
HAL Id: hal-01329583
https://hal.science/hal-01329583

Submitted on 23 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real time learning of non-stationary processes with
dynamic Bayesian Networks

Matthieu Hourbracq, Pierre-Henri Wuillemin, Christophe Gonzales, Philippe
Baumard,

To cite this version:
Matthieu Hourbracq, Pierre-Henri Wuillemin, Christophe Gonzales, Philippe Baumard,. Real time
learning of non-stationary processes with dynamic Bayesian Networks. 16th International Conference
on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2016,
Jun 2016, Eindhoven, Netherlands. pp.338-350, �10.1007/978-3-319-40596-4_29�. �hal-01329583�

https://hal.science/hal-01329583
https://hal.archives-ouvertes.fr

Real Time Learning of Non-stationary Processes
with Dynamic Bayesian Networks

Matthieu Hourbracq1,2(B), Pierre-Henri Wuillemin1, Christophe Gonzales1,
and Philippe Baumard2

1 Sorbonne Universités, UPMC Univ Paris 6, CNRS, UMR 7606 LIP6, Paris, France
{matthieu.hourbracq,pierre-henri.wuillemin,christophe.gonzales}@lip6.fr

2 Akheros, Paris, France
{matthieu.hourbracq,philippe.baumard}@akheros.com

Abstract. Dynamic Bayesian Networks (DBNs) provide a principled
scheme for modeling and learning conditional dependencies from complex
multivariate time-series data and have been used in a wide scope. How-
ever, in most cases, the underlying generative Markov model is assumed
to be homogeneous, meaning that neither its topology nor its parameters
evolve over time. Therefore, learning a DBN to model a non-stationary
process under this assumption will amount to poor predictions capabil-
ities. To account for non-stationary processes, we build on a framework
to identify, in a streamed manner, transition times between underlying
models and a framework to learn them in real time, without assumptions
about their evolution. We show the method performances on simulated
datasets. The goal of the system is to model and predict incongruities
for an Intrusion Dectection System (IDS) in near real-time, so great care
is attached to the ability to correctly identify transitions times. Our pre-
liminary results reveal the precision of our algorithm in the choice of
transitions and consequently the quality of the discovered networks. We
finally suggest future works.

Keywords: DBN · ns-DBN · tv-DBN · Non-stationnary · Learning ·
Real time · Change point

1 Introduction

In many fields, particularly in information systems and biology modeling,
observed processes evolve over time on many scales. Their system states change
with time, describing complex trajectories. Some events or entities may influ-
ence others at any given time, but those correlations do not necessarily hold
forever. Which entity influences another may therefore vary, and any model
wishing to capture such a process, without observing the mechanism responsible
for such changes, cannot be stationary, that is its structure and/or parameters
need to evolve with time too. Otherwise, only one behavior is seen, averaging
all observations. Since we wish to model the behavior of information systems
within a network of computers - in real time - it seems reasonable to assume
c© Springer International Publishing Switzerland 2016
J.P. Carvalho et al. (Eds.): IPMU 2016, Part I, CCIS 610, pp. 338–350, 2016.
DOI: 10.1007/978-3-319-40596-4 29

Real Time Learning of Non-stationary Processes with DBNs 339

non-stationarity of the observed processes. Indeed, any program or application
can accept a wide range of inputs, communicate with other programs, and paths
chosen by the process (where it goes and what it does) are often at least input
dependent. Thereby, we need a framework for learning non-stationary processes,
in real time, and set our focus on non-stationary dynamic Bayesian networks.

Dynamic Bayesian Networks [5,13] are a probabilistic graphical formalism
describing, through conditional dependencies, complex dynamical systems under
uncertainty. Yet, the use of dynamic in DBN refers to the system evolving over
time, not the dynamics of the network structure or its parameters. Once deter-
mined on a subset of observations, conditional dependencies and parameters
are never revisited. In many applications, even more so when data are not pro-
duced in a controlled manner, assuming homogeneity of the underlying model(s)
describing which state the system is in seems too strong an assumption. This
issue has received attention in the last years from the academic field giving rise
to non-stationary dynamic Bayesian Networks (ns-DBN) [6–8,17,18] or time-
varying dynamic Bayesian Networks (TV-DBN) [20] with applications for system
biology [9]. Since processes have many execution paths and a huge input space, it
seems unwise to assume that one homogeneous model could accurately capture
a process evolution. Two different invocations could result in two completely
different traces. Thus we build our system on ns-DBNs.

