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On the inertia effects on the Darcy law:

numerical implementation and confrontation of

micromechanics-based approaches

Viet-Thanh To · Quy-Dong To · Vincent

Monchiet

Abstract In this paper, we investigate the nonlinear deviation of the Darcy
law in the domain of high pressure gradient. Classically, the (linear) Darcy law
can be deduced from asymptotic homogenization approaches and the numerical
resolution of the Stokes flow problem on the unit cell of the porous medium.
At higher speed steady flow of a fluid, non linear effects on the macroscopic
filtration law arises and are accounted by considering the convection term in
the Navier Stokes equation. These non linear effects has been often studied
in asymptotic homogenization framework by expanding the solution in power
series at low Reynolds number. This has two advantages : (i) the Navier-Stokes
problems is replaced by a chain of linear problems with source terms which
depend on the solution at lower order, (ii) the macroscopic non linear filtration
law is derived in the form of a polynom. We develop a Fast Fourier Transform
(FFT) based numerical algorithm to compute the solution of this elementary
problems and to compute the higher order permeability tensors in connection
with the morphology of the porous medium. The results are then compared
to the solution of the full Navier-Stokes problem by means of Finite Element
Method (FEM) which allows to evaluate the capacity of the expansion method
to account for the non linear effects. We determine the convergence radius of
the polynomial series and we give the limit of the series expansion method in
term of the Reynolds number.
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1 Introduction

The determination of permeability in connection with microstructure param-
eters has been already addressed in the framework of upscaling approaches.
Among the firsts, Auriault and Sanchez-Palencia 1977, Sanchez Palencia 1980,
Levy 1983, etc. have provided a physical justification of the famous Darcy’s
Law [11] in framework of periodic homogenization based on matched asymp-
totic series expansion techniques. The Darcy law gives the flow velocity as
a linear function of the applied gradient of pressure and introduces the per-
meability tensor that is characteristic of the porous material. Moreover, the
asymptotic approach also provides the elementary cell problems which has to
be solved for computing the permeability. The Darcy law typically reads (for
one dimensional problem):

V = −
K

µ
G (1)

where V is the macroscopic velocity, µ the dynamic viscosity characteristic of
the fluid, G is the macroscopic pressure gradient and K is the permeability
that is characteristic of the morphology of the microstructure. Mentioned must
be made of other homogenization approaches based on energy principle and
volume averaging (Whitaker [36], Allaire [3], etc).
Many years after Darcy’s historical experiment, other researchers found that
some deviation from the above-mentioned proportionality law occurs when the
velocity increases. As the Reynolds number increases, nonlinearities due to in-
ertia appear. For higher Reynolds numbers, the flow becomes turbulent. Some
experimental data for geometrically simple media (see for example Chauveteau
and Thirriot [10] or Skjetne et al. [32]) proved the existence of four regimes:
(i) Darcy, (ii) Weak inertia (iii) Strong inertia, and (iv) Turbulence. In the do-
main of weak inertia the Forchheimer [15] law is generally used, it introduces
a quadratic term in the velocity field in order to account for the non linear
dependence with the applied gradient of pressure and reads:

V + αV 2 = −
K

µ
G (2)

in which αV 2 is the corrective term to the linear Darcy law. Note however
that Forchheimer’s law was originally postulated but not derived in a homog-
enization approach. The Forchheimer equation has been found to reproduce
adequately various experimental data [20,34,2] but fails as regards to other
work [10,17] which suggests to use other formula for the non linear filtration
law. For instance, a cubic correction to the Darcy law can be used,

