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Abstract

We propose a computational procedure to evaluate the generalized incomplete
gamma function

∫ y
x
sp−1 e−µs ds for 0 ≤ x < y ≤ +∞, a real number µ 6= 0 and a

positive integer p. Our approach consists in selecting, according to the value of the
parameters x, y, µ, p, the fastest and most accurate estimate among series expansions,
continued fractions, recursive integration by parts, or, when x ≈ y, a first order trape-
zoidal rule. We show that the accuracy reached by our algorithm is nearly optimal for
a large range of parameters.

Keywords: differences of generalized incomplete gamma function, special functions, inte-
gral calculus.

1 Introduction

In this work, we focus on the computation of a generalized incomplete gamma function that
will be defined below. Let us first recall the definition of the gamma function,

∀a > 0, Γ(a) =

∫ +∞

0

sa−1 e−s ds . (1)

The lower and upper incomplete gamma functions are respectively obtained by allowing the
integration domain to vary in (1),

∀a > 0, ∀x ≥ 0, γ(a, x) =

∫ x

0

sa−1 e−s ds and Γ(a, x) =

∫ +∞

x

sa−1 e−s ds . (2)

The gamma function is usually viewed as an extension of the factorial function since it sat-
isfies Γ(a) = (a− 1)! for any positive integer a. Note that the gamma function can also be
defined for all complex numbers a with positive real part, using the same convergent im-
proper integral as in (1), and can even be extended by analytic continuation to all complex
numbers except the nonpositive integers, that is, to a ∈ C \ {0,−1,−2,−3, . . . }. Some sim-
ilar extensions are also available for their incomplete variants γµ(a, x) and Γµ(a, x). These
special functions arise in many areas, such as astronomy and astrophysics [Cannon and Var-
davas, 1974, Hills, 1975], Rayleigh scattering [Kissel et al., 1980], quantum gravity [Bleicher
and Nicolini, 2010], networks [Moreno et al., 2002], financial mathematics [Linetsky, 2006],
image analysis [Robin et al., 2010], etc. (see [Chaudhry and Zubair, 2001] for more exam-
ples). From the mathematical viewpoint, the computation of incomplete gamma functions
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is typically required in applications involving the evaluation of χ2 distribution functions,
exponential integrals, error functions (erf), cumulative Poisson or Erlang distributions, etc.
Their practical numerical evaluation is still subject to some flourishing research in the mod-
ern litterature. The first practical algorithm dedicated to the numerical evaluation of the
incomplete gamma functions was, to the best of our knowledge, proposed in [Bhattachar-
jee, 1970]. It consists in evaluating the ratio γ(a, x)/Γ(a) using a series expansion when
0 < a ≤ x < 1 or 0 ≤ x < a, or the ratio Γ(a, x)/Γ(a) using a continued fraction in the
remaining part of the domain {x ≥ 0, a > 0}. The same strategy is also used in [Press
et al., 1992]. Gautschi [1979] proposed another computational procedure, based on Taylor’s
series and continued fractions, to evaluate those two functions in the region {x ≥ 0, a ∈ R}
(in fact, for a ≤ 0, Tricomi’s version [Tricomi, 1950, Gautschi, 1998] of the lower incom-
plete gamma function, which remains real for any real numbers x, a, is considered). The
criterion proposed in [Bhattacharjee, 1970] to decide which one of the two integrals should
be computed according to the value of (x, a) is refined, and a more suitable normalization
is employed, which extends the range over which those two functions can be represented
within standard double precision arithmetics. More recently, Winitzki [2003] focused on the
computation of the upper incomplete gamma function and used some series expansions, a
continued fraction (due to Legendre), some recurrence relations, or, for large values of x,
an asymptotic series. The precision of the approximation is controlled by estimating the
number of terms required to reach a given absolute precision according to the values of x and
a. However, the study is not considered from the practical point of view, and no algorithm
or experimental validation are provided to assess the numerical stability of the proposed
method. In [Guseinov and Mamedov, 2004], the lower and upper incomplete gamma func-
tions are computed using backward and forward recurrence relations. The experimental
validation is done for the range 0.001 ≤ x ≤ 100 and 0 < a ≤ 100, which is relatively large
in comparison to the numerical validations usually proposed in the litterature. We will also
use, for a particular region of the quarter plane {(a, x), a > 0, x < 0}, a recurrence relation
to compute the lower incomplete gamma function. However, we shall see that in the region
x > 0, we experimentally achieve a faster convergence by using some continued fractions.

In the present paper, we consider the more general case of the generalized incomplete
gamma function, defined by

Iµ,px,y =

∫ y

x

sp−1 e−µs ds, for 0 ≤ x < y ≤ +∞, p > 0, µ ∈ R \ {0} , (3)

and we restrict the study to integer values of p (even though all the algorithms we propose
also work for non-integer values of p when µx > 0). Notice that y = +∞ is only allowed
when µ > 0, otherwise the integral is equal to +∞. Note also that thanks to the rescaling
relation

Iµ,px,y = |µ|−p Iε,p|µ|x,|µ|y, where ε =
µ

|µ|
, (4)

we could restrict the study, without any loss of generality, to µ ∈ {−1, 1}. We will however
not adopt this restriction since it does not simplify the study, even though the numerical
evaluations that we propose are limited to µ = ±1, which simplifies the experimental vali-
dation. The computation of Iµ,px,y will be closely related to that of the generalized lower (γµ)
and upper (Γµ) incomplete gamma functions, which we naturally define by

∀µ ∈ R, γµ(p, x) =

∫ x

0

sp−1 e−µs ds , ∀µ > 0, Γµ(p, x) =

∫ +∞

x

sp−1 e−µs ds . (5)

Note that when µ > 0 in (3) or (5), the change of variable t = µs would lead us back to
the standard definitions of the incomplete gamma functions (up to the multiplicative factor
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µ−p), but this is not the case when µ < 0. The possibility to evaluate the lower incomplete
gamma function γ(p, x) with a negative argument x (which amounts to compute γµ(p, |x|)
with µ = −1) is explored in [Thompson, 2013], but in another situation than ours, since he
focused on the case p = n+ 1

2 , n ∈ Z.
The generalized incomplete gamma function (5) was actually previously introduced in

[Fullerton, 1972], under the slightly different form

Jax1,x2
= ex1

∫ x2

x1

|s|a−1 e−s ds , for any (x1, x2) ∈ R2, and a > 0 . (6)

The integrals I and J are closely related since one easily checks that

∀x, y, 0 < x < y, ∀p > 0, Iµ,px,y =

{
µ−p e−µxJpµx,µy if µ > 0 ,

|µ|−p e−µyJpµy,µx if µ < 0 .
(7)

Our parametrization of the integral I using the scale parameter µ will be helpful to avoid
the absolute values in the integral, which would inevitably have involved the distinction of
the cases x1 > x2 and x1 ≤ x2 in our study. The numerical evaluation of the generalized
incomplete gamma function Iµ,px,y has found some applications in the field of astronomy, for
instance in [Hills, 1975], where its computation was needed to model the dynamical evolution
of stellar clusters. It was more recently needed in the field of image processing, in [Abergel
et al., 2015], where the accurate computation of Iµ,px,y for a large range of parameters was
at the heart of a denoising algorithm for the restoration of images corrupted with Poisson
noise. Unfortunately, Fullerton’s algorithm, which was not validated for a large range of
parameters, presents several weaknesses. As pointed out in [Schoene, 1978], for some values
of the parameters, the algorithm suffers from numerical instabilities, yielding for instance,
a computed integral with incorrect sign, or zero digit of precision. We also observed some
overflow issues when we tested the algorithm on a higher range of parameters (typically
when p ≈ 102 or higher, but also for many other parameter settings).

Note also that a numerical procedure specific to the evaluation of Iµ,px,y is available into the
scientific computing software Mathematica (see [Wolfram Research Inc, 1988], but also [Wol-
fram Research Inc, 1998] for the online evaluation of Iµ,px,y ). Unfortunately, Mathematica’s
algorithms are not currently disclosed to the public.

Let us now consider the numerical evaluation of Iµ,px,y . This integral can be computed as
a difference of generalized lower (γµ) and upper (Γµ) incomplete gamma functions, since for
any µ ∈ R, we have

Iµ,px,y = γµ(p, y)− γµ(p, x) , (8)

and for µ > 0, we have

Iµ,px,y = Γµ(p, x)− Γµ(p, y) =
Γ(p)

µp
− γµ(p, x)− Γµ(p, y) . (9)

The effective computation of Iµ,px,y using (8) or (9) raises several numerical issues:

1. For some values of the parameters, the generalized incomplete gamma functions γµ
and Γµ cannot be represented in the computer floating point arithmetic (for example
when they exceed 1.9 ·10308, the largest double precision number). To solve that issue,
we will represent all integrals in (5) under the form ρ · eσ, where ρ and σ are floating
point numbers with double precision;
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2. The possibility to efficiently compute γµ(p, x) and Γµ(p, x) depends on the values of
the parameters µ, p, x, or more precisely of µx and p because of the scaling relation (4).
We derived a division of the plane (µx, p) allowing an efficient computation of these
two functions for each parameter set (µ, p, x);

3. When Iµ,px,y is computed as the difference A−B, the result may be inaccurate if A and B
are close to each other (the well-known cancellation effect in floating-point arithmetic),
which typically happens in (8)-(9) when x and y are very close to each other. In that
case, the integral Iµ,px,y is well approximated by a first order approximation of the
integral. We found a good criterion, to decide when this approximation should be
used.