In this paper, we propose a new algorithm to model non-stationary processes
using non-stationary dynamic Bayesian networks. It is organized as follows. We
start with (d)BNs and non-stationary dynamic Bayesian Networks. We then
build on a non-stationary learning algorithm and present our framework before
evaluating its performances on a number of simulated cases to reveal strengths
and weaknesses. We finally conclude and extend on our future work.

2 (Non-stationary) Dynamic Bayesian Networks

DBNs are classical Bayesian networks [16] in which nodes {Xi(t), i = 1 . . . n},
representing (discrete) random variables, are indexed by time t. They provide a
factored representation of the joint probability distribution P on a finite time
interval [1, τ] defined as follows:

P (X(1) . . . ,X(τ)) =
n∏

i=1

τ∏

t=1

P (Xi (t) | Ui (t)) (1)

where Ui(.) denotes the set of parent nodes of Xi(.) and P (Xi (t) | Ui (t))
denotes the conditional probability function associated with random variable
Xi(t) given Ui(t). X(t) = {X1(t), . . . , Xn(t)}, is called a “slice” and repre-
sents the set of all variables indexed by the same time t. This joint probabil-
ity P (X(1), . . . ,X(τ)) represents the beliefs about possible trajectories of the
dynamic process X(t).

DBNs assume the first-order Markov property which means that the parents
of a variable in time slice t must occur in either slice t − 1 or t:

Ui(t) ⊆ X(t − 1) ∪ X(t)\Xi(t) (2)

340 M. Hourbracq et al.

X1(0)

X2(0)

X3(0)

X1(t)

X2(t)

X3(t)

X1(t + 1)

X2(t + 1)

X3(t + 1)

X1(0)

X2(0)

X3(0)

X1(1)

X2(1)

X3(1)

X1(2)

X2(2)

X3(2)

X1(3)

X2(3)

X3(3)

· · ·

Fig. 1. A 2-Time-Slice BN (2TBN) and the (unrolled) dynamic Bayesian network.

Moreover, the conditional probabilities are time-invariant (first-order homo-
geneous Markov property):

P (Xi (t) | Ui (t)) = P (Xi(2)|Ui(2))),∀t ∈ [2, τ] (3)

Hence, to specify a DBN, we only need to define the intra-slice topology (within
a time slice), the inter-slice topology (between two time slices), as well as the
parameters (i.e conditional probabilities, see Eq. 3) for the first two time slices.
We obtain a 2TBN such as in Fig. 1.

In this paper, we consider that Xi(t) are all discrete variables and let P t
ijk be

the probability that Xi(t) = k, given that its parents have instantiation j, i.e.

i = 1, . . . , n
P t

ijk = P (Xi(t) = k | Ui(t) = j), j = 1, . . . , ci

k = 1, . . . , ri

(4)

where ri is the number of values that node Xi(t) can take and ci is the number
of distinct configurations of Ui(t).

DBNs have been applied in a variety of domains such as speech recognition
[12], fault detection [11], medical diagnosis [4] or system biology [19] but their
applications on Intrusion Detection Systems are rare [1]. However, (Hidden)
Markov Models have been extensively proposed to model system call traces and
shell commands [23,24] or network data flow [15]. Bayesian Networks are mainly
used in this field in a static manner and often for classification purposes, as a
deciding mechanism aggregating smaller models outputs that offer a summary
of input data [10,14]. A variant of dynamic Bayesian Networks, called Continu-
ous Time Bayesian Networks (CTBNs), has been used to model network traffic
[21]. CTBNs leverage continuous time to solve the issue of time-granularity when
using DBNs, which require a time-slice width, thus making them computation-
ally inefficient when dealing with long period of “inactivity” or irregularly spaced
observations. The main drawbacks of the framework are that two variables can-
not change states simultaneously and a parameter needs to be chosen to scale
timing correlations. The work in [21,22] is close to ours in approach; the use of
a hidden variable allows to model the machine unknown state - the structure is
manually specified and does not evolve. After training, they use a sliding win-
dow and selection by likelihood threshold to flag anomalous behavior. However,

