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Abstract—IEEE 802.3az, the recent standard for Energy Effi-
cient Ethernet, is one of the main contributions of the ICT industry
to the global quest for energy efficiency. Energy consumption
reduction is accomplished by essentially replacing the continuous
IDLE of legacy IEEE 802.3 cards with a Low Power Idle. While
this is an important step in the right direction, studies have shown
that the energy saving with IEEE 802.3az highly depends on the
traffic load and stops for link utilizations as low as 25%. In
addition to the standardization effort for creating energy efficient
networking hardware, several solutions have been proposed for
energy efficient routing, OSPF in particular. However, most
solutions are transparent to and usually leave open the question
of how exactly are the energy savings realized in hardware.
Simply routing less or no traffic through certain links will not
automatically lead to those links consuming less energy.

We present EAGER and CARE, two OSPF metrics customized
for augmenting the energy saving of IEEE 802.3az line cards –
the only available off-the-shelf, standard-complying hardware for
saving energy in OSPF networks. The principle underlying the
design of EAGER and CARE is that of creating a synergy between
the control plane of OSPF routers and IEEE 802.3az compliant
line cards, without requiring changes to the respective standards
and/or the hardware. Simulation results show that EAGER and
CARE can increase the amount of energy saved when using IEEE
802.3az line cards by 2× on a network of routers. Furthermore,
the results show that CARE strikes a good balance between energy
efficiency and traditional network performance metrics.

I. INTRODUCTION

Recent years have witnessed a boom in the pursue of energy

efficient network protocols and technologies. A lot of effort has

been put into making energy efficient two of the more popular

and established technologies: Ethernet [1], [2], [3], with the

efforts culminating in a new standard, IEEE 802.3az [4], for

Energy Efficient Ethernet1; and OSPF [5].

IEEE 802.3az reduces the energy consumption of line cards

by adapting a Low Power Idle mechanism for replacing the

continuous IDLE of legacy Ethernet cards. When there is no

traffic, the card spends most of the time in Low Power mode,

with few interruption for transmitting refresh signals. However,

once there is even a single packet to transmit, the card switches

back to active mode. This conservative approach, designed to

avoid disruption to the higher layers, can lead to IEEE 802.3az

line cards spending most of their time in active mode. As

shown by the data in Figure 1, collected from simulations

on ns-3 described in more detail in Section IV, the energy

consumption of an IEEE 802.3az compliant line card grows

sharply with traffic load and reaches 100% for as little as

24% link utilization. Packet coalescing [6] tries to address this

weakness of the standard by adding a packet buffer for grouping

several packets together so as to avoid waking up the card for

1For the rest of the paper, we will use the terms EEE and IEEE 802.3az
interchangeably.

Fig. 1: The energy consumption with IEEE 802.3az increases sharply as

the link load increases, matching the always-on legacy Ethernet at 24%

link load.

as little as a single packet. However, it can have unintended

consequences on the TCP congestion window if the coalesced

packets are TCP ACKs.

In parallel, several works propose reducing the energy con-

sumption of IP networks by modifying OSPF [7], [8], [9], [10].

The general approach consists of routing traffic over fewer

routers and links than what OSPF does by default. The non-

utilized routers and/or links are then to be shut down for saving

energy. However, the questions of how routers and/or links can

be shut down, by which mechanisms and what the implications

to OSPF are2, are usually left open.

The case for layer synergy: Considering that the energy

efficiency of off-the-shelf IEEE 802.3az hardware is highly

dependent on how traffic is routed by OSPF and, in turn, any

OSPF based solution is dependent on lower layer mechanisms,

where the energy saving is actually realized, we believe there is

a case for synergy between the two popular protocols. Specif-

ically, the basic question we address in this work is whether

it is possible to significantly increase the energy efficiency of

networks using IEEE 802.3az line cards by making minimal,

standard compliant changes to the control plane of the router

software.

We present EAGER (for Extremely AuGmented Energy effi-

cient etheRnet) and CARE (for Congestion aware Augmented

eneRgy efficient Ethernet), two OSPF link metrics customized

for augmenting the energy-saving impact of IEEE 802.3az. The

basic principle underlying the design of EAGER and CARE is

that of assigning link costs that somehow mirror the energy

consumption of IEEE 802.3az. Links that have already reached

100% energy consumption, which as shown in Fig. 1 can occur

2OSPF for example cannot distinguish between a router failing and a router
going to sleep mode.
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for links having as little as 24% utilization, are perfectly capable

of carrying additional traffic – at zero additional energy cost.