V + βV 3 = −
K

µ
G (3)

that is more in agreement with the recent experimental data provided by
Zermatten et al. [38]. Note also that numerical simulations with the Finite
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Element Method (FEM) has been performed in order to validate or not some
macroscopic models of filtration (see for instance [14] and [19]).
Various contributions have been proposed to provide a physical basis for the
Forchheimer law or to derive more general non linear equations in order to
physically explain the origin of non linear effect in the ”weakly non linear”
regime. Particularly, still in the framework of periodic homogenization based
on matched asymptotic series, various authors developed a non linear filtra-
tion law for porous media starting from the stationary Navier-Stokes equation
among which Mei and Auriault [22], Wodie and Levy [37], Giorgi [16], Skjetne
and Auriault [33], Chen et al. [9], Bahloff et al. [6]. The Darcy law is recovered
by keeping the first order term in the expansion series, the non linear effects
are captured by accounting for higher order terms. Particularly, in Refs.[22,37,
31,33], the authors found results which are much different from Forchheimer
equation. Indeed, the second order term of the expansion series is null and
the third order term introduces a correction to Darcy’s law that is cubic. By
keeping all the terms of the expansion series, the filtration law is of polyno-
mial type in which the quadratic term is null. Each tensors of this law can be
computed from numerical calculation of successive Stokes-type problem at the
local scale which is much simpler and faster than solving the full Navier-Stokes
equations. Unlike previous works [22,37,33], Chen et al. [9] showed that the
first correction to Darcy law is quadratic. They also use the asymptotic series
expansion method but with different scaling assumptions. Note that the need
to obtain a quadratic term in the macroscopic filtration law was motivated
by earlier experimental data [23]. However, a dependence with a quadratic
term at low Reynolds number has not been reported by the recent numerical
computations based on the resolution of the full Navier-Stokes equations at
the microscopic scale [30,6,1]. Particularly, in Ref. [1], the authors suggests
that there is no quadratic term at low Reynolds number but an approxima-
tion of the macroscopic non linear Darcy law at higher Reynolds number could
includes a quadratic term. The comparison between the polynomial approxi-
mate filtration law obtained from asymptotic homogenization approach with
the solution of full Navier Stokes problem has been recently studied by Bahloff
et al. [6] in the case of the flow through a periodic axisymmetric sinusoidal
channel and by Adler et al. [1] for the problem of flow between two wavy walls
and for which, in each cases, the macroscopic model is one-dimensional.
It can be shown that the homogenization approach used to derive the non-
linear filtration law involves the resolution of periodic Navier-Stokes fluid flow
in the unit cell under an applied pressure gradient. This equivalence is only
valid if we solve and superpose infinitely the hierarchy of Stokes problems in
the unit cell, which is numerically impossible. It is noted that when the latter
approach is employed for a finite number of times, the polynomial filtration
law can be obtained, as done by many previous works [6,1]. In order to assess
the accuracy of polynomial law, we exploit the aforementioned equivalence and
compare the homogenization solutions with the exact one issued from Finite
Element Method. We have developed a new Fast Fourier Transform scheme to
deal with the periodic homogenization problem and use COMSOL to obtain

Accepted Manuscript



4 Viet-Thanh To et al.

the exact solution. The microstructure under consideration constituted of 2D
aligned cylinders with circular and rectangular cross sections. The obtained
results are surprisingly interesting. It is found that the polynomial laws only
provide small corrections to the linear Darcy law while they are only valid for
a finite range of the pore Reynolds number Re and still deviate at high values
of Re. These numerical evidences suggest that non-polynomial filtration law
should be used to extend the validity to high Re range. These results briefly
summarize the notable contribution of the present works. The details of the
paper are organized in section as follows. In section 2, we recall the principle
of the expansion series method, we provide the hierarchy of unit cell prob-
lems which have to be solved for computing the permeability tensors of the
polynomial macroscopic filtration law. In section 3, we provides a FFT based
numerical approach to compute the solution of the chain of cell problems and
the permeability tensors at different orders. In section 4, numerical applica-
tions for 2d microstructures constituted of aligned cylinders. The polynomial
approximate filtration law is compared with a reference solution obtained by
computing the full Navier-Stokes problem with finite elements. In order to
evaluate accurately the limit of the series expansion method, we determine
the convergence radius of the polynomial series and we provide the limite for
the pore Reynolds Number.