Real Time Learning of Non-stationary Processes with DBNs 341

A[1]

B[1]

C[1]

A[2]

B[2]

C[2]

A[3]

B[3]

C[3]

A[4]

B[4]

C[4]

A[5]

B[5]

C[5]

A[6]

B[6]

C[6]

A[7]

B[7]

C[7]

D[3] D[4] D[5]

Fig. 2. Non-Stationary dynamic Bayesian network (ns-DBN) with 3 different epochs.
Note that DBNs in different epochs may have different parameters, structures and even
variables. For simplicity’s sake, priors BNs as in Fig. 1 are not represented.

the number of states of the hidden variable needs to be known in advance (two
in this case) and new models cannot be discovered on the fly. There is also no
mechanism for windows overlapping events from different models.

ns-DBNs are dynamic bayesians networks B : (Θ,G) organized by epochs of
varying size or transition times T : {(Bm : (Θ,G)m, Tm)}. There is no frame-
work yet to model the behavior of the transition times for ns-DBNs. As a con-
sequence, ns-DBNs represent non-stationary processes assuming piece-wise sta-
tionarity over epochs, which seems a reasonable assumption. They inherit all
advantages and inconvenients of DBNs.

Although different epochs in ns-DBN may alter parameters, structures and
even set of variables for the DBNs (see Fig. 2), [7] focuses on parameters evolution
with fixed structure. In [18], the focus is set on structural evolution. For this
later papers, the number of variables and their domains remain constant over
time (even if some are not observed during whole epochs). [6] is close to our
approach allowing structure, parameters as well as variables and their domains to
evolve over time. However we use different criteria and a mechanism for windows
overlapping events from different models to refine transition times.

ns-DBNs learning algorithms consist in identifying the different epochs and
the DBNs associated with each. Current learning algorithms focus on either
structure or parameter evolution (mainly to cope with the size of the search
space). Sadly they pretty much all require the availability of the whole database
and cannot be used in our online framework except. Offline learning of ns-DBNs
is usually achieved through the use of an updated traditional DBNs scoring
function used to account for the sufficient statistics that need to be specified by
epoch to find the best time transitions and an updated structural move set for
learning the structure which also need to be specified by epoch. However, we need
simpler schemes to achieve real time performance while streaming observations.
[6] proposes an interesting avenue: to take into account arcs strength using the
mutual information of a node and its parent and to use previous parameters as
priors for nodes that do not change from one model to another. Further inquiry

342 M. Hourbracq et al.

is required since information can flow differently in the network according to
which nodes are observed.

3 Learning Non-stationary Processes

We present in this section a new algorithm to learn non-stationary dynamic
Bayesian networks in real time. In previous literature [7,8,18], the assumption
that two adjacent models are governed by similar distributions and/or similar
structures is often made. However we do not restrict ourselves to smooth evolu-
tions from model to model.

Real-time data are streamed in a continuous manner using a sliding window.
For each new window of data, our algorithm has to choose between using an
already known model or creating a new one. This choice is based on the likelihood
of the windowed data. Indeed it is expected that the likelihood of a model will
decrease if the underlying behavior changes (see Fig. 3). The algorithm begins
with a burn-in resulting in a first network that serves as a starting point.

More formally, at any current time τ , the algorithm confronts a collection of
M DBN models {Bm : (Θ,G)m}M with the windowed data w[τ, τ + r].

3.1 Learning with Fixed Variables and Static Window Size

To evaluate how a model m is able to explain the data w[τ, τ +r], we use a simple
criterion based on the likelihood on w. In a stationary DBN, the log-likelihood
of the data against a network with structure G and parameters Θ is:

LL(w : Θ,G) ∝
τ+r∑

t=τ

∑

i,j,k

Nijk log(θijk) (5)

with θijk = P (Xi(t) = k | Ui(t) = j) and Nijk the number of cases where
Xi(t) = k and Ui(t) = j in w.