In particular, the issue (1) detailed above is of great importance when some integrals of
the kind Iµ,px,y appear into more complicated mathematical expressions, such as in [Abergel
et al., 2015], where the computation of a ratio of sums of generalized incomplete gamma
functions is involved, with a numerator and a denominator that may both exceed the highest
representable double floating point number, although the ratio itself is representable in the
standard computer floating-point arithmetic.

This paper is organized as follows. In Section 2, we recall some mathematical methods
based on series expansion, fraction continuation, or recursive integration by parts, that can
be used for the numerical evaluation with a mantissa-exponent representation of the general-
ized lower (Section 2.1) and upper (Section 2.2) incomplete gamma functions γµ and Γµ. In
Section 2.3, we derive theoritical accuracy bounds achievable with such a mantissa-exponent
representation, and check experimentally in Section 2.4 that we can achieve these bounds
by selecting the appropriate method (continued fraction or integration by parts) depending
on the values of the parameters µ, p, x. In Section 3, we focus on the practical evaluation
of the generalized incomplete gamma function Iµ,px,y (that is, with arbitrary finite values of x
and y). The numerical evaluation of this integral is done by means of a difference (8)-(9), or,
when x ≈ y, using the first order trapezoidal rule. In Section 5, our algorithm is compared
with the one of Fullerton, and is shown to exhibit a much greater accuracy for a large range
of parameters. We finally conclude in Section 6 and discuss some perspectives.

2 Numerical computation of the generalized lower and
upper incomplete gamma functions

2.1 Evaluation of the generalized lower incomplete gamma function

Given p ≥ 1, x > 0 and µ 6= 0, we detail below how the generalized lower incomplete gamma
γµ(p, x) can be evaluated with a mantissa-exponent representation of the kind

γµ(p, x) = m(µx, p) · en(µ,x,p), where n(µ, x, p) = −µx+ p log x . (10)

The mantissa m(µx, p) will be determined using either a series expansion, or a continued
fraction, or, in the case µ < 0, a recursive integration by parts. This yields three different
computational methods for the evaluation of γµ(p, x). Notice that in the following, we
will need to extend the representation (10) to the particular cases x = 0 and (only when
µ > 0) x = +∞. For that purpose we set m(0, p) = 0, n(µ, 0, p) = −∞ (taking the
obvious convention that 0 · e−∞ = 0), and in the case µ > 0, we set m(+∞, p) = 1 and
n(µ,+∞, p) = log Γ(p)− p logµ. The practical computation of log Γ(p) will be discussed in
Section 4.
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2.1.1 Series expansion

Writing the Taylor series expansion with order p−1 and integral remainder of the exponential
function near zero we get

eµx =

p−1∑
k=0

(µx)k

k!
+

∫ µx

0

(µx− t)p−1

(p− 1)!
et dt =

s=x−t/µ
eµx−

+∞∑
k=p

(µx)k

k!
+
µp eµx

(p− 1)!

∫ x

0

sp−1 e−µs ds .

This yields a series expansion of the generalized lower incomplete gamma function under
the form γµ(p, x) = γser

µ (p, x) where

γser
µ (p, x) = mser(µx, p) · e−µx+p log x , and mser(µx, p) =

+∞∑
k=0

(p− 1)!

(k + p)!
(µx)k . (11)

Although the power series mser(µx, p) defined above has an infinite radius of convergence,
its convergence can be quite slow and numerically unstable according to the values of p and

µx. It is suggested in [Press et al., 1992] to evaluate γµ(p, x) using (11) as soon as |µx|p+1 < 1;
however, according to our experiments, a better convergence rate can be obtained by using
a continued fraction development. Thus, we shall not use (11) in the algorithm we propose.

2.1.2 Continued fraction

Let us consider the confluent hypergeometric function M , defined by

M(a, b, z) =

+∞∑
n=0

a(n)

b(n)

zn

n!
, where ∀α, α(0) = 1 and α(n) = α(α+ 1) · · · (α+ n− 1) .

Since for any (b, z) we have M(0, b, z) = 1, Equation (11) rewrites as

γµ(p, x) =
M(1, p+ 1, µx)

p ·M(0, p, µx)
· e−µx+p log x . (12)

As detailed in [Olver et al., 2010, DLMF, Cuyt et al., 2008, Jones and Thron, 1980], the

ratio M(a,b,z)
M(a+1,b+1,z) can be continued for any z ∈ C, as soon as a 6∈ Z \ N and a − b 6∈ N.

Under this assumption (which will be satisfied here, since we will consider the setting a = 0,
b = p), and using the usual notation for continued fractions,

α1

β1+

α2

β2+

α3

β3+
· · · = α1

β1 + α2

β2+
α3

β3+...

,

we get
M(a, b, z)

M(a+ 1, b+ 1, z)
= 1 +

u1

1+

u2

1+

u3

1+
. . . ,

where ∀n ≥ 0, u2n+1 = (a−b−n)z
(b+2n)(b+2n+1) , u2n = (a+n)z

(b+2n−1)(b+2n) . Writing the inverse ratio

(with a = 0 and b = p), and after basic manipulations of the continued fraction, we obtain

M(1, p+ 1, µx)

p ·M(0, p, µx)
=

a1

b1+

a2

b2+

a3

b3+
. . . ,

5



where a1 = 1 and ∀n ≥ 1, a2n = −(p − 1 + n) · µx, a2n+1 = n · µx and bn = p − 1 + n.
Therefore, Equation (12) rewrites as γµ(p, x) = γcfrac

µ (p, x), where

γcfrac
µ (p, x) = mcfrac(µx, p) · e−µx+p log x , and mcfrac(µx, p) =

a1

b1+

a2

b2+

a3

b3+
. . . (13)

The above defined continued fraction mcfrac(µx, p) can be evaluated thanks to the modified
Lentz’s method [Lentz, 1976, Thompson and Barnett, 1986] which is also described in [Press
et al., 1992] and that we recall in Algorithm 1 for the reader’s convenience, with however
a slight adaptation of the initialization process since we observed some instabilities when
using that described in [Press et al., 1992] (see comment in Algorithm 1). This continued
fraction converges for any value of µx and the convergence is fast as it requires in general less
than 20 approximants to converge, except when µ > 0 and µx ≈ p (where it takes around p
approximants) or when µ < 0 and p is small (several hundred of approximants needed for
p ≤ 20 and |µx| ≤ 1000). Note that mcfrac(µ, px) becomes huge when µx is chosen too large
compared to p, and numerical instabilities can appear. For that reason, we will restrict the
use of (13) to a subdomain of the plane (µx, p), as discussed in section 3.

Algorithm 1: Modified Lentz’s method for continued fractions evaluation.

Input: Two real-valued sequences {an}n≥1 and {bn}n≥1, with b1 6= 0.

Output: Accurate estimate f of the continued fraction a1
b1+

a2
b2+

a3
b3+
· · ·

Initialization:
dm ← 10−300 // Number near the minimal floating-point value

f ← a1
b1

; C ← a1
dm

; D ← 1
b1

; n← 2 // see the algorithm footnote

repeat
D ← D · an + bn
if D = 0 then D ← dm
C ← bn + an

C

if C = 0 then C ← dm
D ← 1

D

∆← C ·D
f ← f ·∆
n← n+ 1

until |∆− 1| < εmachine

return f

In the initialization step, we manually performed the first pass n = 1 of the modified Lentz’s algorithm,
since we observed some instabilities with the initialization f = C = dm, D = 0, presented in [Press et al.,
1992]. Indeed, the setting C = dm may yield C = +∞ after the pass n = 1 (when a1/dm exceed the
highest representable number), and then ∆ = f = +∞, which propagates through the next iterations. By
computing manually the first pass, even when the initialization C = a1/dm yields C = +∞, the pass n = 2
yields C = b2 + a2/C = b2, which has a finite value.

2.1.3 Integration by parts

Since we only consider integer values of the parameter p, the generalized lower incomplete
gamma function γµ(p, x) can be written as a closed-form formula using a recursive integration
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by parts. Considering the case µ < 0, one gets

γµ(p, x) = γibp
µ (p, x) := mibp(µx, p) · e−µx+p log x ,

where mibp(µx, p) =
1

µx

(
(p−1)! eµx

(µx)p−1 −
p−1∑
k=0

(p−1)!(µx)−k

(p−1−k)!

)
. (14)

Although the computation of γibp
µ (p, x) is not efficient in general, it happens to be faster

than γcfrac
µ (p, x) for small values of p. We must however be carefull when computing the al-

ternating sum mibp(µx, p) since, as usual with alternating sums, it may suffer from dramatic
cancellation errors.

Let t = |µx| > 0, we rewrite (14) into

mibp(−t, p) =
1

t

(
(−1)p(p−1)! e−t

tp−1 + s(t)
)
, where s(t) =

p−1∑
k=0

(−1)k
(p− 1)! t−k

(p− 1− k)!
. (15)

By grouping by two the consecutive terms with indexes k = 2l and k = 2l + 1 of the
alternating sum s(t), we get

s(t) = s̃(t) :=

bp−2
2 c∑
l=0

(p− 1)! t−(2l+1)

(p− 1− 2l)!
(t− (p− 1− 2l)) + εp(t) , (16)

where bzc denotes the integer part of z, and the residual term εp(t) is defined by

εp(t) =

{
(p− 1)! t−(p−1) if p is odd

0 otherwise.