These links are favored by EAGER and CARE. On the other

hand, any additional traffic can have a dramatic impact on the

energy consumption of lightly loaded links – increasing the link

load from 0% to 8% increases the energy consumption by 5x.

These links are less preferred by EAGER and CARE.

EAGER is the simplest approach and is designed to aggres-

sively pursue energy efficiency. CARE is more conservative and

is designed to offer the possibility of choosing the best tradeoff

between energy efficiency and traditional network performance

metrics, such as congestion and end-to-end delay.

Simulation results show that EAGER and CARE can aug-

ment the energy saving impact of IEEE 802.3az by a factor

of 2 on a network of routers. While at high loads EAGER

is shown to suffer from increased congestion and end-to-end

delay, CARE manages to maintain levels of congestion and

end-to-end delay very similar to the shortest path.

The rest of the paper is organized as follows. In Section II,

we discuss related work. In Section III, we present EAGER and

CARE. In Section IV, we describe the implementation of IEEE

802.3az, EAGER and CARE and evaluate their performance.

We conclude in Section V.

II. RELATED WORK

While the basic paradigm underlying most proposed so-

lutions for energy efficient networking is that of setting to

“sleep” mode as many networking components as possible, the

approaches in literature can be largely organized in two groups:

solutions targeted at the link layer, and solutions targeted at the

routing layer.

Energy Efficiency at the Link Layer: Ethernet, as the

dominant wireline technology for LANs, has been the main

focus of the research community as well as industry [1], [2],

[3]. The efforts culminated in the creation of a new standard

for Energy Efficient Ethernet - IEEE 802.3az - ratified in

September 2010 [4]. The standards committee considered two

strategies for saving energy, Adaptive Link Rate and Low

Power Idle, and opted for the latter [6]. The Low Power Idle

replaces the continuous IDLE of legacy Ethernet cards when

there is no data to transmit. It defines large time intervals

during which no signal is transmitted and the interface is set

to “sleep”, interrupted by short periods during which a signal

is transmitted to refresh the receiver state to align it with

current conditions. The card exits Low Power Idle when it

needs to transmit or receive data, even if it is a single packet.

This simple and conservative approach enables EEE cards

to reduce energy consumption when possible while keeping

any potential disruption to the higher layers to a minimum.

It works well when a large part of the network is severely

underutilized or traffic is very bursty. However, as performance

evaluation studies [11], including our own simulation data from

Figure 1, have shown, even light loads can force EEE cards to

stay in active mode most of the time, leading to no energy

savings. This weakness of the standard can be addressed by

introducing a buffer that will coalesce packets together [6]

and forward them to the network card only once they reach a

certain number. Nevertheless, coalescing can lead to TCP ACK

compressing which can cause sudden spikes in TCP congestion

window and lead to buffer overflows in downstream routers [6].

Furthermore, as a non-standard solution, implementing it would

require manufacturers to patch the hardware and/or software of

their cards.

Energy Efficiency at the Routing Layer: In parallel with

the work on improving the energy efficiency of layer-2 tech-

nologies, there is a very active effort on improving energy

efficiency via the routing layer [12], [13], [8], [9], [14], [15],

[16], [17], [7], [5]. The general approach consists of leveraging

the topology knowledge at the routing layer to either identify

lightly used links or use traffic engineering to create them. Once

this is done, routers on lightly utilized links can be powered off

for saving energy. As with the layer two solutions, most efforts

are focused on the most widely utilized routing protocol in IP

networks, OSPF. An exhaustive survey is beyond the scope of

this paper so here we describe some representative approaches.

ESOL [8], for example, leverages OSPF’s link state updates

(LSAs) for identifying the nodes and links that appear the least

on shortest path trees. A heuristic considers the least-utilized

links and starts removing them one at a time while making

sure that the end-to-end connectivity is maintained. EAR [9]

divides OSPF nodes into exporters, who compute shortest path

trees, and importers, who do not compute shortest path trees

but use those computed by the exporters. Having only exporter

nodes compute shortest path trees for routing data, unlike pure

OSPF where all nodes do so, can reduce the number of links

over which data is carried – allowing more links to be powered

off for saving energy. Similarly, GAES [13], first identifies a

set of nodes/links that are lightly utilized and then recomputes

shortest paths trees as if though they did not exist. If the given

traffic matrix can be supported by the reduced set of links,

the rest can be set to sleep mode. ECO-RP [10] is another

OSPF based solution, which uses what the authors refer to as

traffic trending for modifying link weights and thus the subset

of routers that carry traffic. For example, when the traffic is

trending down, link weights are modified so that the traffic can

be routed by a smaller number of routers, leaving the rest idle.