2 Approximation with series expansion method

We consider a periodic porous medium saturated by a homogeneous Newtonian
viscous fluid with the dynamic viscosity µ. By V , we denote the total volume
of the cell, by Vf and Vs the volume occupied by the fluid and the solid
respectively. The frontier between the fluid and the solid is denoted S.

h

h

Vs

Vf

Fig. 1 Periodic unit cell of the porous medium.
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We consider, within the unit cell, the Navier-Stokes problem under an
applied pressure gradient G:

µ∆v −∇p−G = ρ(∇v).v in Vf

div v = 0 in Vf

v = 0 in S (4)

with the periodicity conditions for the velocity and the pressure:

v periodic, p periodic (5)

In (4), µ and ρ are respectively the dynamic viscosity and density, ∆, ∇ and
div are the laplacian, gradient and divergence operator. The first and second
relations in (4) are the momentum equation and incompressibility condition
and the last equation is the non slip condition on the interface S between the
fluid and the solid.
We seek for the relation giving the macroscopic velocity V as function of the
applied pressure gradient G. In order to obtain results independently of the
values of fluid characteristics, ρ and µ, and on the size of the unit cell h, it is
suitable to use the following change of variables:

v = v∗
µ

ρh
, p = p∗

µ2

ρh2
, G =

µ2

ρh3
J , ∇ =

1

h
∇∗ (6)

Introducing these non dimensional parameters in (4) yields to:

∆∗v∗ −∇∗p∗ − J = (∇∗v∗).v∗ in V ∗

f

div∗ v∗ = 0 in V ∗

f

v∗ = 0 in S∗ (7)

The mean velocity field computed over the volume V of the unit cell can be
put into the following form:

V ∗ =< v∗ >V = F(J) (8)

in which F : J → F(J) is an unknown non linear function of the variable J .
The macroscopic filtration law for physical variables V and G is:

V =
µ

ρh
F

(
ρh3

µ2
G

)
(9)

At low speed steady flow of a fluid in the porous medium, the term at the right
side of the equality in (7) can be neglected and the solution linearly depends
on the applied pressure gradient. In this context, the macroscopic description
of the fluid flow through the porous solid is the Darcy law. As speed increases,
the nonlinear inertial terms grow and the flow law becomes nonlinear.
The approximation of the macroscopic filtration law at low pore Reynolds
number has been investigated by several authors among which Mei and Auri-
ault [22], Wodie and Levy [37], Firdaous et al. [14], Skjetne and Auriault [33],
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6 Viet-Thanh To et al.

Chen et al. [9], Bahloff et al. [6], Adler et al. [1]. Let us briefly recall the main
results obtained by these authors. Consider the following change of variables:

v = vcv, p =
µvc
h

p, G =
µvc
h2

G, ∇ =
1

h
∇∗ (10)

in the Navier-Stokes problem (4), where vc = ‖V ‖ is the characteristic velocity,
chosen as the norm of the macroscopic velocity field following [19]. Introducing
also the pore Reynolds number:

Re =
ρvch

µ
(11)

we obtain the following alternative form for the Navier-Stokes equations (4):

∆∗v −∇∗p−G = Re(∇
∗v).v in V ∗

f

div∗ v = 0 in V ∗

f

v = 0 in S∗ (12)

Assuming low values of the pore Reynolds number, the solution is searched as
a power series in Re:

v = v0 +Rev
1 +R2

ev
2 +R3

ev
3...

p = p0 +Rep+R2
ep

2 +R3
ep

3... (13)

Introducing expressions (13) in the system (12) and collecting all the terms
having the same power in Re leads to a hierarchy of cell problems.
The first order unit cell problem is classic in homogenization of porous media
and provides the macroscopic Darcy law. This problem reads:

∆∗v0 −∇∗p0 −G = 0, div∗(v0) = 0 (14)

This is a linear problem for v0 and p0. The solution reads:

v0i = A0
ijGj , p0 = B0

i Gi (15)

where A0
ij and B0

i are two localization tensor which depends on the coordinates
x and which are determined by solving the elementary problem (14) with the
periodicity condition on its boundary and the adherence condition on ∂Vf .
All higher order problems can be read in the compact form:

∆∗vn −∇∗pn =
k=n−1∑

k=0

∇∗vn−1−k.vk (16)

and the solution is:

vni = An
ij...pGj ...Gp, pn = Bn

j...qGj ..Gp (17)

Each cell problems and each associated localization tensors (An
ij...p and Bn

j...q)
only depends on the geometry of the unit cell of the porous material. Again,
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the elementary problems (16) are solved with the periodicity condition on the
boundary of cell and the adherence condition on ∂Vf .
The total velocity field is obtained from the first relation in (13) together with
(15) and (17). This leads to:

vi = A0
ijGj +ReA

1
ijkGjGk +R2

eA
2
ijkpGjGkGp + ... (18)

The macroscopic velocity is:

V i =< vi >V = −
[
K0

ijGj +ReK
1
ijkGjGk +R2

eK
2
ijkpGjGkGp + ...

