(t)
≥ εp(t)

α(t)
= exp (t) ≥ exp (1) ,

which ensures that no cancellation occurs when computing the difference between s̃(t) and α(t), involved in (20).
Finally, we are able to evaluate (18) without cancellation in the region t ≥ max (1, p− 1).

Last, from t > p− 1, we infer that the sequence {ak(t)}k≥0 defined by

∀k ≥ 0, ak(t) =

{
(p−1)! t−k

(p−1−k)! if k ≤ p− 1

0 otherwise,

is nonincreasing, with limit 0. It follows that the remainder rn(t) =
∑+∞
k=n+1(−1)kak(t) of the alternating series

s(t) =
∑+∞
k=0(−1)kak(t) satisfies |rn(t)| ≤ an+1(t), so that we can numerically estimate s(t) with the partial

sum sn(t) =
∑n
k=0(−1)kak(t) as soon as

an+1(t) ≤ |sn(t)| · εmachine , (21)

εmachine being the machine precision, 2.22 · 10−16 in double precision floating point arithmetic (IEEE 754
standard). Note that (21) may occur for n < p − 1, with a possible saving in computation time. In practice,
we compute s(t) = s̃(t) with (19) instead of (18), but this stopping criterion can be easily evaluated at each
iteration of the summation procedure. Indeed, noting that the sequence {a2l(t) − a2l+1(t)}l≥0 is positive and
nonincreasing (because t > p− 1), we obtain

∀l ∈ N, a2l+2(t) ≤ a2l(t)− a2l+1(t) + a2l+3(t) ≤ a2l(t)− a2l+1(t) ,

so that
∀l ∈ N, |r2l+1(t)| ≤ a2l+2(t) ≤ |a2l(t)− a2l+1(t)| .

This yields Algorithm 2.

2.4 Numerical computation of the function G

We estimated G(p, x) using (15) in the domain x ≤ p, using (16) in the domain x > p, and using (17) in the
domain {x < 0; |x| > max(1, p− 1)}, for a large range of parameters, namely

x ∈ [−1000, 1000] ∩ Z, p ∈ [1, 1000] ∩ Z .

For each tested value of (x, p) and each evaluation method, we compared the computed value of G(p, x) to the
one computed with MapleTM (version 17), with 30 significant decimal digits (which requires large amounts of
memory and a long computation time), using the code

sigma:=evalf(x-p*log(abs(x)));

evalf(Int(s^(p-1)*exp(-sign(x)*s),s=0..abs(x),digits=30)*exp(sigma));

evalf(Int(s^(p-1)*exp(-s),s=x..infinity,digits=30)*exp(sigma));

the last line only be-

ing computed for positive values of x. The values computed with MapleTM were then used as reference values
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Algorithm 2: Accurate evaluation of G(p, x) using (17).

Input: A negative real number x < 0 and a positive integer p satisfying |x| > max (1, p− 1).

Output: An accurate estimate of G(p, x) computed using (17).

Initialization: t← −x; c← 1

t
; d← p− 1; s← c · (t− d); l← 1

repeat

c← d(d− 1)

t2

d← d− 2
∆← c(t− d) // now ∆ = a2l(t)− a2l+1(t)

s← s+ ∆ // now s = s2l+1(t) =

2l+1∑
k=0

(−1)kak(t)

l← l + 1

until l > bp− 2

2
c or ∆ < s · εmachine

if (∆ ≥ s · εmachine) and (p is odd) then s← s+
d c

t
// add the term εp(t) = (p− 1)! t−(p−1)

return
1

t

(
(−1)p · e−t+log (p−1)!−(p−1) log(t) + s

)

to evaluate the relative accuracy of our estimate. After measuring the computation time and relative error for
the two concurrent methods in the domain {x < 0} (continued fraction versus recursive integration by parts),
we designed a nearly optimal boundary to divide the domain {x < 0} into two regions that select the most
appropriate method. This results in a partition of the whole admissible domain into three regions (see Fig. 2)
delimited by the explicit boundary

∀x ∈ R ∪ {+∞}, plim(x) =

 5
√
|x| − 5 if x < −9 ,
0 if − 9 ≤ x ≤ 0 ,
x otherwise,

(22)

from which Algorithm 3 follows.

Algorithm 3: Fast and accurate evaluation of G(p, x).

Input1: a number x ∈ R ∪ {+∞} and a positive real number p.

if p ≥ plim(x) then compute G(p, x) using (15) and Algorithm 1
else if x ≥ 0 then compute G(p, x) using (16) and Algorithm 1
else compute G(p, x) using (17) and Algorithm 2

1 Recall that in the case x < 0, p must be an integer.

2.5 Numerical validation and comparison to Gil et al. [2012]

The purpose of our paper is to provide an efficient numerical algorithm to estimate quantities derived from
incomplete gamma integrals (be it the integrals γ(p, x) and Γ(p, x) themselves, or their logarithms, or the ratios
G(p, x), P (p, x) and Q(p, x), or their logarithms, etc.). In this section, we focus on the relevance of considering
G(p, x) as an alternative function to the more standard ratios P (p, x) and Q(p, x) for that particular purpose.
In our comparisons, we will compute G(p, x) using Algorithm 3 and min (P (p, x), Q(p, x)) using the recent
state-of-the-art algorithm proposed by Gil et al. [2012] (the higher ratio is deduced from the smaller using the
relation P + Q = 1). Beyond any numerical experiment, Figure 1 (a) alone already attests that, for most
values of (p, x), the incomplete gamma integrals γ(p, x) and Γ(p, x) cannot be reliably computed from estimates
in double precision of P (p, x) or Q(p, x), because in most situations, the quantity min (P (p, x), Q(p, x)) will
underflow (that is, smaller than the smallest double precision positive number which is about 10−308), so that
one will compute min (P (p, x), Q(p, x)) = 0 and thus obtain a result with 0% relative accuracy. This remark
does not question the accuracy of the computation of P (p, x) and Q(p, x) using Gil et al. [2012] algorithm (or
even any concurrent algorithm), but simply highlights the inadequacy of the ratios P (p, x) and Q(p, x) for the
purpose of computing accurate estimates of quantities derived from the incomplete gamma integrals. Besides,
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Fig. 2. Partition of the (x, p) domain for the evaluation of G(p, x). The normalized incomplete gamma function G defined
in Equation (5) is numerically evaluated using Algorithm 3, which selects the appropriate formula among (15), (16), and (17)
according to the location of (p, x) in the partition of the domain delimited by the red curve.