In [7], several traffic-engineering heuristics are proposed for

the problem of maximizing the number of links that can be put

to sleep mode while satisfying given performance constraints,

such as link utilization and packet delay.

The works summarized so far and references therein present

a rich set of solutions for making routing in general, and OSPF

in particular, more energy friendly. Nevertheless, before some

of these solutions can be adapted by the industry, there are

certain issues that need to be addressed. For example, it is not

clear by what mechanism routers and/or links will be powered

off and whether turning off an entire router, as recommended

by some solutions, is something certain organizations will even

embrace. And more fundamentally, it is not clear if designing

layer-3 solutions without taking into consideration the specifics

of how saving energy is actually realized in hardware will lead

to the best approach for saving energy.

III. AUGMENTING IEEE 802.3AZ VIA THE CONTROL

PLANE

In this section we present EAGER and CARE, two new

routing metrics for augmenting the energy saving impact of

IEEE 802.3az hardware.
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Fig. 2: EAGER: Extremely AuGmented Energy efficient etheRnet. IEEE

802.3az realizes no energy reduction on links over the green threshold

of 25%. Adding more traffic on these links has no effect on energy

consumption so they are assigned the flat, minimum cost of 1.

(a) 160 Mbps Traffic Flows – Per flow load below the green
threshold of 25%.

(b) 500 Mbps Traffic Flows – Per flow load over the green
threshold of 25%.

Fig. 3: Illustration of EAGER on a simple topology. All routers use

1000Base-T line cards. Flow 1 arrives first, followed by Flows 2 and 3.

In the high load scenario, when Flow 3 arrives, link (n1,n2) is idle so its

cost is 100. The other two links each have a flow whose arrival rate puts

both over the green threshold and their costs to 1. Therefore, Flow 3 is

routed over Router 3 on the way to the destination, allowing link (n1,n2)
to sit idle and the respective IEEE 802.3az line cards to operate in Low

Power Idle.

A. EAGER: Extremely AuGmented Energy efficient etheRnet

As stated previously, the energy efficiency of line cards

implementing IEEE 802.3az highly depends on the traffic load.

As shown in Figure 1 from Section I, the biggest energy

savings are realized at very low loads and drop fast as the

load increases, becoming practically non-existent once the link

utilization reaches around 25%3. We refer to this value of the

link utilization as the green threshold.

Our inspiration in designing EAGER is to create a link metric

that mirrors the energy curve from Figure 1. Lightly utilized

links are assigned a high cost, while links whose utilization

is over the green threshold are assigned a minimum, flat cost.

This approach is visualized in Figure 2. More formally, given a

3The figure shows 24% but we round it up to 25%.

(a) CARE-50.

(b) CARE-80

Fig. 4: CARE: Congestion aware Augmented eneRgy efficient Ethernet.

The part of the cost function from 0% to the green threshold of 25% is

designed to mirror the energy saving curve of IEEE 802.3az. To strike a

balance between energy efficiency and congestion, links over the congestion

threshold are also assigned a high cost.

link (i, j), with link utilization value of Li,j , its EAGER value

can be computed as follows:

EAGERi,j =







100, if Li,j ≤ 25%

1, Otherwise
(1)

Figure 3 illustrates how EAGER works. When Flow 3, with

destination Router 2, arrives at Router 1, the previous two flows

have already modified the link utilization values in the network.

As all routers are using 1000Base-T line cards, in the Low Load

scenario, Figure 3(a), the utilization on all links is under the

green threshold and thus their costs are set to the maximum 100.

This leads Flow 3 through the shortest path. In the High Load

scenario, Figure 3(b), when Flow 3 arrives, the link (n1,n2)

is idle and its cost is 100, while the other two links are over

the green threshold and their respective costs are set to 1. This

leads Flow 3 through Router 3, instead of the shortest path,

allowing the 802.3az cards on link (n1,n2) to stay under the

green threshold and save the most energy.