]
(19)

where K0
ij , K

1
ijk, K

2
ijkp, K

3
ijkpq, are the components of the dimensionless per-

meability tensors at the different orders, defined by:

Kn
ij..k = − < An

ij..k >V (20)

The inversion of the infinite series filtration law is:

Gi = −
[
H0

ijV j +ReH
1
ijkV jV k +R2

eH
2
ijkpV jV kV p + ...

]
(21)

in which H0
ij , H

1
ijk, H

2
ijkp, H

3
ijkpq, are the components of dimensionless hy-

draulic resistivity tensors. They are obtained by replacing, in (19), Gi by (21)
and by collecting all the terms having the same power in Vi:

V i =
[
K0

ijH
0
jp

]
V p +

[
K0

ijH
1
jpq +K1

ijkH
0
jpH

0
kq

]
V pV q + ... (22)

In the above relation, the first term at the right of the equality must be equal
to V ∗

i and all other terms must be equal to zero. This leads to a set of linear
equations for which H0

ij , H
1
ijk, ... are the unknowns:

K0
ipH

0
pj = δij

K0
ipH

1
pjk +K1

ipqH
0
pjH

0
qk = 0

...

(23)

and which must be solved successively to obtain the hydraulic resistivity ten-
sors. With the re-normalization of the quantities, the polynomial filtration law
is:

Vi = −
h2

µ

[
K0

ijGj +
ρh3

µ2
K1

ijkGjGk +

(
ρh3

µ2

)2

K2
ijkpGjGkGp + ...

]
(24)

The first term is the Darcy law, the higher order terms appears as corrections
to the linear approximation. By doing the same in equation (21), one obtains:

Gi = −
µ

h2

[
H0

ijVj +
ρh

µ
H1

ijkVjVk +

(
ρh

µ

)2

K2
ijkpVjVkVp + ...

]
(25)

Let us now introduce the change of variables (6) in relation (24), it gives:

V ∗

i = −
[
K0

ijJj +K1
ijkJjJk +K2

ijkpJjJkJp + ...
]

(26)
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8 Viet-Thanh To et al.

which, comparing with equation (8), leads to a polynomial expression for the
function F(J). In order to investigate the deviation between the polynomial
approximation and the exact solution of Navier-Stokes problem it is more
convenient to use the set of dimensionless variables (V ∗,J) since the relations
(8) and (26) are independent of the size of the unit cell, of the nature of the
fluid and the Reynolds number. Also, it must be noted from equation (10)
that:

vc = ‖V ‖ =
µ

ρh
‖V ∗‖ (27)

which, introduced in (11), gives:

Re = ‖V ∗‖ (28)