For each DBN (Θ,G)m, we then compute LL(w : Θm,Gm). However the best
matching model cannot be selected only by maximizing LL since the algorithm
may also discover new models on the fly. For this purpose, one can note that
the distribution of the log-likelihood of a window w is approximately normally
distributed (as a sum of r + 1 i.i.d random variables using the central limit
theorem). We then design a statistical hypothesis test in order to find the log-
likelihood p-value LLtr such that 99% of matches occur with greater or equal log-
likelihood (see Fig. 3). To produce a first estimate of LLtr after discovering a new
network, we use Gibbs sampling [3]: trajectories are sampled from the network,
as many observations as needed to fit several windows, before computing their
likelihood by sliding the window. For each model m, we compute LLtr(Θm,Gm)

LL(w:Θ,G) .
Our selection rule becomes:

arg max
m

{
LLtr(Θm,Gm)

LL(w : Θm,Gm)
≥ 0.97

}
(6)

Real Time Learning of Non-stationary Processes with DBNs 343

Fig. 3. Cumulative P (X) and log P (X) for a window covering two different behav-
iors. The vertical red line is a transition between models, and horizontal red lines are
Gaussian with 99% confidence interval. (Color figure online)

We use 0.97 as the threshold on the likelihood ratio instead of 1 since the first
learning are quite inaccurate - a few events to learn a lot of parameters - and we
allow some divergence to occur. A time varying threshold on the likelihood ratio
could be designed to take into account parameters and structure convergence.
The higher the threshold the more specific the discovered and learned networks
will be (as a side-effect we will have more networks, for a given database, than
with a lower threshold).

If the set of models in Eq. 6 is empty, the algorithm will learn a new DBN
from the window and select it for the current window. If an existing model m
is selected, there is still a learning phase in order to update the parameters and
eventually the structure with the new data. Indeed, as observations increase
for the models, their structures will need to be reevaluated: at each order of
magnitude, we then re-estimate the network structures.

In experiments, Fig. 6 shows how a badly sized window can mislead the learn-
ing. We therefore propose to adapt the window.

3.2 Dynamic Adaptation of the Window

When the algorithm predicts for the current window a model mt different from
model mt−1 of the last window (i.e. mt would be a newly created DBN or an
already existing DBN), the prediction is not only about the change of behaviors
of the dynamic process but also about the time τ of this change (the change

344 M. Hourbracq et al.

point). In this section, we propose to investigate more exactly the value of this
point by looking at the distribution of the likelihood within w[τ − r, τ + r].

Figure 3 shows the cumulative value of P (X) and log P (X) for such a window
(with change point c = 100 000). In order to identify a correct value for c, one
could rely on the change of slope in the cumulative P (X). To be more accurate,
we maximize over c the likelihood of a model where c separates two different
Gaussian processes. We then update mt−1 on w[τ − r, τ − r + c∗] and update
or learn mt on w[τ − r + c∗, τ + r] with the optimized change point c∗. If mt is
a new model, we use a non-informative Dirichlet prior, making the assumption
that parameters and structure evolve without correlations from one model to
another.

3.3 Learning with Incompatible Variables Domain

As seen in Fig. 2, the number of variables may change during the process. In
this case, one may have to confront a model and a database with a different
numbers of variables. If the variables of the database form a sub-set of the
variables of the model, with variable Xe in Gm but not in the database, we
use inference to estimate P (Xi | Ui \ Xe) and then compute the likelihoods. On
the other hand, if the variables of the model form a sub-set of the variables
of the database, those informations in the database are not exploitable for this
model and then are simply discarded. Such a model will not be selected for
the current window. If variables domains ΩXi

differs, we add the missing states

Algorithm 1. Main loop
Data: previous model id m∗

t−1, observations w[τ − r, τ], w[τ, τ + r]
Data: D = {Bm}, Bm∗

t−1

1 begin
2 Φ ← find match(D,w)

3 if Φ �= {} then

4 m∗
t ← arg maxm

{
LLtr(Θ,G)
LL(w:Θ,G)