since G(p, x), P (p, x) and Q(p, x) are not the same quantities, it is difficult to compare the algorithms dedicated
to their evaluation. Of course, one can use G(p, x) to compute P (p, x) and Q(p, x), or use P (p, x) and Q(p, x)
to compute G(p, x) using

∀x ≥ 0 ,∀p > 0 , G(p, x) · e−x+p log x−log Γ(p) =

{
P (p, x) if x ≤ p
Q(p, x) otherwise .

(23)

In that process, the accuracy of the desired quantity may strongly depend on the accuracy of the computed
rescaling factor e−x+p log x−log Γ(p). In Fig. 3, we can see that it is indeed the case, since the rescaled quantities
(G(p, x) computed from Gil et al. [2012] algorithm, and min(P (p, x), Q(p, x)) computed from Algorithm 3)
exhibit the same distribution of relative errors, better than 5 · 10−13 for 90% of the tested parameters. In fact,
this corresponds to the precision obtained for the rescaling factor e−x+p log x−log Γ(p), which is the limiting factor
in the process. In Fig. 3 (b) (blue curve), we can observe that the precision obtained for G using Algorithm 3
is better than 10−15 for 90% of the tested parameters. This is substantially better than the precision obtained
by Gil et al. [2012] in their evaluation of min (P,Q), which is close to 10−13 for 90% of the tested parameters
(see Fig. 3 (a), red curve). This means that improving the estimation of the rescaling factor up to 10−15 would
result in a better estimation of min (P,Q) using the rescaled value of G than using the algorithm of Gil et al.
[2012]. For that reason, we believe that it is interesting to compare the relative precision of the normalized
quantities, keeping aside the accurate computation of the rescaling factor which could be the topic of another
study. Moreover, in the scope of this paper, which is to compute quantities derived from the incomplete gamma
integrals accurately, the comparison of the normalized quantities is a fair choice (for instance, we could have
compared the estimates of γ(p, x), log γ(p, x), or logP (p, x), but no particular choice would impose itself).

In this paper, all evaluations of Gil et al. [2012] algorithm were made using the Fortran implementation
publicly available at the address http://personales.unican.es/gila/incgam.zip, which is the link given in
Gil et al. [2012]. With this implementation, we noticed some failure cases for parameter values that should
produce a correct value of max(P,Q) and raise an error (underflow) flag for min(P,Q). An example is given
for (p, x) = (4000, 7000), for which the code returns P = 0, Q = 1 and no error flag (instead of P = 1, Q = 0
and an error flag indicating underflow for Q). This failure case is relatively frequent for large values of p and
x. We conclude this section with Table 1, which shows that Algorithm 3 and Gil et al. [2012] algorithm exhibit
comparable statistics in terms of computation time.
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Fig. 3. Relative accuracy of Algorithm 3 and Gil et al. [2012] algorithm. Left (a): over the domain (p, x) ∈
{1, 2, . . . , 1000}2 ∩ S (recall that S = {(p, x) , min(P (p, x), Q(p, x)) ≥ 10−300}), we systematically computed (using MapleTM

as a reference) the relative error observed for min(P (p, x), Q(p, x)) when using Gil et al. [2012] algorithm and when using G(p, x)
(computed with Algorithm 3) with the rescaling (23). We display the proportion of relative errors smaller than r as a function of r
in both cases. Middle (b): Symmetrically, over the same domain, we computed the relative error observed when evaluating G(p, x)
using Algorithm 3 or using min (P (p, x), Q(p, x)) (computed using the algorithm of Gil et al. [2012]) with the rescaling (23). Again,
we display the proportion of relative errors smaller than r as a function of r in both cases. Right (c): we evaluated the relative error
of Gil et al. [2012] over the domain (x, p) ∈ {1, 2, . . . , 500}2 ∩S. The maximum over the domain {(x, p); min(P (x, p), Q(x, p)) ≥ α}
is displayed as a function of α. We can see that the accuracy of 7.9 · 10−13 (red dashed line) claimed by Gil et al. [2012] af-
ter 107 random trials on that domain is not systematically attained, and that many larger errors appear for estimated values of
min(P,Q) that are far from underflow (10−308), for example P (1, 51) =2.41819039187902807E-67 (1.3 · 10−12 relative error) or
P (1, 99) =3.98167886822098022E-157 (4.8 · 10−12 relative error).

Execution times (ns) minimum median average maximum

G (using Algorithm 3) 288 ns 529 ns 442 ns 2038 ns
P and Q (using Gil et al. [2012]) 378 ns 1010 ns 1450 ns 3456 ns

Table 1: Comparison of the execution time between the algorithm of Gil et al. [2012] and Algorithm 3. Both
algorithms were evaluated in the range (x, p) ∈ {0, . . . , 1000} × {1, . . . , 1000}. For each tested value of (x, p), the value of G(p, x)
and that of (P (p, x), Q(p, x)) were computed as many times as possible during 10 ms. Dividing 10 ms by the number of achieved
evaluations, we get an accurate estimate of the computation time for a single evaluation. In this Table, for each algorithm, we
report the minimal, median, average and maximum execution time observed in the tested range of parameters.