Which is important for the interpretation of the numerical results in term of
the pore Reynolds number.
All the permeability tensors are computed by solving the elementary problems
which are described in equations (15) and (17). The comparison between the
polynomial approximation and the full solution obtained by the resolution of
the Navier-Stokes equation has been provided in two cases: the fluid flow be-
tween two wavy walls have been studied by [1] and the solution for the flow in
a periodic axisymmetric sinusoidal channel has been numerically computed by
[6]. Alternatively, the implementation of Navier-Stokes problem (7) for various
porous microstructures can be found for example in [14] but the results have
not been compared with the polynomial approximation derived from the reso-
lution of the chain of elementary cell problems (15) and (17). The computation
of the higher order permeability tensor has never been computed in the case of
an array of periodic array of cylinders, that is of great importance to evaluate
the capacity if the expansion series method to reproduce the non linear effects
and to determine the limit of the approach.
The first correction to Darcy law has been proved in [22] to cancel out. This is
obviously trivial when considering a unit cell having plane symmetries, since
all the tensors of odd number vanishes. However this result has been demon-
strated in [14,33] for arbitrary anisotropic porous media. The correction in
the Darcy law can then be found in the cubic term. This suggests that the
Forchheimer law, which introduces a quadratic corrective term, is not in agree-
ment with the results of the homogenization approach. This result was also
supported by various numerical results [7,14,32]. The accuracy and range of
validity of the correction terms of Darcy law must be evaluated by (i) com-
puting higher order terms of the series (ii) by making the comparison with
the full resolution of Navier Stokes problem. In the next section we propose a
suitable FFT based numerical algorithm to compute the solution of cell prob-
lems at any order and the computation of the associated permeability tensors.
The comparisons with the FEM solutions of the Navier Stokes problem are
presented for various applications in section 4.
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3 Resolution of cell problems with FFT

The FFT method, which have been introduced for linear elastic composite
has been adapted in [25,29] to handle the problem of Stokes flow through a
rigid skeleton due to a prescribed pressure gradient. This method has com-
putational advantages since its is very fast and the memory requirement is
strongly reduced compared to FEM that is obvious of great interest for ap-
plications to complex 3d microstructures [21]. In this section we extend this
iterative scheme to deal with higher order cell problems.
Each one can be formally written as a Stokes problem in the presence of a
source term denoted f :

∆∗v∗ −∇∗p∗ − f = 0 inV ∗

f

div∗ v∗ = 0 inV ∗

f

v∗ = 0 inV ∗

s (29)

in which f is given by:

f = J (30)

in the fluid phase and for the first order problem. For higher order cell prob-
lems, the source term is given by:

f =

k=n−1∑

k=0

∇∗vn−1−k.vk (31)

in the fluid phase. Expression of f in the solid phase will be specified in the
next of this section. In the system of equations (29), we make a continuation
by continuity of the fields within the solid phase that is required when using
the FFT method. Classically, when using FEM, only the fluid phase is meshed
and a null velocity at the interface with the solid is considered as boundary
conditions. However, the method of resolution based on FFT techniques uses
Fourier series discretization which are defined at any points within the unit
cell. The condition v = 0 ∈ Vs is recovered by introducing, in the solid phase,
a fictitious dynamic viscosity that is very large and which can be interpreted
as a penalty coefficient.
Since all the cell problems are formally equivalent when introducing f , the
iterative scheme used in [25] can be also considered for solving higher order
cell problems. This iterative scheme reads:

σ̂i+1 = σ̂i − ∆̂0 : d̂i (32)

where σ̂ is the stress tensor (and σ̂ denotes its Fourier transform) defined by

σ = 2µ(x)d− pI, d =
1

2
(∇v∗ +∇Tv∗) (33)
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10 Viet-Thanh To et al.

in which µ(x) defined by :

µ(x) =

⎧
⎨
⎩

1 in V ∗

f

q in V ∗
s

(34)

where q is the penalty coefficient chosen sufficient large to retrieve the condition
v = 0 with the solid phase. By inversion, the Fourier transform of the strain
rate tensor, computed at iteration i, reads:

d̂i =

[
1

2
Îf +

1

2q
Îs

]
∗
[
σi − piI

]
(35)

where Îf and Îs are the Fourier transform of the characteristic function of the
fluid and the solid phase:

If =

⎧
⎨
⎩

0 in Vs

1 in Vf

If = 1− Is (36)

In our computation, the value 1/q = 0 can be considered with a good conver-
gence of the iterative scheme.
The iterative scheme also uses the complementary Green operator ∆0 for an
incompressible homogeneous medium of dynamic viscosity µ0 defined by:

∆̂0 = 2µ0

[
k⊥ ⊗ k⊥ + k⊥⊗k⊥

]
(37)

for ξ �= 0 and ∆̂0 = 0 for ξ = 0 and where k and k⊥ are given by:

k =
1

|ξ|2
ξ ⊗ ξ, k⊥ = I − k (38)

and I is the two order identity tensor.
The iterative scheme (32) is initialized with :