: (LL, LLtr, m) ∈ Φ
}

5 if m∗
t �= m∗

t−1 then
6 find the change point c on w[τ − r, τ + r]
7 update and validate previous model Bm∗

t−1
on w[τ − r, τ − r + c]

8 if new observations ≥ 10 * previous observations then
9 update Bm∗

t
structure and parameters with w[τ − r + c, τ + r]

10 previous observations ← previous observations + new observations

11 else
12 update Bm∗

t
parameters with w[τ − r + c, τ + r]

13 return

14 find the change point c on w[τ − r, τ + r]
15 update and validate previous model Bm∗

t−1
on w[τ − r, τ − r + c]

16 learn new model on w[τ − r + c, τ + r]

Real Time Learning of Non-stationary Processes with DBNs 345

Algorithm 2. Find match
Data: observations w[τ, τ + r]
Data: D = {Bm}, Dir({αijk})-(Dirichlet parameters)

1 begin
2 Φ ← {}
3 for Bm = (Θ, G)m ∈ D do
4 while ∃Xe ∈ Bm, Xe /∈ w do
5 ∀j ∈ �1, ce�, eliminate Xe using inference :
6 P (Xi | (Ui \ Xe) = j)

7 while ∃Xe ∈ w, Xe /∈ Bm, do
8 discard Xe

9 while ∃Xi ∈ w, Xi = k and Xi ∈ Bm, k /∈ ΩXi do
10 ΩXi ← ΩXi ∪ k

11 θijk ← αijk

Nij+αij

12 θij{o�=k} ← Nijo+αijo

Nij+αij

13 for Xl ∈ Bm : Xi ∈ Ul do
14 ∀j ∈ �1, ci�, compute using inference :
15 P (Xl | (Ul \ Xi) = j, Xi = k) ← P (Xl | (Ul \ Xi) = j)

16 if LLtr(Θ,G)
LL(w:Θ,G)

≥ 0.97 then

17 Φ ← Φ ∪ (LL, LLtr, m)

18 return Φ

using the (non-informative) Dirichlet priors αijk parameters and then compute
the likelihoods.

Algorithms 1 and 2 describe our framework for online learning of non-
stationary processes with ns-DBN. While the next section will investigate our
experiments, it is noteworthy that the complexity of our algorithm does not
depend of the size of the database but only of the size of the window and the
number of known models which is an important quality for online learning.

4 Experiments and Results

Our experiment consists in modeling simulated non-stationary processes. Using
the aGrUM library (http://agrum.lip6.fr), we generated a DBN of 10 nodes by
time-step of average domain size 7 (�3, 10�) and average node degree 3. We then
perturbed the structure and parameters of the model using the hellinger distance
[2] between the two models as stopping criterion. Multiple thresholds were used
to see how far apart two networks need to be for them to be recognized as two
independent models. Hellinger distances greater than 0.8 always involve changes
in parameters for all nodes and sometimes structure for a few set of nodes.
Hellinger distances under this threshold involve parameter changes for one or
two nodes, with small degrees, and sometimes an arc is added, adding very little
information.

http://agrum.lip6.fr

346 M. Hourbracq et al.

The databases were then sampled from each model before being combined
to form a unique dataset consisting of 600.000 events. Different epoch sizes were
used in order to see the impact of sample size against network distance as well as
different resolutions of the sliding window to see how the system performs when
overlapping datasets from two distinct models (i.e. the epoch is not a multiple of
the window size). We ran each settings with and without the dynamic window
scheme. It is important to note that our algorithm have no prior information
about the number of networks, their variables and variables domains or the
number of transitions.