3 Numerical computation of the non-normalized lower and upper
incomplete gamma integrals

3.1 Mantissa-exponent representation of the incomplete gamma integrals

When the evaluation of the non-normalized lower and upper incomplete gamma integrals γ(p, x) and Γ(p, x) is
needed, we can compute

∀x ≥ 0 , ∀p > 0 , G(p, x)× e−x+p log x =

{
γ(p, x) if x ≤ p
Γ(p, x) otherwise

(24)

and, by subtracting G(p, x)×e−x+p log x from the complete gamma function Γ(p), we can also retrieve the lower
and upper incomplete gamma integrals on the complementary domains:

∀x ≥ 0 , ∀p > 0 , Γ(p)−G(p, x)× e−x+p log x =

{
Γ(p, x) if x ≤ p
γ(p, x) otherwise.

(25)

Notice that no cancellation can occur in the subtraction (25) since G(p, x)×e−x+p log x is at most roughly equal
to 0.5 · Γ(p) . Moreover, Equations (24) and (25) naturally provide a kind of mantissa-exponent representation
of the type I = ρ · eσ for the incomplete gamma functions, as{

γ(p, x) = ρ1 · eσ1

Γ(p, x) = ρ2 · eσ2
if 0 ≤ x ≤ p, and

{
γ(p, x) = ρ2 · eσ2

Γ(p, x) = ρ1 · eσ1
if x > p, (26)

with σ1 = −x+ p log |x|, ρ1 = G(p, x), (27)

and σ2 = log Γ(p), ρ2 = 1− e−x+p log x−log Γ(p)G(p, x). (28)

Note that when x < 0, we also have a similar representation for the lower incomplete gamma function, that is,
γ(p, x) = (−1)pρ1 · eσ1 .
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Fig. 4. Relative accuracy associated with the computation of the generalized lower and upper incomplete gamma
functions. We estimated the relative accuracy of the incomplete gamma functions given by e−x+p log |x|G(p, x) (see Equations (5)
and (6)) on the domain (x, p) ∈ {−1000, . . . , 1000} × {1, . . . , 1000}. The relative error is smaller than 10−11 everywhere. The blue
points, corresponding to the parameters (x, p) for which the relative accuracy is larger than 10−12, reveal perceptible boundaries
whose form is predicted by Equation (31), from which the red curves are obtained. This shows that the main source of error
is due to the mantissa-exponent representation and that our estimates can be considered as nearly optimal with respect to this
representation. In terms of execution time for the computation of G(x, p) over this tested range of parameters (x, p), we measured
an average computation time of 0.49 microseconds, a median execution time of 0.45 microseconds, and 2.1 microseconds as highest
execution time (using a 3.1GHz Inteltm i7-7920HQ processor).

Such a mantissa-exponent representation considerably extends the range over which the integrals γ(p, x)
and Γ(p, x) can be represented (in comparison with a direct evaluation of those integrals in double precision),
since both the mantissa ρ and the exponent σ are computed in double precision floating-point (thus, with range
[10−308, 10308]) and we can explicitly format the quantity ρ · eσ in scientific notation (that is ρ · eσ = a · 10b,
where a ∈ [1, 10) and b ∈ Z) using

a = 10c−bcc , b = bcc , where c =
σ

log (10)
+ log10 (ρ) . (29)

Notice, however, that the relative accuracy of the mantissa-exponent representation strongly depends on the
magnitude of the exponent, as∣∣∣∣∆(ρ · eσ)

ρ · eσ

∣∣∣∣ ≈ ∣∣∣∣∆ρρ
∣∣∣∣+

∣∣∣∣∆(eσ)

eσ

∣∣∣∣ =

∣∣∣∣∆ρρ
∣∣∣∣+ |∆σ| =

∣∣∣∣∆ρρ
∣∣∣∣+ |σ| ·

∣∣∣∣∆σσ
∣∣∣∣ := E (30)

where |∆X| and |∆X/X| respectively denote the absolute and relative errors between the actual value of X
and its computed value. As |σ| increases, since ρ and σ are at best estimated at machine precision (i.e.,
|∆ρ/ρ| = |∆σ/σ| = εmachine), we have

E ≈ (1 + |σ|) · εmachine . (31)

For instance, when σ ≈ 4503.5, the best relative accuracy that can be expected is
E ≈ 4504.5 × 2.22 · 10−16 = 10−12 with double precision floating point arithmetic. Therefore, we can pre-
dict approximate bounds for the relative error E achievable when computing γ(p, x) or Γ(p, x) under the form
ρ · eσ using (26)-(28). We can see in Fig. 4 that formatting the estimated values of the incomplete gamma
functions in scientific notation using (29) yields a relative error similar to that predicted in (31).

It is interesting to notice that this limitation on the achievable relative error is not fundamentally due to
the mantissa-exponent representation, but to the fact that the derivatives of the incomplete gamma functions
grow rapidly with p and x. When approximating a function f(x), the minimum achievable relative error is∣∣∣∣∆f(x)

f(x)

∣∣∣∣ =

∣∣∣∣∆f(x)

∆x

∣∣∣∣ · ∣∣∣∣∆xx
∣∣∣∣ · ∣∣∣∣ x

f(x)

∣∣∣∣ ' ∣∣∣∣xf ′(x)

f(x)

∣∣∣∣ · εmachine. (32)

In the case of the lower incomplete Gamma function f(x) = γ(p, x) (with p fixed and x ≤ p), one easily
checks that xf ′(x)/f(x) = 1/G(x, p), so that the relative error due to the limited representation of x is about
εmachine/G(x, p). From Fig. 1 (b), we observe that G(x, p) ' 1/x, which means that independently of the
representation of the result, evaluating the lower incomplete gamma function for x ≥ 1016 does not make much
sense when x is stored as a double precision floating point number (roughly speaking, the first digit of γ(p, x)
result depends on the last digit of x).
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3.2 Discussion on the evaluation of the complete gamma function