Let us now assume that t ≥ max (1, p− 1). First, using t ≥ p − 1, we see that all terms
in the sum s̃(t) are nonnegative, so that we can evaluate s̃(t), which has exactly the same
value as the alternating sum s(t), without any cancellation error using (16). It follows that,
when p is even, we have

mibp(−t, p) =
1

t

(
(p− 1)!e−t

tp−1
+ s̃(t)

)
,

which is a sum of positive terms, so that it does not suffer from cancellation error. When p
is odd, (15) yields

mibp(−t, p) =
1

t

(
− (p− 1)!e−t

tp−1
+ s̃(t)

)
. (17)

Noting α(t) = (p−1)!e−t

tp−1 and using the fact that t ≥ 1, we get

s̃(t)

α(t)
≥ εp(t)

α(t)
= exp (t) ≥ exp (1) ,

which ensures that no cancellation error occurs when computing the difference between s̃(t)
and α(t), involved in (17). Finally, we are able to evaluate (14) without cancellation in the
region t ≥ max (1, p− 1).
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Last, from t > p− 1, we infer that the sequence {ak(t)}k≥0 defined by

∀k ≥ 0, ak(t) =

{
(p−1)! t−k

(p−1−k)! if k ≤ p− 1

0 otherwise,

is nonincreasing, with limit 0. It follows that the remainder rn(t) =
∑+∞
k=n+1(−1)kak(t)

of the alternating series s(t) =
∑+∞
k=0(−1)kak(t) satisfies |rn(t)| ≤ an+1(t), so that we can

numerically estimate s(t) with the partial sum sn(t) =
∑n
k=0(−1)kak(t) as soon as

an+1(t) ≤ |sn(t)| · εmachine ,

which may occur for n < p−1, making possible in that case to save some computation time.
In practice, we compute s(t) = s̃(t) with (16) instead of (15), but this stopping criterion can
be easily evaluated at each iteration of the summation procedure. Indeed, remarking that
the sequence {a2l(t)− a2l+1(t)}l≥0 is positive and nonincreasing (because t > p− 1), we get

∀l ∈ N, a2l+2(t) ≤ a2l(t)− a2l+1(t) + a2l+3(t) ≤ a2l(t)− a2l+1(t) ,

so that
∀l ∈ N, |r2l+1(t)| ≤ a2l+2(t) ≤ |a2l(t)− a2l+1(t)| .

This yields Algorithm 2.

Algorithm 2: Accurate evaluation of mibp(µx, p) = 1
µx

(
(p−1)! eµx

(µx)p−1 −
∑p−1
k=0

(p−1)!(µx)−k

(p−1−k)!

)
.

Input: Two real numbers x ∈ R+, µ < 0, and a positive integer p, satisfying
|µx| > max (1, p− 1).

Output: An accurate estimate of mibp(µx, p).

Initialization: t← |µx|; c← 1
t
; d← p− 1; s← c · (t− d); l← 1; stop← false

repeat

c← d(d−1)

t2

d← d− 2
∆← c(t− d) // Now ∆ = a2l(t)− a2l+1(t)

s← s+ ∆ // Now s = s2l+1(t) =
∑2l+1
k=0 (−1)kak(t)

if ∆ < s · εmachine then stop← true
l← l + 1

until l > b p−2
2
c or stop

if (not stop) and (p is odd) then s← s+ d c
t

// add the term εp(t) = (p− 1)! t−(p−1)

return 1
t

(
(−1)p · e−t+log (p−1)!−(p−1) log(t) + s

)

There is a more elegant way to avoid the cancellation errors in the computation of s(t),
inspired from Horner’s algorithm for polynomial evaluation. It consists in computing

s(t) = 1− p− 1

t
·
(

1− p− 2

t
·
(

1− p− 3

t
·
(
. . .

(
1− 1

t

)))
. . .

)
,

or more precisely, s(t) = vp−1(t), where {vn(t)}n≥1 is the sequence defined recursively by

∀n ≥ 1, vn(t) =

{
1− 1

t if n = 1 ,

1− n
t · vn−1(t) if n ≥ 2 .
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Assuming t ≥ 2p, one can show that the terms of {vn}1≤n≤p−1 remain in ( 1
2 , 1), so that

they can be evaluated without cancellation errors. However, a drawback of this approach
is the absence of a simple stopping criterion making possible to end up the computation of
s(t) before computing all the first p− 1 terms of the sequence {vn}n≥1.

2.1.4 Algorithm for the evaluation of the generalized lower incomplete gamma
function

The evaluation of γµ(x, p) using one of the computation methods presented above can be
done using Algorithm 3. This algorithm returns a mantissa-exponent representation (m,n)
of γµ(x, p), such as γµ(x, p) = m · en, and returns m = 0, n = −∞, when γµ(x, p) = 0 (this
will be more generally the case for the mantissa-exponent representations returned by all
algorithms we propose).

Algorithm 3: Evaluation of γµ(x, p) =
∫ x

0
sp−1 e−µs ds using a series expansion, a continued frac-

tion, or a recursive integration by parts.

Input: Two numbers x ∈ R+ ∪ {+∞}, µ ∈ R \ {0}, and a positive integer p. Notice that the
value x = +∞ is allowed only when µ > 0.

Output: Two numbers m ∈ R and n ∈ R ∪ {−∞} such as γµ(p, x) = m · en.

if x = 0 then (m,n)← (0,−∞)
else if x = +∞ and µ > 0 then (m,n)← (1, log Γ(p)− p logµ)
else

switch choice of the evaluation method for the mantissa do
case series expansion

m← mser(µx, p) // using Equation (11)
case continued fraction

m← mcfrac(µx, p) // using Equation (13) and Algorithm 1

case recursive integration by parts (only when µ < 0 and |µx| > max (1, p− 1))

m← mibp(µx, p) // using Equation (14)
end

endsw
n← −µx+ p log x

end

return (m,n)

2.2 Evaluation of the generalized upper incomplete gamma func-
tion

Let p ≥ 1, x > 0 and µ > 0. The evaluation of Γµ(p, x) can be done thanks to another
fraction continuation as detailed in [Abramowitz and Stegun, 1964, Press et al., 1992]. We
accordingly set Γµ(p, x) = Γcfrac

µ (p, x), where

Γcfrac
µ (p, x) = M cfrac(µx, p) · e−µx+p log x , M cfrac(µx, p) =

α1

β1+

α2

β2+

α3

β3+
· · · , (18)

with α1 = 1, αn = −(n − 1) · (n − p − 1) for any n > 1, and βn = µx + 2n − 1 − p for
any n ≥ 1. The continued fraction M cfrac(µx, p) can be numerically evaluated using again

9



Algorithm 1, except when β1 = 1 (i.e. when µx = p− 1), in which case we must use

M cfrac(µx, p) =
α1

M
, where M =

α2

β2+

α3

β3+

α2

β2+
· · · and β2 6= 0 . (19)

We extend the computation of Γµ(p, x) to the cases x = 0 and x = +∞ using a similar
approach as for γµ(p, x). This yields Algorithm 4.

Algorithm 4: Evaluation of Γµ(x, p) =
∫ +∞
x

sp−1 e−µs ds using a continued fraction.

Input: Two numbers x ∈ R+ ∪ {+∞}, µ > 0, and a positive integer p.

Output: Two numbers M ∈ R and N ∈ R ∪ {−∞} such that Γµ(p, x) = M · eN .

if x = 0 then (M,N)← (1, log Γ(p)− p logµ)
else if x = +∞ then (M,N)← (0,−∞)
else

if µx 6= p− 1 then

M ←Mcfrac(µx, p) // using Equation (18) and Algorithm 1

else

M ←Mcfrac(µx, p) // using Equation (19) and Algorithm 1

end
N ← −µx+ p log x

end

return (M,N)

2.3 Accuracy of the mantissa-exponent representation and its con-
version into scientific notation

Thanks to Algorithms 3 and 4, we are now able to evaluate the integrals γµ(p, x) and Γµ(p, x)
with a mantissa-exponent representation of type ρ · eσ, where, in absence of additional
multiprecision library, the quantities ρ and σ are evaluated in standard double floating-
point precision. Alhough this representation considerably extends the range over which the
integrals γµ(p, x) and Γµ(p, x) can be represented (in comparison with a direct evaluation
of those integrals in double precision), the evaluation of the term ρ · eσ may suffer from
important loss of precision, according to the values of ρ and σ. Indeed, using a first order
approximation of the relative error associated to the term ρ · eσ, we get∣∣∣∣∆(ρ · eσ)

ρ · eσ

∣∣∣∣ ≈ ∣∣∣∣∆ρρ
∣∣∣∣+

∣∣∣∣∆(eσ)

eσ

∣∣∣∣ =

∣∣∣∣∆ρρ
∣∣∣∣+ |∆σ| =

∣∣∣∣∆ρρ
∣∣∣∣+ |σ| ·

∣∣∣∣∆σσ
∣∣∣∣ := E (20)

where |∆X| and |∆X/X| respectively denote the absolute and relative errors between the
actual value of X and its computed value. Unfortunately, we see that E gets large as |σ|
increases, and since the quantity ρ and σ are in the best case estimated at the machine
precision (i.e. |∆ρ/ρ| = |∆σ/σ| = εmachine), we have the lower bound

E ≥ Emin := 1 + |σ| · εmachine . (21)

For instance, when σ ≈ 4503.5, the best relative accuracy that can be expected is
Emin ≈ 4504.5 × 2.22 · 10−16 ≈ 10−12 using the IEEE 754 Standard for Floating-Point
Arithmetic on a 64-bits computer (which yields εmachine = 2.22 · 10−16). Since in Algo-
rithms 3 and 4, the exponent σ associated to the computation of γµ(p, x) or Γµ(p, x) is

10



given by σ = −µx+p log x, we can already establish some theoritical bounds for the relative
error E reachable by these algorithms with respect to µ, p, x. This is done in Figure 1, and
our numerical experiments performed in Section 2.4 (Figures 2 and 3) will show that this
theoritical bound is in practice attained by our algorithms.