The fictive Fig. 4 explains how to read experiments’ figures and tables, where
FN stands for transitions false negatives (percentage of missed transitions over
all true transitions), FP stands for transitions false positives (percentage of false
transitions over all discovered transitions) and TP stands for transitions true pos-
itives (percentage of true transitions over all discovered transitions). Also, tp is
the number of (true) events learned by correct networks, fp the number of (false)
events learned by incorrect networks and fn the number of (true) missed events
by networks that are learned by others. Adaptive windows can be seen with curves
being extended either on the left (for the current matching model moving the win-
dow) or the right (non matching models that do not move the window). In experi-
ments’ tables, cuts average, minimal and maximal errors are shown, with standard
deviation. Finally, precision tp/(tp + fp) and recall tp/(tp + fn) for events are
also shown, that is average precision and recall over discovered networks. Recall
amounts to the percentage of correct events found for all correct events that should
have been found. Precision is inversely proportional to noise (events generated
from another model used to update the current model). Due to pages restriction,
results were averaged for all thresholds of hellinger distance. We focus on the cases
with the epoch not being a multiple of the window size - and show a best case
(Fig. 5) and worst case (Figs. 6, 7, 8 and 9) scenario with and without the adap-
tive window. The results for static and adaptive windows are presented in Tables 1
and 2, respectively.

Fig. 4. How to read figures. Fig. 5. Results for epochs of 5K obser-
vations, hellinger < 0.8, fixed window
size

Real Time Learning of Non-stationary Processes with DBNs 347

4.1 Static Windows

Figure 5 is an example of a successful run: the epoch is a multiple of the window
size, consequently the sliding window always contains observations from one
model at a time. In such settings, correct transition times and models are always
identified, with and without adaptive window. However, errors arise when using
arbitrary window sizes without dynamical windows as shown in Figs. 6 and 7.

Fig. 6. Results for epochs of 2K5
observations, hellinger < 0.8, fixed
window size

Fig. 7. Results for epochs of 10K
observations, hellinger < 0.8, fixed
window size

In the static case as in Table 1, two issues explain the poor precision and
recall for some experiments. The first issue arises when we have discovered fewer
networks than we should, mainly with lower hellinger thresholds, in which case
transitions were missed and some models are averaging several true models,
increasing noise and making further transitions harder to detect, hence increas-
ing FN of transitions and decreasing precision and recall over events. Such a
case is highlighted by Fig. 6 and by the first two rows of Table 1, with the first
row and Fig. 6 showing results for close true networks and the second row results
for distinct true networks. The second issue arises when we have discovered more
networks than we should, mainly with higher hellinger thresholds. When it hap-
pens, most networks in excess were made when the window overlaps events from
two true networks, thus modeling the transition itself (the next window matches
or creates another model, the true one), such as in Fig. 7 (the brown network).
Hence, we have two transitions instead of one, increasing FP for transitions.
Precision and recall are less affected by those FP since only a few transitions
give rise to very specific models, slightly reducing the recall of other discovered
(true) networks, but increasing their precision (reducing noise).

Results in the static case could be worse: in our setting, one epoch is not
a period of the window size but a multiple of the epoch can be a multiple of
the window size, in which case the window ends or starts at a true transition,
therefore “increasing” our probability of correctly identifying a transition or
model. Thus, FN and cuts errors could be higher whereas precision and recall
could be lower.

348 M. Hourbracq et al.

Table 1. Results for static windows, showing missed transitions over all true transitions
(false negatives FN), false positive transitions (FP) and true positive transitions (TP)
over all discovered transitions. For cuts, minimal, average and maximal error in events,
with variance. For discovered networks, precision and recall over events.

epoch window FN FP TP avg. error std. deviation min max precision recall

size

2500 1000 1.0 0.0 0.0 NA NA NA NA 0.2 1.0

2500 1000 0.0 0.0 1.0 251.046 249.998 0.0 500.0 0.829 0.875

2500 2000 0.602 0.0 1.0 521.052 361.644 0.0 1000.0 0.5 0.952

5000 1500 0.101 0.035 0.965 351.216 258.546 0.0 1000.0 0.833 0.935

5000 3000 0.0 0.06 0.94 752.1 579.236 0.0 2000.0 0.856 0.854

10000 1500 0.0 0.131 0.869 381.356 295.694 0.0 1000.0 0.961 0.96

10000 3000 0.1017 0.0083 0.992 772.81 601.843 0.0 2000.0 0.833 0.929

15000 2000 0.0 0.204 0.795 512.82 499.835 0.0 1000.0 0.963 0.958

4.2 Adaptive Windows

The results for adaptive windows, shown in Table 2, reveal that the size of the
window has little impact on the correct identification of transitions and models,
and it should hold as long as the window size is lower than the epoch. Surpris-
ingly, results are not worse for small epochs given the domain size of the network.
With adaptive windows, both previous issues are solved by looking for a change
point, as in Figs. 8 and 9: in the first case, we do not learn from overlapping win-
dows which reduces noise, making future transitions easier to discover. In the
second case, looking for a change point itself avoids the creation of a network to
represent the transition alone.