The computation of the complete gamma function Γ(p) for p ∈ N, R or C constitutes in itself a wide area of
research. The object of this section is to compare several methods from the literature and derive a practical
efficient algorithm for computing the quantity log Γ(p), which is needed to compute ρ2 and σ2 in Equation (28).
Note that the relative error on Γ is, when small enough, numerically equal to the absolute error on log Γ(p),
since

|∆ log Γ(p)| = | log(Γ(p) + ∆Γ(p))− log Γ(p)| =
∣∣∣∣log

(
1 +

∆Γ(p)

Γ(p)

)∣∣∣∣ ≈ ∣∣∣∣∆Γ(p)

Γ(p)

∣∣∣∣ . (33)

Consequently, since the absolute error on log Γ(p) is at best εmachine · log Γ(p), the minimum achievable relative
error on Γ(p) is also εmachine · log Γ(p) when Γ(p) is represented by its logarithm.

When p is a positive integer, we have Γ(p) = (p− 1)! and thus

log Γ(p) =

p−1∑
k=1

log k .

However, the numerical computation of this sum becomes rapidly inaccurate when p is large, because of the
accumulation of small numerical errors made at each step of the summation. Besides, we do not want to be
limited to integer values of p.

The first evaluation method that we will consider was proposed in Lanczos [1964], and uses a Stirling
formula-like approximation:

∀p > 0, Γ(p) =
√

2π
(
p+ γ − 1

2

)p− 1
2 e−(p+γ− 1

2 ) (Aγ(p− 1) + εγ) , (34)

where γ > 0 is a numerical parameter (different from the Euler-Mascheroni constant), Aγ(p− 1) is a truncated
rational fraction that can be written

Aγ(p− 1) = c0(γ) +

Nγ∑
k=1

ck(γ)

p− 1 + k
, (35)

and Nγ and the coefficients {ck(γ)}0≤k≤Nγ depend on the value of γ. In the case γ = 5, Lanczos claims that the
relative error |ε5| associated with (34) satisfies |ε5| < 2 · 10−10, and this claim was confirmed by our numerical
experiments. In the case γ = 5, we have Nγ = 6 and the numerical values of the coefficients {ck(γ)}0≤k≤Nγ are
available in Lanczos [1964]. These values are refined to double floating-point precision in Press et al. [1992], so
we used them in our implementation of (34).

A more recent computation method (see Char [1980], Olver et al. [2010], Cuyt et al. [2008] and references
therein), also based on a Stirling approximation, consists in computing

∀p > 0, Γ(p) =
√

2π e−p pp−
1
2 eJ(p), where J(p) =

a0

p+

a1

p+

a2

p+
· · · , (36)

where some numerical approximations, to 40 decimal digits of precision, of the coefficients {ak}0≤k≤40 of the
continued fraction J(p) are given in Char [1980].

The last approximation we present is a refinement of the Lanczos formula (34), proposed by Pugh [2004]:

∀p > 0, Γ(p) ≈ 2

√
e

π

(
p+ r − 1

2

e

)p− 1
2
[
d0 +

Nr∑
k=1

dk
p− 1 + k

]
, (37)

where r is again a numerical parameter. Pugh studied the accuracy of the approximation (37) for different
values of r. In the case r = 10.900511, he sets Nr = 11, and gives the numerical values of the coefficients
{dk}0≤k≤10 to 20 significant decimal digits (see Table 2). According to Pugh, this setting yields a relative error
less than 10−19, which is effectively what we observed when computing (37) with MapleTM for p ∈ {1, 2, . . . 103}
in multiprecision (30 digits).

In order to select which method will be used in our algorithms, we computed log Γ(p) for 1 ≤ p ≤ 104, using
the three approximations (34), (36), and (37). The accuracy was evaluated using MapleTM, and the results
(restricted to 1 ≤ p ≤ 5000) are displayed in Fig. 5. It follows from this experiment that the best estimate is
obtained with Pugh’s method (37). The continued fraction (36) yields similar results for most values of p, but
is quite inaccurate for very small values of p. Note also that, except for small values of p, these two methods
are roughly optimal, since they deliver an absolute error approaching the theoretical limit εmachine · log Γ(p)
mentioned earlier. In the end, we selected Pugh’s method for the numerical evaluation of log Γ(p) in (28)
because of its superior accuracy, its simplicity and the nice theoretical study provided in Pugh [2004]. Our
implementation is described in Algorithm 4.
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k d3k d3k+1 d3k+2

0 2.48574089138753565546E-05 1.05142378581721974210E+00 -3.45687097222016235469E+00

1 4.51227709466894823700E+00 -2.98285225323576655721E+00 1.05639711577126713077E+00

2 -1.95428773191645869583E-01 1.70970543404441224307E-02 -5.71926117404305781283E-04

3 4.63399473359905636708E-06 -2.71994908488607703910E-09

Table 2: Coefficients {dk}0≤k≤10 of Equation (37) with 20 significant decimal digits Pugh [2004].

Algorithm 4: Accurate computation of log Γ(p) using Pugh’s method .

Input: A real number p > 0.

Output: An accurate estimation of log Γ(p).

Require: Coefficients {dk}0≤k≤10 defined in Table 2.

return log
(

2
√

e
π

[
d0 +

∑10
k=0

dk
p−1+k

])
−
(
p− 1

2

)
+
(
p− 1

2

)
log
(
p+ 10.900511− 1

2

)
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Pugh's method (Eq. (34))
theoretical bound

Fig. 5. Comparison of three algorithms estimating log Γ(p). We display the absolute error (estimated with MapleTM)
made on the estimation of log Γ(p) by the approximations (34), (36) and (37) as a function of p ∈ {1, 2, . . . , 5000}. To ease the
interpretation, the curves were smoothed by replacing the error for p by the maximum error on the range {p− 20, . . . , p+ 20}. We
can observe that the best approximation is obtained with Pugh’s formula (37) (blue curve), and that except for small values of p,
it delivers an absolute error close to the theoretical limit εmachine · log Γ(p) (black curve).