Unsurprisingly, the same limitation arises when we format the quantity ρ ·eσ in scientific
notation (that is ρ · eσ = a · 10b, where a ∈ [1, 10) and b ∈ Z). This operation can be done
using

a = ρ · ec−bcc , b = bcc , where c =
σ

log (10)
+ log10 (ρ) . (22)

This time, the evaluation of a suffers from the loss of precision occuring in the evalution of
c− bcc, the fractional part of c, simply because all digits used to represent the integer part
of c are as many digits which are lost in the evaluation of its fractional part. Assuming that
∆b = 0 (i.e. that the quantity c is estimated with at least one digit of precision), we get∣∣∣∣∆(a · 10b)

a · 10b

∣∣∣∣ =

∣∣∣∣∆aa
∣∣∣∣ ≈ ∣∣∣∣∆ρρ

∣∣∣∣+ |∆c| ≤ (1 + |c|) · εmachine , (23)

which is similar to (21). Although some numerical strategies to retrieve several significant
digits may be developed, the most straightforward way to compensate the loss of precision
of those two representations would be to evaluate σ and ρ with a more generous floating
point precision, which can be easily done using the x86 Extended Precision Format (which
corresponds to the long double datatype in C langage, and yields εmachine = 1.08 · 10−19),
or using some multiprecision library (such as the GNU MPFR C-library, which provides an
exact control of the number of significant number of bits used for each variable).

2.4 Selection of a fast and accurate computational method accord-
ing to the parameters

We detailed in (11), (13), (14), (18), several methods for the numerical evaluation of γµ and
Γµ, with a mantissa-exponent representation. Let us now focus on the accuracy and the
computation time of these methods, according to the value of the parameters µ, p, x. For
that purpose, we evaluated γser

µ (x, p), γcfrac
µ (x, p), γibp

µ (x, p) and Γcfrac
µ (x, p) for a large range

of parameters:
µ = ±1, x ∈ [0, 1000] ∩ N, p ∈ [1, 1000] ∩ N ,

more precisely, γcfrac
µ (x, p) and γser

µ (x, p) were computed for all theses values of (µx, p), but

γibp
µ (x, p) was computed only in the case µ < 0, |µx| > max (1, p− 1), in accordance to the

discussion made in Section 2.1.3, and Γcfrac
µ (x, p) was computed only in the case µx ≥ 0.

For each tested value of (µ, x, p) and each evaluation method, we compared the computed
values of γµ(p, x) and Γµ(p, x) (formatted in scientific notation using (22)) to those computed
with MapleTM (version 17), with 30 significant decimal digits (which requires large amounts
of memory and a long computation time), using the instructions

evalf(Int(s^(p-1)*exp(-mu*s),s=0..x,digits=30));

evalf(Int(s^(p-1)*exp(-mu*s),s=x..infinity,digits=30));

The values of the integrals estimated with Maple were used as references to evaluate the
relative accuracy reached for each method, and each tested value of µ, x, p. The results
are displayed in Figure 2 and 3. We observed from these experiments that for each µ, x, p,
at least one computation method yields a relative error less than 2 · 10−12 when using the
standard double floating-point precision in C langage, and only this many in the region
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Figure 1: Isovalues of the exponent σ = (µ, x, p) 7→ −µx+ p log x (µ = −1, left) and (µ = 1, right).
In this figure, we display some isovalues of the exponent part of γµ and Γµ computed with Algorithm 3 and 4,
and whose parametric equation is recalled above. As discussed in Section 2.3, the relative precision related
to the evaluation of γµ and Γµ using a mantissa-exponent representation ρ · eσ deteriorates as σ increases.
Indeed, even when ρ and σ are estimated with the best available precision (∆ρ/ρ = ∆σ/σ = εmachine), the
best relative precision that we can expect for the evaluation of ρ · eσ is Emin = (1 + |σ|) · εmachine, as stated
in (21). The standard precision (on a 64-bits computer) is εmachine = 2.22 · 10−16, so that Emin ≥ 10−12

as soon as σ ≥ 4503.5. Interestingly enough, the curve corresponding to the isovalue σ(µ, x, p) = 4503.5 fits
particularly well with the frontier of the domain where Algorithm 3 and 4 yield a relative accuracy more than
10−12 (see Figure 2). When using the extended double floating-point precision (corresponding to the long
double datatype in C langage), we have εmachine = 1.08 · 10−19, so that we get 1 · 10−16 ≤ Emin ≤ 2 · 10−16,
in the region 1000 ≤ σ(µ, x, p) ≤ 2000 (delimited by the two other isovalues represented above). Again,
these two frontiers were experimentally observed in Figure 3, where we measure the relative error reached
by our algorithms using extended double precision.

(µ, x, p) where the exponent part is above 4503.5 (this region is represented in Figure 1).
Outside of this region, at least one method yields a relative error less than 10−12 (more
precisely close to 10−13). Interestingly enough, the observed relative errors perfectly match
with the bound (21) predicted in Section 2.3, showing that, in practice, the accuracy of
Algorithms 3 and 4 is only limited by the mantissa-exponent representation. When using
the extended double precision (see Figure 3), we improve the precision of three orders of
magnitude, and again, the selection of the most accurate method yields a relative error which
is very close to that predicted in Section 2.3, so that we could expect even more accuracy
with higher precision computer arithmetics.

By measuring the computation time for each method and each value of (µ, x, p), and
thanks to the control of the relative error presented in Figure 2, we derived a partition into
three domains of the plan (µx, p) which makes possible the fast and accurate computation
of at least one quantity between γµ(p, x) and Γµ(p, x). We accordingly propose a parametric
equation for the boundary of those three domains, given by

∀µx ∈ R ∪ {+∞}, plim(µx) =

 5
√
|µx| − 5 if µx < −9 ,

0 if − 9 ≤ µx ≤ 0 ,
µx otherwise.

(24)

This equation can be used in the following way (as illustrated in Figure 4):

• when p ≥ plim(µx): compute γcfrac
µ (p, x);

• otherwise: compute γibp
µ (p, x) when µ < 0, or Γcfrac

µ (p, x) when µ > 0.

12
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(a) relative error for γcfracµ .
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(b) relative error for γibp
µ (µx < 0, left) and Γcfrac

µ (µx > 0, right).

Figure 2: Control of the relative error associated to the computation of γµ(p, x) and Γµ(p, x)
using different methods. We used Algorithms 3 and 4 (implemented in C langage, using the standard

double datatype on a 64-bits computer) to compute γcfrac
µ (p, x), γibp

µ (p, x), Γcfrac
µ (p, x) for µ = ±1, x integer

in [0, 103], and p integer in [1, 103]. Using Maple, we measured the relative errors reached by each method.

The error reached by γcfrac
µ is displayed in (a), the error reached by γibp

µ (computed only for µ < 0 and

|µx| ≥ max (1, p− 1)) is displayed in the left-side of (b), and the error reached by Γcfrac
µ (computed only for

µ > 0) is displayed in the right-side of (b). The dashed curve (see its parametric equation in (24)) splits

the plan (µx, p) into three domains, each one is associated to one of the three computation methods (γibpµ :
left, γcfrac

µ : middle, Γcfrac
µ : right), and corresponds to the region where the method is at the same time

fast and accurate, compared to the others (see also Figure 4). We can see that inside each one of the three
domains, the corresponding computation method reaches a relative error always less than 10−11 (the actual
maximal observed error is in fact close to 2 ·10−12), and most of the time less than 10−12 (in practice close to
10−13). We also observe that the boundary of the region where the relative error (of the selected algorithm)
is greater than 10−12 coincides almost perfectly with the isovalue σ = 4503.5 displayed in Figure 1, showing
that the relative error is in practice only limited by the mantissa-exponent representation (see discussion in
Section 2.3). This limitation can be compensated by using a more precise floating-point representation, as
shown in Figure 3.
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(a) relative error for γcfracµ .
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(b) relative error for γibp
µ (µx < 0, left) and Γcfrac

µ (µx > 0, right).