The ability of the algorithm to add modalities to known variables avoids
the creation of unnecessary networks in both settings, thus reducing FP for
transitions, and is of crucial importance for outliers that happen every now and
then.

Fig. 8. Results for epochs of 2K5
observations, hellinger < 0.8, dynamic
window size

Fig. 9. Results for epochs of 10K
observations, hellinger < 0.8, dynamic
window size

Real Time Learning of Non-stationary Processes with DBNs 349

Table 2. Results for adaptive windows, with columns as in Table 1.

epoch window FN FP TP average error std. deviation min max precision recall

size

2500 1000 0.0 0.0 1.0 4.399 18.045 0.0 254.0 0.998 0.998

2500 2000 0.0 0.0 1.0 2.435 4.683 0.0 38.5 0.999 0.999

5000 1500 0.0 0.0 1.0 3.0966 7.784 0.0 62.5 0.999 0.999

5000 3000 0.0 0.0 1.0 8.702 43.383 0.0 390.5 0.998 0.998

10000 1500 0.0 0.0 1.0 32.923 80.526 0.0 311.5 0.997 0.996

10000 3000 0.0 0.0 1.0 19.559 103.199 0.0 778.0 0.998 0.998

15000 2000 0.0 0.0 1.0 8.551 32.423 0.0 202.5 0.999 0.999

5 Conclusions and Future Work

We built a framework around Dynamic Bayesian Networks to learn non-
stationary processes in a continuous manner, designed to be fast and accu-
rate. However, several enhancements comes to mind: we mentioned a dynam-
ical threshold on the log-likelihood ratio to take into account convergence, as
well as the need for merging and deleting schemes, since we expect results to
be poorer the closer the original networks are from each other. While a naive
deleting scheme could consists of using a parameter for each network, decreas-
ing over time when not matching, merging networks require to compare their
joint probability distributions which involves heavy computations. The problem
of looking for a cut could also be investigated further, since if the cumulative
likelihood is a stepping function, we should cut at the first step, which we do
not (the algorithm is maximizing the likelihood over both Gaussians and the
cut is most often than not in between the steps). A most important enhance-
ment would be to model transitions from behavior to behavior, and predict to
some extent the next behavior for a given time or identify critical events (weak
signals) that would allow such predictions. Finally, we will apply this work to
detect anomalies in a host and network intrusion detection system.

Acknowledgments. This work was supported by Akheros S.A.S./ANRT CIFRE
grant #2014/0268, and the European project SCISSOR H2020-ICT-2014-1 #644425.

References

1. An, X., Jutla, D., Cercone, N.: Privacy intrusion detection using dynamic Bayesian
networks. In: ACM International Conference Proceeding Series, vol. 156, pp. 208–
215 (2006)

2. Beran, R.: Minimum hellinger distance estimates for parametric models. Ann. Stat.
5, 445–463 (1977)

3. Casella, G., George, E.I.: Explaining the Gibbs sampler. Am. Stat. 46(3), 167–174
(1992)

4. Charitos, T., Van Der Gaag, L.C., Visscher, S., Schurink, K.A., Lucas, P.J.: A
dynamic Bayesian network for diagnosing ventilator-associated pneumonia in ICU
patients. Expert Syst. Appl. 36(2), 1249–1258 (2009)

350 M. Hourbracq et al.

5. Dean, T., Kanazawa, K.: A model for reasoning about persistence and causation.
Comput. Intell. 5(2), 142–150 (1989)

6. Gonzales, C., Dubuisson, S., Manfredotti, C.: A new algorithm for learning non-
stationary dynamic Bayesian networks with application to event detection. In: The
Twenty-Eighth International Flairs Conference (2015)