4 Evaluation of the generalized incomplete gamma function

As stated above, the accurate evaluation of Iµ,px,y raises several issues. First, this integral can be estimated using
the difference A−B between two terms A ≥ B ≥ 0 involving the evaluation of the generalized upper and lower
incomplete gamma functions using the relations (11)-(12). In that case, we must select one of these relations, in
function of the parameters µ, x, y, p, to obtain the best possible estimate. This selection process is discussed in
Section 4.1. Second, we must be aware that the accurate evaluation of A and B is not sufficient to guarantee an
accurate evaluation of the difference A−B, because errors caused by cancellation arise when A and B are too
close to each other, which happens in practice when x ≈ y. In that case, we propose to approximate the integral
Iµ,px,y using Romberg’s numerical integration method, as discussed in Section 4.2. Last, we need a criterion
to decide, in function of the parameters µ, x, y, p, which of the difference or Romberg’s method will be used.
This is the purpose of Section 4.3, where the resulting Algorithm 5, computing Iµ,px,y with a mantissa-exponent
representation, is explicitly described.

4.1 Computing Iµ,px,y as a difference of generalized incomplete gamma functions

Given µ, x, y, p, we can estimate G(p, µx) and G(p, µy) with Algorithm 3. Then, considering the definition of G
in Equation (5), there is only one relation from (11)-(12) that allows us to compute Iµ,px,y , in combination (or not)
with Γ(p). The corresponding formulae are given in table 3. In each case, a mantissa-exponent representation
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of Iµ,px,y = A− B can be obtained from a mantissa-exponent representation of A = mA · enA and B = mB · enB
with

A−B = ρdiff · eσdiff , where ρdiff = mA −mB e
nB−nA , σdiff = nA . (38)

case value of A value of B

(a) µ = −1 A = G(p,−y) ey+p log y, B = G(p,−x) ex+p log x

(b) µ = 1, p < plim(x) A = G(p, x) e−x+p log x, B = G(p, y) e−y+p log y

(c) µ = 1, plim(x) ≤ p < plim(y) A = Γ(p), B = G(p, x) e−x+p log x +G(p, y) e−y+p log y

(d) µ = 1, plim(y) ≤ p A = G(p, y) e−y+p log y, B = G(p, x) e−x+p log x

Table 3: Computing Iµ,px,y as the difference A−B.

In the cases (a,b,d), the mantissa-exponent representations of A and B are straightforward. In the case (c),
the mantissa-exponent representation of A = Γ(p) is mA = 1, nA = log Γ(p). For B = G(p, x)e−x+p log x +
G(p, y)e−y+p log y, we choose the largest exponent and write nB = max(−x + p log x,−y + p log y), then mB =
G(p, x)e−x+p log x−nB + G(p, y)e−y+p log y−nB . These formulae can be seen as the main part of Algorithm 5,
which is written in the more general (and straightforward) case µ ∈ R∗.

4.2 Computing Iµ,px,y using Romberg’s method

The computation of Iµ,px,y using a difference Idiff = A − B described in Section 4.1 is not efficient when x and
y are too close to each other due to errors caused by cancellation. Hopefully, in the case x ≈ y the integral
Iµ,px,y can be efficiently estimated using the Romberg’s methods Romberg [1955], which is a recursive numerical
integration scheme that achieves a fast convergence rate. Using this method, the definite integral

I :=

∫ y

x

f(s) ds (39)

of a smooth function f is estimated by setting R(0, 0) = y−x
2 ·(f(x) + f(y)) and iterating for n ≥ 1 the recursion

R(n, 0) =
1

2
R(n− 1, 0) + hn

2n−1∑
j=1

f (x+ (2j − 1)hn) where hn =
y − x

2n

R(n,m) =
4mR(n,m− 1)−R(n− 1,m− 1)

4n − 1
for m ∈ {1, 2, . . . , n} .

(40)

In practice, the scheme (40) is stopped when

|R(n, n)−R(n, n− 1)|
|R(n, n)|

≤ α · εmachine , (41)

where α > 0 denotes a tolerance parameter, or after a maximal number of iterations has been reached. Then,
the integral (39) is estimated by R(n, n). We implemented Romberg’s method to a normalized version of Iµ,px,y ,
that is for

f(s) = sp−1 exp (−µs+ µy − p log y),

so that Iµ,px,y can be computed under a mantissa-exponent representation Iµ,px,y ≈ ρ · eσ where σ = −µy + p log y
and ρ denotes the output of the Romberg’s approximation scheme.

4.3 Selection of the approximation method for the generalized incomplete gamma
function

We saw in Sections 4.1 and 4.2 that the generalized incomplete gamma function Iµ,px,y could be estimated using
a difference Idiff = A − B or with Romberg’s numerical integration method. We must now decide which
approximation method should be used according to the values of x, y, µ, p. When A and B are too close to each

14



other, the computation of the difference A−B suffers from cancellations. Indeed, for A ≥ B ≥ 0, a simple first
order study of the relative accuracy of A−B yields∣∣∣∣∆(A−B)

A−B

∣∣∣∣ ≤ 2 · |∆A|
A−B

≤ 2

1−B/A
· εmachine .

Thus, we can see that we lose k digits of precision as soon as 1 − B/A < 2 · 10−k. Based on this observation,
we propose to avoid the approximation of Iµ,px,y by Idiff as soon as more than one digit of precision is lost, that
is, as soon as 1−B/A < 0.2. Based on the same criterion, we decided to set the tolerance factor α equal to 10
in (41) in order to stop the Romberg iteration when the accuracy of the estimate is roughly 10 · εmachine. This
selection criterion was numerically tested, the resulting precision is displayed in Table 4. Finally, we describe
in Algorithm 5 our computation method dedicated to the evaluation of Iµ,px,y .