B. CARE: Congestion aware Augmented eneRgy efficient Eth-

ernet

EAGER is a simple and yet aggressive approach for aug-

menting the energy saving impact of IEEE 802.3az hardware.

This aggressiveness in pursuing energy savings, however, could

be costly in terms of congestion and end-to-end delay for

certain links. CARE, as visualized in Figure 4, takes a more

conservative approach by changing EAGER in two ways. First,

in addition to the green threshold, it uses a congestion threshold

– the link load value expressed in percentage over which the



(a) 160 Mbps Traffic Flows – Per flow load below
the green threshold of 25%.

(b) 500 Mbps Traffic Flows – Per flow load over
the green threshold of 25%.

Fig. 5: Illustration of CARE-50 on a simple topology. All routers use

1000Base-T line cards. Flow 1 arrives first, followed by Flows 2 and 3.

Even for such a simple topology we see a very different behavior between

EAGER and CARE. Unlike EAGER, CARE does not treat all light loads
the same, which explains why for the Low Load regime Flow 3 here is

routed through Router 3. On the other hand, CARE assigns the same,

high cost to all links in the High Load scenario and Flow 3 is routed

through the shortest path.

link is considered as being congested. A link with utilization

over the congestion threshold is assigned the same weight as

an idle link. Second, for the part under the green threshold,

CARE assigns the multiplicative inverse of the link utilization,

upper bounded by a maximum value, to better mirror the energy

saving function of IEEE 802.3az. More formally, given a link

(i, j), with link utilization percentage value of Li,j , and given

a congestion threshold of X, the CARE-X value of this link

can be computed as follows:

CARE-Xi,j =



















min (100, 100/Li,j), if Li,j ≤ 25%

1, if 25% < Li,j ≤ X%

100, if Li,j > X%
(2)

Finding the best congestion threshold, X , for CARE is not

simple as that depends on many factors, including manufacturer

specifications and customer needs. In this work, we use 50%

and 80% ([18], [19]) and have observed very promising results

in our simulation study in Section IV. However, our recom-

mendation is that any implementation of CARE should make

the congestion threshold a parameter that can be modified by

network administrators.

Figure 5 illustrates how CARE works. When Flow 3, with

destination Router 2, arrives at Router 1, the previous two flows

have already modified the link utilization values in the network.

As all routers are using 1000Base-T line cards, in the Low Load

scenario, Figure 3(a), the utilization on all links is under the

green threshold and, thus, their respective costs are set by the

multiplicative inverse of the link utilization (upper bounded by

100). This leads Flow 3 through Router 3. In the High Load

Fig. 6: Low Power Idle Function in IEEE 802.3az.

Transmitter Power Level (Watt)

TX READY 1
TX BUSY 2
TX SLEEP 0,1
TX UP 2
TX DOWN 2

Receiver Power Level (Watt)

RX READY 1
RX BUSY 1,3
RX SLEEP 0,1
RX UP 1,3
RX DOWN 1,3

Technology Tw(msec) Ts(msec) Tq(msec) Tr(msec)
1000Base-T 0.016 0.18 20 0.18

TABLE I: IEEE 802.3az Parameters Adapted in the Simulations

scenario, Figure 3(b), when Flow 3 arrives, the link (n1,n2) is

idle, while the other two links are over the congestion threshold,

leading to all links having the maximum cost. This leads Flow

3 through the shortest path.

IV. PERFORMANCE EVALUATION

We use ns-3 [20] as simulation platform, in which we have

added an implementation of the IEEE 802.az standard, and

evaluate the performance of EAGER and CARE in terms of

energy savings, end-to-end delay and load distribution. In all

experiments, the values of energy savings are given relative

to a system that implements no energy efficiency mechanism

(traditional Ethernet).

A. Software Implementation

To carry out the performance evaluation study we had to

make several additions to ns-3. We added an implementation

of IEEE 802.3az that follows the standard specification [4],

modified the OSPF implementation to utilize EAGER and

CARE, and implemented layer-2 packet coalescing [6].