Figure 3: Improving the accuracy of γµ(p, x) and Γµ(p, x) using extended double precision. We
performed here the same experiment as in Figure 2, using a C implementation of Algorithms 3 and 4 with
extended double precision (corresponding to the long double datatype in C langage, with machine epsilon
εmachine = 1.08·10−19, which is around three orders of magnitude better than the standard double precision).
We see that our algorithm fully benefits from this additional precision, since the observed relative error is
decreased of around three magnitude orders as well. Besides, we observe again that the main limitation
to the precision remains that involved by the mantissa-exponent representation, since, within each domain,
the level lines of the relative error of the selected algorithm match very well to the isovalues of σ, and the
value of the relative error is in practice very similar to that predicted in (21). This suggests that the error
bounds we obtain could be reduced even further by simply using a more precise floating-point arithmetic
(for instance the GNU MPFR C library).
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Figure 4: Numerical evaluation of the generalized lower or upper incomplete gamma functions.
In this figure, we display the graph (red curve) of the frontier plim defined in (24). This curve delimits the
plan (µx, p) into three regions, each corresponding to the region where one of the three computation methods

γcfrac
µ , γibp

µ and Γcfrac
µ is optimal (in the sense that its computation is fast and reaches a good relative error).

According to our partition, and as indicated on the figure, γibp
µ must be computed in the bottom-left region,

γcfrac
µ in the middle region, and Γcfrac

µ in the bottom-right region. More precisely, we select γµ(p, x) as soon

as p ≥ plim(µx), otherwise we select γibp
µ (p, x) when µ < 0, or Γcfrac

µ (p, x) when µ > 0. A close-up view

near µx = 0 shows that γcfrac
µ is automatically selected near µx = 0 since p ≥ 1 ≥ plim(µx) = 0 when

−9 ≤ µx ≤ 0 (this avoids the computation of γibp
µ (p, x) for |µx| < max (1, p− 1), which is not allowed

according to the discussion of Section 2.1.3).

3 Evaluation of the generalized incomplete gamma func-
tion

As stated before, the accurate evaluation of Iµ,px,y raises two different issues. First, this
integral can be approximated as the difference A − B between two terms A ≥ B ≥ 0
involving the evaluation of the generalized upper and lower incomplete gamma functions
γµ and Γµ, thanks to the relations (8)-(9). Therefore, we must select which difference can
be accurately and efficiently computed according to the parameters µ, x, y, p; this selection
is discussed in Section 3.1. Second, we must be careful that the accurate evaluation of
A and B is not sufficient to garantee an accurate evalutation of the difference A − B,
because cancellation errors arise when A and B are too close to each other, which happens
in practice when x ≈ y. In that case, we propose to approximate the integral Iµ,px,y using a
first order trapezoidal approximation, as discussed in Section 3.2. In order to decide which
approximation must be used (between the computation by means of a difference A − B,
or a first order approximation), we propose in Section 3.3 a simple criterion based on the
absolute errors. This study results in Algorithm 6 for the evaluation of Iµ,px,y .
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3.1 Computing Iµ,px,y as a difference of generalized incomplete gamma
functions

According to the numerical experiments presented in Figures 2-4, we are now able to decide
which integral between γµ(p, x) and Γµ(p, x) can be computed and how it must be evaluated,
according to the value of (µ, p, x), to reach at the same time a good accuracy and a small
computation time. We used these results to derive which difference Idiff = A − B should
be considered to approximate Iµ,px,y , according to x, y, µ, p. The results are gathered in Ta-
ble 1. A mantissa-exponent representation of Idiff is obtained from the mantissa-exponent
representations (mA, nA) and (mB , nB) of A and B (returned by Algorithm 3 or 4):

Idiff = ρdiff · eσdiff , where ρdiff = mA −mB e
nB−nA , σdiff = nA . (25)

If Idiff was computed directely as the difference A−B (which is in practice difficult because
A and B may not be representable in the floating-point arithmetic), the absolute error
|∆Idiff| = |Iµ,px,y − Idiff| would satisfy |∆Idiff| ≈ Aεmachine (since A ≥ B ≥ 0), but this is not
the case here, due to the mantissa-exponent representation used for A, B, and Idiff. A more
precise estimation of |∆Idiff| is obtained by using a first order approximation

|∆Idiff| ≈ (|∆ρdiff|+ |ρdiff ∆σdiff|) eσdiff .

Besides, as discussed in Figures 2 and 3, we can reasonably consider that the relative preci-
sion reached for the quantities mA, nA, mB and nB is close to the machine epsilon (which
is of course not the case for mA · enA and mB · enB , as discussed in Section 2.3). It follows
that the quantity σdiff is also evaluated at the machine precision, and thus, the correspond-
ing absolute error is |∆σdiff| = |σdiff| · εmachine. The same kind of equality does not holds
for the mantissa ρdiff, whose numerical evaluation suffers from an additional loss of preci-
sion due to the exponential term. Indeed, using again a first order approximation, we get
|∆ρdiff| ≈ |∆mA|+ (|∆mB |+ |mB ∆(nB − nA)|) enB−nA , therefore

|∆ρdiff| ≈
(
|mA|+ |mB | · (1 + |nB |+ |nA|) enB−nA

)
εmachine ,

and we can drop the absolute values around mA, mB and ρdiff (which are nonnegative) to
get the approximation

|∆Idiff| ≈ |∆̂Idiff| :=
(
mA +mB · (1 + |nB |+ |nA|) enB−nA + ρdiff |σdiff|

)
εmachine e

σdiff .

We will use |∆̂Idiff| as an estimate of the actual absolute error |∆Idiff|.

3.2 Computing Iµ,px,y using a trapezoidal rule

A simple first order trapezoidal approximation of Iµ,px,y yields

Iµ,px,y ≈ Itrapezoid := (y − x)
fµ,p(x) + fµ,p(y)

2
, (26)

where fµ,p(s) = sp−1 e−µs. For the practical implementation, we will compute Itrapezoid

using the mantissa-exponent representation Itrapezoid = ρtrapezoid · eσtrapezoid , where

σtrapezoid = max (nx, ny), ρtrapezoid =
y − x
2x

enx−σtrapezoid +
y − x

2 y
eny−σtrapezoid ,

noting nx = −µx+p log x and ny = −µy+p log y. The following proposition gives an upper
bound of the absolute error |∆Itrapezoid| = |Iµ,px,y −Itrapezoid| associated to the approximation
of Iµ,px,y by Itrapezoid. Remark that this upper bound is not interesting for all values of
µ, x, y, p, but it gets precise as the distance betwen x and y gets small.
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Proposition 1. For any µ ∈ R \ {0}, for any positive integer p, and any nonnegative real
numbers x, y, such as x ≤ y, we have the upper bound

|∆Itrapezoid| ≤ |∆̂Itrapezoid| :=
(y − x)3

12
Dµ,p
x,y y

max (0,p−3) emax (−µx,−µy) ,

where

Dµ,p
x,y =


µ2 if p = 1 ,

max
(
|µ2x− 2µ|, |µ2y − 2µ|

)
if p = 2 ,

Cµ,px,y if p ≥ 3 ,

and

Cµ,px,y =


|Pµ(y)| if µ < 0 ,

max (|Pµ(x)|, p− 1, |Pµ(y)|) if µ > 0 and x ≤ p−1
µ ≤ y ,

max (|Pµ(x)|, |Pµ(y)|) otherwise,

with Pµ(s) = (µs)2 − 2(p− 1)µs+ (p− 1)(p− 2).

Proof (abridged). The first order trapezoidal rule yields the upper bound

|∆Itrapezoid| ≤
(y − x)3

12
sup
s∈[x,y]

|f ′′µ,p(s)| . (27)

In the case p ≥ 3, for any s ∈ [x, y], we have f ′′µ,p(s) = Pµ(s) sp−3 e−µs, and a straightforward
study of the second degree polynomial Pµ yields Cµ,px,y = sups∈[x,y] |Pµ(s)|. It follows that

sup
s∈[x,y]

|f ′′µ (s)| ≤ Cµ,px,y y
p−3 emax (−µx,−µy) .

In the cases p = 1 and p = 2, a similar study can be led without difficulty. Finally, for any
p ≥ 1, we get

sup
s∈[x,y]

|f ′′µ (s)| ≤ Dµ,p
x,y y

p−3 emax (−µx,−µy) ,

which, combined to (27), yields the announced result.