7. Grzegorczyk, M., Husmeier, D.: Non-stationary continuous dynamic Bayesian net-
works. In: Advances in Neural Information Processing Systems, pp. 682–690 (2009)

8. Grzegorczyk, M., Husmeier, D.: Non-homogeneous dynamic Bayesian networks for
continuous data. Mach. Learn. 83(3), 355–419 (2011)

9. Grzegorczyk, M., Husmeier, D., Edwards, K.D., Ghazal, P., Millar, A.J.: Mod-
elling non-stationary gene regulatory processes with a non-homogeneous Bayesian
network and the allocation sampler. Bioinformatics 24(18), 2071–2078 (2008)

10. Kruegel, C., Mutz, D., Robertson, W., Valeur, F.: Bayesian event classification for
intrusion detection. In: 2003 Proceedings of the 19th Annual Computer Security
Applications Conference, pp. 14–23. IEEE (2003)

11. Lerner, U., Parr, R., Koller, D., Biswas, G., et al.: Bayesian fault detection and
diagnosis in dynamic systems. In: AAAI/IAAI, pp. 531–537 (2000)

12. Mitra, V., Nam, H., Espy-Wilson, C.Y., Saltzman, E., Goldstein, L.: Gesture-based
dynamic Bayesian network for noise robust speech recognition. In: 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 5172–5175. IEEE (2011)

13. Murphy, K.P.: Dynamic Bayesian networks: representation, inference and learning.
Ph.D. thesis, University of California, Berkeley (2002)

14. Mutz, D., Valeur, F., Vigna, G., Kruegel, C.: Anomalous system call detection.
ACM Trans. Inf. Syst. Secur. (TISSEC) 9(1), 61–93 (2006)

15. Ourston, D., Matzner, S., Stump, W., Hopkins, B.: Applications of hidden Markov
models to detecting multi-stage network attacks. In: 2003 Proceedings of the 36th
Annual Hawaii International Conference on System Sciences, 10 p. IEEE (2003)

16. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, San Mateo (2014)

17. Robinson, J.W., Hartemink, A.J.: Non-stationary dynamic Bayesian networks. In:
Advances in Neural Information Processing Systems, pp. 1369–1376 (2009)

18. Robinson, J.W., Hartemink, A.J.: Learning non-stationary dynamic Bayesian net-
works. J. Mach. Learn. Res. 11, 3647–3680 (2010)

19. Sicard, M., Baudrit, C., Leclerc-Perlat, M., Wuillemin, P.H., Perrot, N.: Expert
knowledge integration to model complex food processes. Application on the camem-
bert cheese ripening process. Expert Syst. Appl. 38(9), 11804–11812 (2011)

20. Song, L., Kolar, M., Xing, E.P.: Time-varying dynamic Bayesian networks. In:
Advances in Neural Information Processing Systems, pp. 1732–1740 (2009)

21. Xu, J., Shelton, C.R.: Continuous time Bayesian networks for host level network
intrusion detection. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML
PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 613–627. Springer, Heidelberg
(2008)

22. Xu, J., Shelton, C.R.: Intrusion detection using continuous time Bayesian networks.
J. Artif. Intell. Res. 39, 745–774 (2010)

23. Yeung, D.Y., Ding, Y.: Host-based intrusion detection using dynamic and static
behavioral models. Pattern Recogn. 36(1), 229–243 (2003)

24. Zanero, S., Serazzi, G.: Unsupervised learning algorithms for intrusion detection.
In: 2008. IEEE Network Operations and Management Symposium, NOMS 2008,
pp. 1043–1048. IEEE (2008)

	Real Time Learning of Non-stationary Processes with Dynamic Bayesian Networks
	1 Introduction
	2 (Non-stationary) Dynamic Bayesian Networks
	3 Learning Non-stationary Processes
	3.1 Learning with Fixed Variables and Static Window Size
	3.2 Dynamic Adaptation of the Window
	3.3 Learning with Incompatible Variables Domain

	4 Experiments and Results
	4.1 Static Windows
	4.2 Adaptive Windows

	5 Conclusions and Future Work
	References