δr = y−x
y

log10 of the maximal log10 of the mean average execution median execution
relative error relative error time (microseconds) time (microseconds)

10−2 −11.2 −12.5 0.8 µs 0.7 µs
10−3 −11.1 −12.3 1.0 µs 0.7 µs
10−4 −11.8 −12.6 1.5 µs 1.7 µs
10−5 −11.7 −12.5 1.5 µs 1.3 µs
10−6 −11.8 −12.6 1.4 µs 1.3 µs
10−7 −11.7 −12.5 1.4 µs 1.3 µs
10−8 −11.8 −12.6 1.4 µs 1.3 µs
10−9 −11.7 −12.5 1.4 µs 1.7 µs
10−10 −11.7 −12.5 1.3 µs 1.2 µs
10−11 −11.8 −12.5 1.3 µs 1.2 µs
10−12 −11.7 −12.5 1.3 µs 1.2 µs
10−13 −11.7 −12.5 0.9 µs 0.9 µs
10−14 −11.7 −12.6 0.9 µs 0.9 µs
10−15 −11.7 −12.5 0.8 µs 0.8 µs

Table 4: Control of maximum and mean relative errors associated to the computation of Iµ,px,y . For several values of
δr, we computed Iµ,px,y using Algorithm 5 for a large range of parameters (µ = ±1, p integer in [1, 1000], y integer in [1, 1000], and x
being the floating-point number closest to y (1−δr)). For each value of δr, we display the maximal (second column) and the average
(third column) relative errors observed over all computed values of Iµ,px,y . We see that the relative error reached by Algorithm 5
over those simulations is quite low, in particular the approximation errors due to cancellation are avoided, thanks to the ability of
Algorithm 5 to select automatically the most appropriate estimation method (difference or Romberg) according to the values of
the parameters (x, y, µ, p). Note that a maximum relative error of 10−11 is roughly what we could at best expect considering the
impact of the limited machine precision on the mantissa-exponent representation of the incomplete gamma functions, as discussed
in Fig. 4. In columns four and five, we display the average and median execution time corresponding to the computation of Iµ,px,y

over the whole range of tested parameters (computation was done using a a 3.1GHz inteltm i7-7920HQ processor).

5 Comparison with algorithm 435

In this section we compare Algorithm 5 with Algorithm 435, proposed in Fullerton [1972] for the evaluation of
the generalized incomplete gamma function Iµ,px,y . As far as we know, Fullerton’s algorithm is the most recent
work dedicated to the computation of an approximation to the I-integral. More precisely, Fullerton focused on
the integral Jpx,y, defined in (9), which is slightly different from Iµ,px,y . However, the computation of Iµ,px,y using
Jpx,y, or conversely of Jpx,y using Iµ,px,y , is straightforward, as we explained in Section 1.

Fullerton proposed an algorithm for the numerical evaluation of

γ′(p, x) =

∫ x

0

|s|p−1 e−s ds, −∞ < x ≤ +∞ ,

and thence the integral Jpx,y using the difference

Jpx,y = ex
∫ y

x

|s|p−1 e−s ds = ex (γ′(a, y)− γ′(a, x))

when 1 ≤ p ≤ 2, and using a forward (when p > 2) or backward (when p < 1) recurrence relation, for approxi-
mating Jqx,y with 1 ≤ q ≤ 2. In the case 1 ≤ p ≤ 2, the evaluation of γ′(p, x) relies on different approximation
methods (such as continued fractions, Chebyshev polynomials, or asymptotic expansions), depending to the
value of x.
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Algorithm 5: Accurate computation of Iµ,px,y =
∫ y
x
sp−1 e−µs ds .

Input: Three numbers µ ∈ R∗, x ∈ R+, y ∈ R+ ∪ {+∞} such as y ≥ x, and a positive real number p > 0. Recall that
the value y = +∞ is allowed only when µ > 0, and p must be an integer if µ < 0.

Output: Two numbers ρ ∈ R and σ ∈ R ∪ {−∞} such as Iµ,px,y ≈ ρeσ.

Requirements: the function plim : R ∪ {+∞} → R ∪ {+∞} defined in (22).

if x = y to machine precision then (ρ, σ)← (0,−∞)
else

mx ← G(p, µx) // using Algorithm 3

my ← G(p, µy) // using Algorithm 3

nx ← −µx+ p log x
if y < +∞ then

ny ← −µy + p log y
else

ny ← −∞
// Evaluate (mA, nA), (mB , nB) and (ρdiff, σdiff), mantissa-exponent // representations of A, B and

Idiff, such that A = mA e
nA, B = mB e

nB,

// Idiff = ρdiff e
σdiff = A−B, and Iµ,px,y ≈ Idiff .

if µ < 0 then
(mA, nA)← (my, ny)
(mB , nB)← (mx, nx)

else if µ > 0 then
if p < plim(µx) then

(mA, nA)← (mx, nx)
(mB , nB)← (my, ny)

else if plim(µx) ≤ p < plim(µy) then
(mA, nA)← (1, log Γ(p))
nB ← max (nx, ny)
if nB = −∞ then mB ← 0 // may happen when x = 0 and y = +∞
else mB ← mx e

nx−nB +my e
ny−nB

else
(mA, nA)← (my, ny)
(mB , nB)← (mx, nx)

(ρdiff, σdiff)←
(
mA −mB · enB−nA , nA

)
// Check whether or not the estimation of Iµ,px,y by Idiff = A−B involves a

// significant loss of precision. If 1−B/A < 0.2, estimate Iµ,px,y using

// Romberg’s method instead of the difference Idiff

if y < +∞ and ρdiff/mA < 0.2 then
set σ = −µy + p log y and compute an estimate ρ of the normalized integral Iµ,px,y · e−σ
using Romberg’s method described in Section 4.2.

else (ρ, σ)← (ρdiff, σdiff)

return (ρ, σ)

As already reported in Schoene [1978], Algorithm 435 suffers from numerical instabilities, when p > 2. We
indeed observed in our own numerical experiments, presented in Tables 5 and 6, computed values with very low
accuracy, or incorrect sign, typically when p ≥ 10, or when x ≤ p ≤ y. We also also observed some overflow
issues, for instance when working with p ≥ 100, which is of course not to be considered as a failure of Algorithm
435 since this algorithm was developed in single precision.