3.3 Criterion for the selection of the approximation by trapezoidal
rule or differences

In order to choose between the two approximation methods (trapezoidal or difference), we
propose to select the one yielding the smallest absolute error. To this aim, we consider the
ratio between |∆̂Idiff| and |∆̂Itrapezoid|, i.e.,

∀x 6= y, Rµ,px,y =
|∆̂Idiff|

|∆̂Itrapezoid|
,

which is an approximation of the ratio between the effective relative errors ∆Idiff and
∆Itrapezoid. Then, we will approximate Iµ,px,y by Itrapezoid when Rµ,px,y > 1, or by Idiff other-
wise. Notice that for the practical evaluation of Rµ,px,y , we will use again a mantissa-exponent
representation Rµ,px,y = ρr · eσr , where

ρr =
12 · (mA +mB · (1 + |nB |+ |nA|) enB−nA + ρdiff |σdiff|) εmachine

Dµ,p
x,y

, σr = σdiff − σt ,

noting (mA, nA) and (mB , nB) the mantissa-exponent representations of the quantities A
and B, returned by Algorithms 3 and 4, noting ρdiff = mA −mB · enB−nA, σdiff = nA, and
σt = 3 log (y − x) + max (0, p− 3) · log y + max (−µx,−µy). We validate the ability of this
criterion to automatically select the most accurate approximation in Figure 5.
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Computation of Iµ,px,y : µ < 0 µ > 0

p < plim(µx) γibp
µ (p, y)− γibp

µ (p, x) Γcfrac
µ (p, x)− Γcfrac

µ (p, y)

plim(µx) ≤ p < plim(µy) γibp
µ (p, y)− γcfrac

µ (p, x) Γ(p)
µp −

(
γcfrac
µ (p, x) + Γcfrac

µ (p, y)
)

plim(µy) ≤ p γcfrac
µ (p, y)− γcfrac

µ (p, x) γcfrac
µ (p, y)− γcfrac

µ (p, x)

Table 1: Computing Iµ,px,y as a difference of generalized incomplete gamma functions. We
propose here a practical computational method for the evaluation of Iµ,px,y by means of a difference of type
Iµ,px,y = A − B, where A = γµ(p, y), B = γµ(p, x), or, when µ > 0, A = Γµ(p, x), B = Γµ(p, y), or
A = Γ(p)/µp, B = γµ(p, x) + Γµ(p, y). Thanks to Figure 4, we derive which difference A − B, and which
numerical method must be used for the efficient evaluation of A and B, according to the value of x, y, µ, p.
It is important to notice that the evaluation of Iµ,px,y by means of difference A−B is inaccurate when A ≈ B,
which happens when x ≈ y. In that case, the integral Iµ,px,y must be approximated differently, as discussed
in section 3.2.
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Figure 5: Control of maximum and mean relative errors associated to the computation of Iµ,px,y

using differences or a first order trapezoidal rule. In Section 3.2, we proposed to approximate the
integral Iµ,px,y by a difference of generalized incomplete gamma functions, Iµ,px,y ≈ Idiff = A− B (see Table 1
to derive the values of A and B according to x, y, µ, p), or using a trapezoidal rule, Iµ,px,y ≈ Itrapezoid. We
proposed in Section 3.3 an explicit criterion, based on the computation of a ratio of (some estimates of)
the absolute errors |∆Idiff| and |∆Itrapezoid| associated to those two approximations, which can be used to
automatically select which approximation should be used. For several values of δr = (y−x)/y, we computed
Iµ,px,y for a large range of parameters (µ = ±1, p integer in [1, 1000], y integer in [1, 1000], and x being
the floating-point number closest to y (1 − δr)). We display here the evolution, as a function of log10(δr),
of the maximal (left-side) and mean (right-side) relative error observed when using the approximation by
differences Idiff (dashed red curve, standard double precision implementation), or when using the approxima-
tion by trapezoidal rule Itrapezoid (dashed green curve, standard double precision implementation), or when
automatically selecting the computation method (plain blue curve for the standard double precision imple-
mentation, dotted purple curve for the extended double precision implementation), thanks to the criterion
proposed in Section 3.3. We see that the plain blue curve lies almost everywhere below the dashed curves,
showing that the criterion efficiently selects the best accurate approximation. We can see also that the error
can be improved by three orders of magnitude using extended double precision, except when δr ≈ 10−8 (in
that case, the precision is limited by the fact that we only use one term in the trapezoidal rule).

4 Discussion on the evaluation of the complete gamma
function

The computation of the complete gamma function Γ(p) for p ∈ N, R or C constitutes itself
a wide subject of research. The object of this section is to compare several methods from
the litterature and end up with a practical efficient algorithm for computing the quantity
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Γ(p), which is needed to compute Iµ,px,y as right-hand difference (9), i.e.

Iµ,px,y =
Γ(p)

µp
− γµ(p, x)− Γµ(p, y) .

Since Γ(p) gets huge as p increases, in practice we approximate its logarithm log Γ(p). Note
that when p is a positive integer, as it is the case in this work, we have Γ(p) = (p − 1)! so
that log Γ(p) can be easily computed using

log (p− 1)! =

p−1∑
k=1

log k .

However, the numerical computation of this sum becomes rapidely inaccurate when p is large,
because of the cumulation of small numerical errors made at each step of the summation.
Besides, in order to facilitate the adaptation of the present work to noninteger values of p,
we prefer to focus on more general methods.

The first evaluation method that we will consider was proposed in [Lanczos, 1964], and
uses a Stirling formula-like approximation:

∀p > 1, Γ(p) =
√

2π
(
p+ γ − 1

2

)p− 1
2 e−(p+γ− 1

2 ) (Aγ(p− 1) + εγ) , (28)

where γ > 0 is a numerical parameter (different from the Euler-Mascheroni constant), Aγ(p−
1) is a truncated rational fraction of type Aγ(p − 1) = c0(γ) +

∑Nγ
k=1

ck(γ)
p−1+k , and Nγ and

the coefficients {ck(γ)}0≤k≤Nγ depend on the value of γ. In the case γ = 5, Lanczos claims
that the relative error |ε5| associated to (28) satisfies |ε5| < 2 · 10−10, and this claim was
confirmed by our numerical experiments. In the case γ = 5, we have Nγ = 6 and the
numerical values of the coefficients {ck(γ)}0≤k≤Nγ are available in [Lanczos, 1964]. These
values are refined to double floating-point precision in [Press et al., 1992], so we used them
in our implementation of (28).

A more recent computation method (see [Char, 1980, Olver et al., 2010, Cuyt et al.,
2008] and references therein), also based on a Stirling approximation, consists in computing

∀p > 1, Γ(p) =
√

2π e−p pp−
1
2 eJ(p), where J(p) =

a0

p+

a1

p+

a2

p+
· · · , (29)

where some numerical approximations, with 40 decimal digits of precision, of the coefficients
{ak}0≤k≤40 of the continued fraction J(p) can be found in [Char, 1980].

The last approximation that we present, and that we will select in practice as the most
simple an accurate method, is a refinement of the Lanczos formula, proposed in [Pugh, 2004].
In his work, Pugh adapted (28) into

∀p > 1, Γ(p) ≈ 2

√
e

π

(
p+ r − 1

2

e

)p− 1
2
[
d0 +

Nr∑
k=1

dk
p− 1 + k

]
, (30)

where r is again a numerical parameter (which replaces the parameter γ of (28), to avoid
confusion with the Euler-Mascheroni constant). Pugh studied the accuracy of the approx-
imation (30) for differents settings r. In the case r = 10.900511, he sets Nr = 11, and
gives the numerical values of the coefficients {dk}0≤k≤10 with 20 significant decimal dig-
its (see Table 2). According to Pugh, this setting yields a relative error less than 10−19,
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k d3k d3k+1 d3k+2

0 2.48574089138753565546E-5 1.05142378581721974210E+0 -3.45687097222016235469E+0

1 4.51227709466894823700E+0 -2.98285225323576655721E+0 1.05639711577126713077E+0

2 -1.95428773191645869583E-1 1.70970543404441224307E-2 -5.71926117404305781283E-4

3 4.63399473359905636708E-6 -2.71994908488607703910E-9

Table 2: coefficients {dk}0≤k≤10 of Equation (30) with 20 significant decimal digits [Pugh, 2004].

Algorithm 5: Accurate computation of log Γ(p) using Pugh’s method .

Input: A real number p ≥ 1.

Output: An accurate estimation of log Γ(p).

Require: Coefficients {dk}0≤k≤10 defined in Table 2.

return log
(

2
√

e
π

[
d0 +

∑10
k=0

dk
p−1+k

])
−
(
p− 1

2

)
+
(
p− 1

2

)
log
(
p+ 10.900511− 1

2

)

which is effectively what we observed when computing (30) with Maple for 1 ≤ p ≤ 104 in
multiprecision (30 digits).

In order to select which method will be used in our algorithms, we used the three ap-
proximations (28), (29), and (30) to compute log Γ(p) for 1 ≤ p ≤ 104. The values of
Γ(p) = elog Γ(p) were converted into scientific notation using (22), in order to avoid the over-
flow issues that fatally occur when computing Γ(p) directly. The accuracy was evaluated
using Maple, the results (restricted to 1 ≤ p ≤ 5000) are displayed in Figure 6. It follows
from our experiments that the approximations (29) and (30) are the most accurate, except
for small values of p where the continued fraction is inacurrate (certainly because more than
40 approximants are needed for those values of p). Besides, both methods suffer from the
loss of accuracy involved by the conversion of Γ(p) into scientific notation from the value of
its logarithm log Γ(p), as discussed in Section 2.3. Again, this loss of precision can be com-
pensated by improving the floating-point accuracy, as illustrated in Figure 6. The Lanczos
method yields a relative error close to 2 · 10−10, and in this case, the loss of accuracy is
due to the approximation itself. Finally we decided to use Pugh’s method, for its simplicity
and the nice theoretical study provided in [Pugh, 2004]. Our implementation is described
in Algorithm 5.