IEEE 802.3az: The basic IEEE 802.3az operation is illus-

trated in Figure 6. When there are packets to transmit, the

device is in Active Mode. Once there are no more packets

to transmit, the device switches to sleep mode, a process that

takes the hardware time Ts to execute. In sleep mode, the device

only sends signals during short refresh intervals, Tr, and stays

quiet during large intervals, Tq . When traffic arrives, the device

switches back to Active Mode, a process that takes the hardware

time Tw to execute.

Obviously, the energy efficiency is a function of how long a

device spends in Low Power Idle, the timers Ts, Tq , Tr and Tw,

and the energy saved during the quiet periods. Table I shows

the specific values for the timers as defined in the IEEE 802.3az

standard for 1000Base-T, the technology used throughout this

study. However, the standard does not specify any values for the

power levels IEEE 802.3az line cards should use when sleeping,



(a) Three flows are generated on a 3-router topology.
Flow 1 from n0 to n4, Flow 2 from n7 to n6, Flow 3
from n5 to n6. All routers and hosts are connected by
1000Base-T links.

(b) The energy saving is computed relative to a system
that implements no energy efficiency mechanism (tradi-
tional Ethernet).

Fig. 7: Experiment 1: At low to medium loads, EAGER and CARE route

Flow 3, which arrives last, through router 3 instead of the shortest path.

This lead to roughly a 2x augmentation in energy saving over LEGACY

OSPF. As designed, at high loads, over 50% and 80%, respectively, CARE-

50 and CARE-80 fall back to LEGACY OSPF. EAGER on the other hand

does not change its behavior and leaves the link from Router 1 to Router

2 idle even at high loads.

Fig. 8: Experiment 2: A 10-router topology following the Barabasi-Albert

model using the BRITE [21] network topology generator. There are two

hosts connected to the eight “edge” routers. All routers and hosts are

connected by 1000Base-T links.

transmitting, receiving, in Active Mode, switching off, waking

up, etc. The only thing the standard specifies is that during

sleep mode the power consumption should be 10% of that in

Active Mode. Using this recommendation and the power levels

from real Cisco Switches reported in [2], we put together the

energy model used in this study as shown on Table I.

EAGER and CARE: We modified the OSPF ns-3 imple-

mentation to use EAGER, CARE-50 and CARE-80. This was

not complicated as we just needed to add link utilization levels

to the link state advertisements and modify the shortest path

implementation to incorporate the new metrics.

Packet Coalescing: We implemented layer-two packet co-

alescing as defined in [6]. In short, packet coalescing uses

an additional queue for accumulating multiple packets before

forwarding them to the line card, thus creating a burst of back-

to-back packets. The algorithm is driven by two parameters: the

maximum queue size and a timer which defines the maximum

amount of time a packet can be coalesced for in the queue.

Once the maximum queue size is reached or the timer expires,

whichever comes first, all the coalesced packets are released

for transmission. In our implementation we use the parameters

for Coalesce-2 from [6], but do not reproduce here for lack of

space.

B. Experiment 1: Simple Topology

Setup: We start the performance evaluation with the simple

3-router topology, Figure 7(a), we first used in Section III.

While the topology is trivial, it is useful for demonstrating

the potential for augmenting the energy saving impact of IEEE

802.3az via the control plane. Three traffic flows are generated:

Flow 1 from n0 to n4, Flow 2 from n7 to n6, Flow 3 from

n5 to n6. The flow arrivals are separated by enough time,

with Flow 1 arriving first and Flow 3, last, so that an OSPF

route update takes place between consecutive flow arrivals.

All routers are connected by 1000Base-T links. EAGER and

CARE are compared to the default OSPF, which we refer too

as LEGACY, in terms of energy saving over a system that runs

OSPF over pure Ethernet.

Results: Figure 7(b) shows that IEEE 802.3az can signif-

icantly reduce the energy consumption even in such a simple

topology. However, this benefit disappears as the load increases

leading to fewer opportunities for the line cards to switch to

low power mode. EAGER and CARE, by routing the traffic for

Flow 3 over links that are already utilized (via Router 3 instead

of the direct link) augment the percentage of energy saved by

almost 2x. Finally, as the traffic load increases, and as designed,

first CARE-50 and then CARE-80, fall back to LEGACY OSPF.

EAGER, on the other hand, keeps routing Flow 3 over Router 3

even though the latter is congested, allowing the two line cards

on the link from Router 1 to Router 2 to switch to low power

mode.