In the experiments of Table 5 and Table 6, we evaluated the integral Iµ,px,y , for several sets of parameters
x, y, µ, p, using both Fullerton’s Algorithm 435 and Algorithm 5. The accuracy of the returned result was
controlled using the softwares MapleTM (with the instruction

evalf(Int(s^(p-1)*exp(-mu*s),s=x..y,digits=30));

to approximate the integral with 30 digits of precision), and MathematicaTM in Wolfram Research Inc [1998]
for the online evaluation of Iµ,px,y . Considering that Fullerton’s algorithm was developed in single precision and
in 1972 (more than 10 years before the IEEE 754 Standard for Floating-Point Arithmetic was established), it is
not surprising to see its accuracy largely outperformed by Algorithm 5. As mentioned earlier, this comparison
is motivated by the fact that Fullerton’s algorithm is the most recent one focusing on the computation of the
I-integral.
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Parameters
Algorithm 435 Relative

Algorithm 5
Relative

in Fullerton [1972] error error

(a
)
µ

=
1

x = 9, y = 11, p = 1 1.067081029759719E-04 3 · 10−9 1.0670810329643395E-04 6 · 10−16

x = 9, y = 11, p = 5 9.567113518714904E-01 1 · 10−4 9.5661698023023700E-01 1 · 10−15

x = 9, y = 11, p = 10 1.085447578125000E+05 2 · 10−1 8.9594201765236983E+04 1 · 10−14

x = 9, y = 11, p = 12 1.632943040000000E+08 ≥ 1 8.9310494815538749E+06 3 · 10−15

x = 9, y = 11, p = 14 -2.977905664000000E+10 ≥ 1 9.0203414117080807E+08 2 · 10−15

x = 100, y = 120, p = 1 3.783505853677006E-44 2 · 10−2 3.7200759683531697E-44 5 · 10−15

x = 100, y = 120, p = 5 3.873433252162870E-36 3 · 10−9 3.8734332644314730E-36 4 · 10−15

x = 100, y = 120, p = 10 4.083660502797843E-26 2 · 10−8 4.0836605881700520E-26 8 · 10−15

x = 100, y = 120, p = 20 4.579807864502072E-06 9 · 10−8 4.5798082802928473E-06 2 · 10−14

(b
)
µ

=
−

1

x = 5, y = 10, p = 1 2.187916015625000E+04 5 · 10−5 2.1878052635704163E+04 1 · 10−15

x = 5, y = 10, p = 3 1.803647750000000E+06 3 · 10−7 1.8036471714694066E+06 1 · 10−16

x = 5, y = 10, p = 10 1.129511596851200E+13 4 · 10−8 1.1295115549498505E+13 4 · 10−15

x = 20, y = 25, p = 1 7.151973171200000E+10 3 · 10−8 7.1519734141975967E+10 2 · 10−15

x = 20, y = 25, p = 10 2.068890077987267E+23 3 · 10−2 2.0016822370845540E+23 9 · 10−16

x = 20, y = 25, p = 20 1.821993954177914E+37 2 · 10−1 1.4733948083664500E+37 1 · 10−15

Table 5: Comparison between Algorithm 435 in Fullerton [1972] and Algorithm 5, for the computation of Iµ,px,y .
(a) We tested, for µ = 1, (x, y) = (9, 11), and (x, y) = (100, 120), different integer values of p. In the second column, we display
the values of Iµ,px,y returned by Fullerton’s Algorithm, slightly adapted to compute Iµ,px,y instead of Jµ,px,y . The corresponding relative
errors, evaluated using MathematicaTM and MapleTM softwares (both softwares yield the same relative error), are displayed on
the third column. We can see that some numerical instabilities arise when x ≤ p. Some inaccurate results are also observed for
small values of p, when x = 100, y = 120, p = 1 (but also for many other values of (x, y, p), not represented here). In the fourth
column, we display the values returned by Algorithm 5, using a C implementation with standard double precision. The relative
errors reached by Algorithm 5 (last column) are nearly optimal, as they are close to the optimality bounds given in (31), which
estimate the minimum error achievable with the mantissa-exponent representation. (b) Same experiment in the case µ = −1. We
tested, for (x, y) = (5, 10) and (x, y) = (20, 25), different values of p. We can observe that Fullerton’s algorithm rapidly delivers
inaccurate estimates as p increases. In contrast, the relative errors reached by Algorithm 5 remain nearly optimal.