5 Comparison with algorithm 435

In this section, we compare our algorithm with Algorithm 435, proposed in [Fullerton,
1972], for the evaluation of the generalized incomplete gamma function Iµ,px,y . Remind that,
in his work, Fullerton focused on a slightly different integral than us, since he proposed an
algorithm for the evaluation of the integral Jpx,y defined in (6), however the computation of
Iµ,px,y using Jpx,y, or conversely of Jpx,y using Iµ,px,y , is immediate, as we already explained in
Section 1. Similarily, the function

γ′(p, x) =

∫ x

0

|s|p−1 e−s ds, −∞ < x ≤ +∞ ,

he introduced is also closely related to our lower generalized incomplete gamma function
γµ, since for any x ≥ 0, and any p > 0, we have γµ(p, x) = µ−p γ′(p, x) when µ > 0, and
γµ(p, x) = −|µ|−p γ′(p, x) when µ < 0. Fullerton poposed an algorithm for the numerical
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Figure 6: Comparison of three algorithms estimating the Γ function. In this experiment, we
used (28), (29) and (30) to compute log Γ(p) for 1 ≤ p ≤ 5000, and estimated the relative error using
Maple. We here display the graphs of the relative errors related to each approximation, as a function of the
parameter p (the curves were smoothed by replacing the relative error associated to Γ(p) by its maximum
value over the range [p−20, p+20], in order to improve the readability). The three top curves were obtained
using a C-implementation in standard double precision of the three approximation methods. We observe
that the continued fraction approximation (29) is inacurrate for small values of p. However, we see that the
precision reached by the Pugh’s approximation (30) (and also the continued fraction, excepting for small
values of p) is only limited by the loss of precision occuring when formatting Γ(p) in scientific notation
from its mantissa-exponent representation Γ(p) = ρ · eσ (where ρ = 1 and σ = log Γ(p)), since the bound
predicted in (23) is attained (for instance, we check that for p = 800 (respectively p = 5000), we have
σ = log Γ(p) ≈ 4545 (respectively σ = 37582), so that the optimal relative error predicted in (23) is close to
10−12 (respectively 10−11), which is more or less the value attained by the two algorithms). This is not the
case for the Lanczos approximation (28), whose precision is limited by the approximation itself. The last
curve (bottom) corresponds to the implementation of Pugh’s method in C langage using extended double
precision (long double datatype); the loss of precision resulting from the formatting of Γ(p) in scientific
notation is significantly reduced.

evaluation of γ′, then suggested to evaluate the integral Jpx,y using the difference

Jpx,y = ex
∫ y

x

|s|p−1 e−s ds = ex (γ′(a, y)− γ′(a, x))

when 1 ≤ p ≤ 2, and using a forward (when p > 2) or backward (when p < 1) recurrence
relation, leading back to the computation of a quantity Jqx,y, with 1 ≤ q ≤ 2. In the case
1 ≤ p ≤ 2, the evaluation of γ′(p, x) relies on different approximation methods (such as con-
tinued fractions, approximation using Chebyshev polynomials, or asymptotic expansions),
according to the value of x.

As already pointed in [Schoene, 1978], Algorithm 435 suffers from several numerical
instabilities, arising when p > 2. We indeed observed in our own numerical experiments,
presented in Tables 3, 4 and 5, some computed values with very low accuracy, or incorrect
sign, typically when p ≥ 10, or when x ≤ p ≤ y. We also also observed some overflow issues,
for instance when working with p ≥ 100.
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In the experiments of Tables 3-5, we evaluated the integral Iµ,px,y , for several sets of
parameters x, y, µ, p, using both Fullerton’s Algorithm 435 and Algorithm 6. The accu-
racy of the returned result was controlled using the softwares MapleTM (using the instruc-
tion “evalf(Int(s^(p-1)*exp(-mu*s),s=x..y,digits=30));” to approximate the inte-
gral with 30 digits of precision), and MathematicaTM in [Wolfram Research Inc, 1998] for
the online evaluation of Iµ,px,y .

6 Conclusion and perspectives

In this work, we proposed an algorithm for the accurate evaluation of the generalized in-
complete gamma function Iµ,px,y . According to our experiments, the implementation of this
algorithm with a standard double floating-point precision yields a relative error less than
10−10 (in the worst case scenario), and in general less than 10−13 for a large range of param-
eters, which constitutes a drastic gain of accuracy in comparison to that obtained using the
algorithm proposed in [Fullerton, 1972]. Besides, our algorithm delivers the estimated value
of the integral Iµ,px,y under a mantissa-exponent representation Iµ,px,y = ρ · eσ, which greatly
extends the range over which it can be computed (which proved useful in [Abergel et al.,
2015], where the computation of sums and ratios of generalized incomplete gamma functions
Iµ,px,y was required).

Note also that the general accuracy of the algorithm we propose could certainly be
improved further using a floating-point arithmetic with more digits and a higher order gen-
eralization of the trapezoidal rule that we use for nearly identical integral bounds. Another
interesting perspective would be to extend our approach to the computation of complex
values for the integral Iµ,px,y (for instance, when p is noninteger and µ < 0, or when x or y
takes a nonreal value). The continued fractions we used remain valid for complex values of
x and noninteger values of p (except when Iµ,px,y is indefinite), but as the recursive integration
by part (14) cannot be used any more when p is noninteger and µ < 0, another strategy
would be needed to cover the corresponding parameters region.
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Algorithm 6: Accurate computation of Iµ,px,y =
∫ y
x
sp−1 e−µs ds .

Input: Three numbers µ ∈ R \ {0}, x ∈ R+, y ∈ R+ ∪ {+∞} such as y ≥ x, and a positive
integer p ≥ 1. Notice that the value y = +∞ is allowed only when µ > 0.

Output: Two numbers ρ ∈ R and σ ∈ R ∪ {−∞} such as Iµ,px,y ≈ ρ× eσ.

Requirements: Functions γibp
µ (Algo. 3: select recursive integration by parts), γcfrac

µ (Algo. 3:
select continued fraction), Γcfrac

µ (Algo. 4), and log Γ (Algo. 5).

Initialization: Define function plim : R ∪ {+∞} → R ∪ {+∞} by

∀z ∈ R ∪ {+∞}, plim(z) =

 5
√
|z| − 5 if z < −9 ,
0 if − 9 ≤ z ≤ 0 ,
z otherwise.

if x = y at machine precision then (ρ, σ)← (0,−∞)
else

// Evaluate (mA, nA), (mB , nB) and (ρdiff, σdiff), some mantissa-exponent

// representations of A, B and Idiff, such as A = mA e
nA, B = mB e

nB,

// Idiff = ρdiff e
σdiff = A−B, and Iµ,px,y ≈ Idiff .

if µ < 0 then

if p < plim(µy) then (mA, nA)← γibp
µ (p, y)

else (mA, nA)← γcfrac
µ (p, y)

if p < plim(µx) then (mB , nB)← γibp
µ (p, x)

else (mB , nB)← γcfrac
µ (p, x)

else if µ > 0 then
if p < plim(µx) then

(mA, nA)← Γcfrac
µ (p, x)

(mB , nB)← Γcfrac
µ (p, y)

else if plim(µx) ≤ p < plim(µy) then
(mA, nA)← (1, log Γ(p)− p logµ)

(mx, nx)← γcfrac
µ (p, x)

(my, ny)← Γcfrac
µ (p, y)

nB ← max (nx, ny)
if nB = −∞ then nB ← 0 // may happen when x = 0 and y = +∞
mB ← mx e

nx−nB +my e
ny−nB

else

(mA, nA)← γcfrac
µ (p, y)

(mB , nB)← γcfrac
µ (p, x)

(ρdiff, σdiff)←
(
mA −mB · enB−nA , nA

)
// Compute the ratio Rµ,px,y = ∆̂Idiff/∆̂Itrapezoid with a mantissa-exponent

// representation (ρr, σr), as described in Section 3.3.

D ← Dµ,p
x,y // the explicit expression of Dµ,p

x,y is given in Proposition 1

ρr ← 12 · mA+mB ·(1+|nB |+|nA|)enB−nA+ρdiff|σdiff|
D

· εmachine

σr ← σdiff − 3 log (y − x)−max (0, p− 3) log y −max (−µx,−µy)

if mR e
nR > 1 then

nx ← −µx+ p log x
ny ← −µy + p log y
σ ← max (nx, ny)

ρ← y−x
2x

enx−σ + y−x
2y

eny−σ

else (ρ, σ)← (ρdiff, σdiff)

return (ρ, σ)



Parameters setting (µ = 1) Algorithm 435 in [Fullerton, 1972] Relative error Algorithm 6 Relative error

µ = 1, x = 9, y = 11, p = 1 1.067081029759719 · 10−4 3 · 10−9 1.0670810329643395 · 10−4 6 · 10−16

µ = 1, x = 9, y = 11, p = 5 9.567113518714904 · 10−1 1 · 10−4 9.5661698023023700 · 10−1 1 · 10−15

µ = 1, x = 9, y = 11, p = 10 1.085447578125000 · 105 2 · 10−1 8.9594201765236983 · 104 1 · 10−14

µ = 1, x = 9, y = 11, p = 12 1.632943040000000 · 108 17 8.9310494815538749 · 106 3 · 10−15

µ = 1, x = 9, y = 11, p = 14 −2.977905664000000 · 1010 34 9.0203414117080807 · 108 2 · 10−15