C. Experiment 2: Large Topology

Setup: In this experiment we evaluate the performance of

EAGER and CARE on a more realistic topology. Towards

this, we use the BRITE [21] network topology generator to

create a 10-router network, depicted in Figure 8, following

the Barabasi-Albert [22] model. Two hosts are attached to

every router, except for routers 1 & 2 which are dedicated to

forwarding traffic for other routers only. All routers and hosts

are connected by 1000Base-T links. Every host can generate

traffic flows following a Poisson process to every other host.

Out of the 16 × 15 = 240 possible source-destination pairs

we select a large number, 100, and run UDP sessions on each

pair. In every experiment we measure the percentage of energy

saved compared to a system running pure Ethernet, the traffic

distribution and end-to-end delay. For this part of the evaluation



(a) At very low link utilization EAGER and CARE behave
no differently than LEGACY OSPF. Layer-two packet co-
alescing on the other hand benefits from grouping packets
together. As the load increases we see EAGER and CARE
augment the energy saving impact of pure IEEE 802.3az
(LEGACY) by roughly 1.5x to 2x.

(b) The average end-to-end delay for EAGER, CARE,
LEGACY OSPF and packet coalescing. The data shows that
CARE-80 can save energy without incurring a penalty in
end-to-end delay.

Fig. 9: Experiment 2: The data shows CARE-80 offering the best overall

performance. It augments the energy saving of pure IEEE 802.3az

(LEGACY) by as much as 2x without incurring a significant penalty in

end-to-end delay.

we compare not only to LEGACY OSPF but also to layer-two

packet coalescing [6].

Results: Figure 9(a) shows that as the load increases, EA-

GER and CARE augment the energy saving impact of pure

IEEE 802.3az (LEGACY) by roughly 1.5x to 2x.

At very low loads, EAGER and CARE behave no differently

than LEGACY OSPF, while layer-two packet coalescing, ben-

efiting from grouping packets together, significantly improves

the energy efficiency. Unfortunately, this improvement of packet

coalescing comes with a high penalty in end-to-end delay, as

Figure 9(b) shows. At low loads, packets have to wait longer

before enough of them are coalesced or in the worst case until

the timer expires, leading to a significant increase in end-to-end

delay. In contrast, the average end-to-end delay for EAGER and

CARE is very close to LEGACY OSPF for most load regimes.

At high loads EAGER starts suffering from higher end-to-end

delay due to its aggressiveness in pursuing energy savings.

Also, CARE-50 does not fare as well as expected because it

overreacts to what it perceives as congestion. CARE-80, on the

other hand, is shown to always perform closely to LEGACY

OSPF.

Overall, the data from Fig 9 points to CARE-80 being the

better choice - it offers the energy savings benefit of layer-two

coalescing without its negative impact on delay.

For a more in-depth understanding of the layer-3 solutions,

we show the CDFs for the maximum link utilization in the

network and end-to-end delay for every packet delivered in

Figure 10 and Figure 11, respectively. Figure 10 shows that

EAGER and CARE create a significant number of links with

no traffic, explaining their superior performance in terms of

energy efficiency. CARE-80, and to a lesser extent CARE-50,

is shown to handle congestion very well while, as expected,

with EAGER a significant number of links reach saturation

at very high loads (Fig. 10(c)). Finally, Figure 11, shows that

CARE-80 performs very close to LEGACY in terms of end-to-

end delay while with EAGER, and to a lesser extent CARE-50,

for very high loads (Figure 11(c), a percentage of packets take

long to reach the destination.

V. CONCLUSION

We proposed two OSPF metrics, EAGER and CARE for

augmenting the energy saving impact of IEEE 802.3az. EAGER

and CARE are founded on the principle of layer synergy

between OSPF and IEEE 802.3az. OSPF provides the traffic

engineering for maximizing the benefit of IEEE 802.3az, while

IEEE 802.3az provides the mechanisms by which the energy

efficiency is actually realized in practice. EAGER and CARE

do not require any changes to the standards and can be

implemented on off-the-shelf hardware.

Our simulation analysis showed that EAGER and CARE can

augment the energy saving impact of IEEE 802.3az by 2×.

While EAGER was shown to suffer from increased congestion

and end-to-end delay at high loads, CARE with congestion

threshold of 80% was shown to have the best overall perfor-

mance.

As future work we intend to implement EAGER and CARE

on real hardware and evaluate their performance on a realistic

testbed.
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