Parameters setting
Algorithm 435 Relative

Algorithm 5 Method
Relative

in Fullerton [1972] error error

µ = 1, y = 5, p = 10

x = d(5− 100) 8.598737304687500E+03 2 · 10−8 8.59873716912424243E+03 D 7 · 10−17

x = d(5− 10−1) 1.263989379882812E+03 8 · 10−7 1.26399037064497224E+03 R 7 · 10−17

x = d(5− 10−3) 1.315382766723632E+01 7 · 10−5 1.31547893257499737E+01 R 8 · 10−16

x = d(5− 10−4) 1.317400574684143E+00 1 · 10−3 1.31595263365902881E+00 R 1 · 10−15

x = d(5− 10−5) 1.322335302829742E-01 5 · 10−3 1.31600000919410876E-01 R 5 · 10−16

x = d(5− 10−6) 1.179141830652952E-02 1 · 10−1 1.31600474704078006E-02 R 6 · 10−16

µ = 1, y = 17, p = 17

x = d(17− 100) 3.725839564800000E+12 8 · 10−1 2.05512302507353833E+12 R 5 · 10−16

x = d(17− 10−1) 2.998156984320000E+11 5 · 10−1 2.02029255447054413E+11 R 1 · 10−15

x = d(17− 10−3) 2.941651456000000E+09 5 · 10−1 2.01460227071121573E+09 R 4 · 10−17

x = d(17− 10−4) 2.928078720000000E+08 5 · 10−1 2.01454896181877166E+08 R 8 · 10−16

µ = −1, y = 21, p = 10

x = d(21− 100) 5.859836137154984E+20 5 · 10−2 5.56233779272171979E+20 D 4 · 10−15

x = d(21− 10−1) 1.025911814748488E+20 5 · 10−2 9.76094111440768532E+19 R 1 · 10−16

x = d(21− 10−3) 1.099215584270221E+18 5 · 10−2 1.04676115489678349E+18 R 5 · 10−16

x = d(21− 10−5) 1.045801880623513E+16 2 · 10−3 1.04750154080539440E+16 R 7 · 10−16

Table 6: Comparison between Fullerton’s algorithm and Algorithm 5, for the computation of Iµ,px,y when x ≈ y. In
this last experiment, we compute Iµ,px,y in the case x ≈ y. The notation d(s) used in the left column denotes the double-precision
floating-point number that is closest to s. The fifth row (Method) indicate the computation method that was used in Algorithm
5 to compute the Iµ,px,y integral (R for Romberg approximation and D for differences). We can see that the relative error reached
by Algorithm 435 gets worse as x and y get close to each other, and as already remarked before, Algorithm 435 is very inaccurate
when µx < p < µy. In contrast, the relative errors observed with Algorithm 5 never exceed 8 · 10−16 (which corresponds to less
than one digit of precision), thanks to the use of Romberg’s numerical integration method which takes over to avoid cancellations
when x and y are very close to each other.

17



6 Application to image denoising

This work was initially motivated by an image processing application presented in Abergel et al. [2015], which
aims at reconstructing a gray-level image given the measurement of its intensity values corrupted by a Poisson
noise. This kind of image denoising model is typically interesting for restoring images acquired in low-light
conditions, for example astronomical and medical images. The restoration model derived in Abergel et al.
[2015] results in an iterative scheme which requires the computation, at each iteration and for each pixel of
the image, of a ratio of generalized incomplete gamma functions. More precisely, from an initial (noisy) image
u0 : Ω → R (where Ω ⊂ Z2 is the discrete image domain and u0(x) represents the intensity of u0 at the pixel
x ∈ Ω), we build a sequence of images un such that

∀n ≥ 0,∀x ∈ Ω, un+1(x) = R(x) :=

5∑
k=1

ck I
µk,u0(x)+2
ak−1,ak

5∑
k=1

ck I
µk,u0(x)+1
ak−1,ak

, (42)

where {ak, ck}1≤k≤5 are some positive coefficients that explicitly depend on the image at the previous iteration
(un) and {µk}1≤k≤5 are nonzero real numbers (see Abergel et al. [2015] for more details concerning theses
coefficients). Notice that this scheme involves evaluating a huge number of generalized incomplete gamma
functions: if u0 is a 1000× 1000 image, 109 evaluations of Iµ,px,y integrals are required to perform 100 iterations
of (42).

The main difficulty encountered when computing (42) is that the ratio R(x) can exhibit a non-representable
numerator and denominator (due to underflow or overflow), although the actual value of the ratio is representable
in the floating-point arithmetic. In practice, this yields dramatic errors when one tries to evaluate the numerator
and the denominator separately in double precision before computing the ratio, as illustrated in Fig. 6 (a). This
issue cannot be solved by applying the standard normalization (division by the complete gamma function) to
the numerator and the denominator, as we showed that such a normalization may produce severe underflow
issues. In contrast, by evaluating all integrals Iµ,px,y using a mantissa-exponent representation Iµ,px,y = ρ · eσ as
in Algorithm 5, we are able to avoid this undesirable behavior (see more details in [Abergel, 2016, Chap. 4]).
Similarly, the systematic use of differences of incomplete gamma functions to evaluate the integrals Iµ,px,y produces
instabilities in the algorithms (Fig. 6 (b)), due to cancellations as discussed in Section 4.3. In contrast, the
association with Romberg’s method proposed in Algorithm 5 leads to accurate Iµ,px,y estimates and results in
stable iterations of the scheme (42) (Fig. 6 (c)).
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(a) input image u0 (b) naive implementation 1

(c) naive implementation 2 (d) Algorithm 5

Fig. 6. Improper incomplete gamma estimates lead to numerical instabilities. The image u0 displayed in (a) corresponds
to the simulated low-light observation of a synthetic image. We applied to u0 the denoising scheme proposed in Abergel et al.
[2015], which amounts to iterate a few hundred times the recursion (42). We implemented this algorithm in three different ways.
(b): straightforward implementation of (42), where each integral Iµ,px,y is computed as the difference of incomplete gamma functions
evaluated with the algorithm proposed in [Press et al., 1992], and the ratio is evaluated directly; (c): similar implementation,
except that a mantissa-exponent representation is used for each integral to avoid underflow/overflow issues before computing the
ratio; (d): Algorithm 5 is used to compute each integral and estimate the ratio. This requires a huge number of evaluations of the
generalized incomplete gamma function which, in turn, needs the careful handling of underflow/overflow and cancellation issues
as provided by Algorithm 5. Failure to do this leads to the appearance of undesired checkerboard patterns as seen in (b) and (c)
which are caused by numerical instabilities.
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