µ = 1, x = 9, y = 11, p = 100 −NaN N/A 2.5825265278752760 · 1097 2 · 10−14

µ = 1, x = 9, y = 11, p = 300 −NaN N/A 1.5122076179085018 · 10305 3 · 10−14

µ = 1, x = 9, y = 11, p = 1000 −NaN N/A 4.1710431880333560 · 101033 3 · 10−13

µ = 1, x = 100, y = 120, p = 1 3.783505853677006 · 10−44 2 · 10−2 3.7200759683531697 · 10−44 5 · 10−15

µ = 1, x = 100, y = 120, p = 5 3.873433252162870 · 10−36 3 · 10−9 3.8734332644314730 · 10−36 4 · 10−15

µ = 1, x = 100, y = 120, p = 10 4.083660502797843 · 10−26 2 · 10−8 4.0836605881700520 · 10−26 8 · 10−15

µ = 1, x = 100, y = 120, p = 20 4.579807864502072 · 10−6 9 · 10−8 4.5798082802928473 · 10−6 2 · 10−14

µ = 1, x = 100, y = 120, p = 21 +∞ N/A 4.6360373381202165 · 10−4 1 · 10−14

µ = 1, x = 100, y = 120, p = 100 −NaN N/A 4.2821563816534019 · 10155 1 · 10−13

µ = 1, x = 100, y = 120, p = 170 −NaN N/A 4.2461593130874860 · 10299 3 · 10−14

µ = 1, x = 100, y = 120, p = 1000 −NaN N/A 1.3223863318125477 · 102024 1 · 10−12

Table 3: Comparison between Algorithm 435 proposed in [Fullerton, 1972] and Algorithm 6, for the computation of Iµ,px,y with µ = 1. In this
series of experiments, we focus on the case µ = 1. We tested, for (x, y) = (9, 11), and (x, y) = (100, 120), different integer values of p between 1 and 1000. In the
second column, we display the values of Iµ,px,y returned by Fullerton’s Algorithm (that we slightly adapted to compute Iµ,px,y instead of Jµ,px,y ). The corresponding
relative errors, evaluated using Mathematica or Maple softwares (both softwares yield the same relative error), are displayed on the third and fourth columns.
We see that some numerical instabilities arise when x ≤ p, and we observe some overflow issues, as p gets high. Some inacurrate results are also observed for low
values of p, when x = 100, y = 120, p = 1 (but also for many other values of (x, y, p), not represented here). Note also the settings x = 100, y = 120, p ∈ {20, 21},
for which the value returned by the algorithm shifts from 10−6 to +∞. In the fourth column, we display the values returned by Algorithm 6 (using a C
implementation with standard double precision), followed by the corresponding relative errors. The relative errors reached by Algorithm 6 are nearly optimal,
since they are mostly due to the loss of precision involved by the mantissa-exponent representation (see the optimality bounds predicted in (21) and (23)),
showing that both mantissa and exponents are in practice computed with a relative precision close to the machine precision.
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Parameters setting (µ = −1) Algorithm 435 in [Fullerton, 1972] Relative error Algorithm 6 Relative error

µ = −1, x = 5, y = 10, p = 1 2.187916015625000 · 104 5 · 10−5 2.1878052635704163 · 104 1 · 10−15

µ = −1, x = 5, y = 10, p = 3 1.803647750000000 · 106 3 · 10−7 1.8036471714694066 · 106 1 · 10−16

µ = −1, x = 5, y = 10, p = 10 1.129511596851200 · 1013 4 · 10−8 1.1295115549498505 · 1013 4 · 10−15

µ = −1, x = 5, y = 10, p = 60 +∞ N/A 3.1530071119035434 · 1062 2 · 10−14

µ = −1, x = 5, y = 10, p = 100 −NaN N/A 2.0040499509396790 · 10102 1 · 10−14

µ = −1, x = 5, y = 10, p = 300 −NaN N/A 7.1060487642415961 · 10301 9 · 10−14

µ = −1, x = 5, y = 10, p = 1000 −NaN N/A 2.1808595556561760 · 101001 3 · 10−13

µ = −1, x = 20, y = 25, p = 1 7.151973171200000 · 1010 3 · 10−8 7.1519734141975967 · 1010 2 · 10−15

µ = −1, x = 20, y = 25, p = 10 2.068890077987267 · 1023 3 · 10−2 2.0016822370845540 · 1023 9 · 10−16

µ = −1, x = 20, y = 25, p = 20 1.821993954177914 · 1037 2 · 10−1 1.4733948083664500 · 1037 1 · 10−15

µ = −1, x = 20, y = 25, p = 30 +∞ N/A 1.1449672725827719 · 1051 3 · 10−15

µ = −1, x = 20, y = 25, p = 210 −NaN N/A 1.1321187815658028 · 10302 2 · 10−14

µ = −1, x = 20, y = 25, p = 1000 −NaN N/A 6.1186720860190186 · 101405 2 · 10−13

Table 4: Same as Table 3, but for µ = −1. We performed here a similar experiment as in Table 3, but in the case µ < 0. We tested, for (x, y) = (5, 10)
and (x, y) = (20, 25), different values of p between 1 and 1000. As we can see, Fullerton’s algorithm is unbable to provide accurate estimates as p increases. In
contrast, the relative errors reached by Algorithm 6 remain nearly optimal, mostly limited by the mantissa-exponent representation according to the optimality
bounds derived in (21) and (23).
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Parameters setting
Algorithm 435 Relative

Algorithm 6
Selected Relative

in [Fullerton, 1972] error approx. error

µ = 1, x = d(5− 100), y = 5, p = 10 8.598737304687500 · 103 2 · 10−8 8.5987371691242424 · 103 difference 7 · 10−17

µ = 1, x = d(5− 10−1), y = 5, p = 10 1.263989379882812 · 103 8 · 10−7 1.2639903706449711 · 103 difference 1 · 10−15

µ = 1, x = d(5− 10−3), y = 5, p = 10 1.315382766723632 · 101 7 · 10−5 1.3154789325748350 · 101 difference 1 · 10−13

µ = 1, x = d(5− 10−4), y = 5, p = 10 1.317400574684143 · 100 1 · 10−3 1.3159526336877760 · 100 difference 2 · 10−11

µ = 1, x = d(5− 10−5), y = 5, p = 10 1.322335302829742 · 10−1 5 · 10−3 1.3160000091971793 · 10−1 trap. rule 2 · 10−12

µ = 1, x = d(5− 10−6), y = 5, p = 10 1.179141830652952 · 10−2 1 · 10−1 1.3160047470408107 · 10−2 trap. rule 2 · 10−14

µ = 1, x = d(5− 10−7), y = 5, p = 10 0 1 1.3160052243091611 · 10−3 trap. rule 4 · 10−16

µ = 1, x = d(17− 100), y = 17, p = 17 3.725839564800000 · 1012 8 · 10−1 2.0551230250736027 · 1012 difference 3 · 10−14

µ = 1, x = d(17− 10−1), y = 17, p = 17 2.998156984320000 · 1011 5 · 10−1 2.0202925544709274 · 1011 difference 2 · 10−13

µ = 1, x = d(17− 10−3), y = 17, p = 17 2.941651456000000 · 109 5 · 10−1 2.0146022707357914 · 109 difference 1 · 10−11

µ = 1, x = d(17− 10−4), y = 17, p = 17 2.928078720000000 · 108 5 · 10−1 2.0145489617316359 · 108 trap. rule 4 · 10−11

µ = 1, x = d(17− 10−6), y = 17, p = 17 6.554762500000000 · 106 2 · 100 2.0145430981932636 · 106 trap. rule 2 · 10−15

µ = 1, x = d(17− 10−9), y = 17, p = 17 0 1 2.0145432036144500 · 103 trap. rule 2 · 10−15

µ = −1, x = d(21− 100), y = 21, p = 10 5.859836137154984 · 1020 5 · 10−2 5.5623377927217197 · 1020 difference 4 · 10−15

µ = −1, x = d(21− 10−1), y = 21, p = 10 1.025911814748488 · 1020 5 · 10−2 9.7609411144076116 · 1019 difference 7 · 10−15

µ = −1, x = d(21− 10−3), y = 21, p = 10 1.099215584270221 · 1018 5 · 10−2 1.0467611548908131 · 1018 difference 6 · 10−12

µ = −1, x = d(21− 10−5), y = 21, p = 10 1.045801880623513 · 1016 2 · 10−3 1.0475015408230294 · 1016 trap. rule 2 · 10−11

µ = −1, x = d(21− 10−7), y = 21, p = 10 0 1 1.0475089604363028 · 1014 trap. rule 2 · 10−15

µ = −1, x = d(21− 10−9), y = 21, p = 10 0 1 1.0475091089401447 · 1012 trap. rule 3 · 10−15

Table 5: Comparison between Fullerton’s algorithm and Algorithm 6, for the computation of Iµ,px,y when x ≈ y. In this last experiment, we
compute Iµ,px,y in the case x ≈ y (the notation d(s) used in the left column denotes the double-precision floating-point number that is closest to s). We see that
the relative error reached by Algorithm 435 deteriorates as x and y get close to each other, and as already remarked before, Algorithm 435 is very inacurrate
when µx < p < µy. In contrast, the relative errors observed with Algorithm 6 never exceed 10−10, thanks to the first order estimate (trap. rule in column 5)
that takes over to avoid cancellation errors when x and y are very close to each other.
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