σ̂i=1 = −Ω.f̂ (39)

where the components of Ω are also explicit in the Fourier space:

Ωijk(ξ) =
i

‖ξ‖
[δijξk + δikξj + δjkξi − 2ξiξjξk], ξ = ξ/‖ξ‖ (40)

Once the convergence is achieved, one can compute the velocity field from the
strain rate tensor d̂:

v̂ = −
2i

‖ξ‖2
d̂.ξ; ∀ξ �= 0 (41)

The velocity field is defined by its Fourier coefficients for any values of ξ except
for ξ = 0. It means that the velocity field is defined up to an added constant
that represents its mean value of the unit cell. This constant is identified by
the condition that v = 0 in the solid phase.
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Since the stress tensor is antiperiodic on the opposite side of the unit cell, the
average of the first equation in (29) leads to:

< f >V = 0 (42)

that is the equilibrium of the unit cell. For the first order cell problem, f is
equal to J in the fluid phase. In order to comply with the above condition a
constant term is introduced in the solid phase. In order to avoid any misun-
derstanding, we denote by ff and fs the value of f taken in the fluid and the
solid phase respectively. Their expressions are:

ff = J , fs = −
cf
cs

J (43)

where cf and cs denotes the volume fraction of the fluid and solid phase. The
term fs physically represents the drag force due to the flow around the solid
phase. Considering now the second order problem, one has:

cs < f >Vs
+cf < ∇v0.v0 >Vf

= 0 (44)

Using the divergence theorem, the second integral in the above relation can be
split into two surface integrals over the boundary of the cell and the interface
with the solid phase:

∫

V

v0i,jv
0
jdx =

∫

∂Vf

v0i v
0
jnjdx+

∫

S

v0i v
0
jnjdx (45)

where ∂Vf is the boundary of the cell crossed by the fluid and S the interface
between the solid and the fluid. The integral over ∂Vf is null since v0 is peri-
odic (the term v0jnj is then antiperiodic) and the integral over S is also null

due to the adherence condition (v0 = 0 at the solid-fluid interface). It follows
that, for the second order problem, the equilibrium condition (42) reduces to
< f >Vs

= 0 which suggests to put f = 0 in the solid phase. This result has the
following physically interpretation : there is no drag forces in the solid phase
for higher order homogenization problems.
This choice is also applicable to all higher order cell problems since in (16) the
velocities vm and vn−m are periodic and null on the surface S.
The numerical integration of the iterative scheme is made using a representa-
tion of Fourier transform with a finite number of wave vectors along each space
direction. The convolution product in (35) is made by using the FFT algorithm
which makes the method very fast. More details about the discretization of
the FFT based iterative can be found in [25,29].

4 Application and comparison with FEM solutions

4.1 Presentation of the problem

In this section we applied the method based on FFT to compute the higher or-
der permeability tensor for two particular microstructures made up of aligned
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12 Viet-Thanh To et al.

rigid cylinder having circular and squared crossed sections (see figure 2). The
computations are performed on a dimensionless squared domain (whose size is
1 along each space directions) and the solution is carried out by taking a grid
128 × 128 wave vectors. Both problems are two-dimensional and considering
the symmetries of the unit cell, the permeability tensors are cubic in the plane
Ox1x2. As a consequence, all tensors of odd number vanishes. An approxima-
tion at the fifth order then introduces the classic two order permeability tensor
K0, also the fourth-order, sixth-order,... tensors.

h

h

h

h

a

a
R

Fig. 2 Periodic unit cell for the arrays of cylinders with crossed and squared sections.

This involves the identification of a large number of coefficients whose
number must be reduced by considering the symmetries. The representations in
complete forms for tensor functions in two dimensional space has been provided
by [39] and are used to provide the irreducible representation of the filtration
law. With dimensionless variables, the macroscopic law provides a relation
between the normalized macroscopic velocity V ∗ as function of the applied
pressure gradient J . For the problem considered in this section, the unit cell is
invariant by any rotation of an angle θ = π/2 and by the reflection respectively
with axes Ox1 and Ox2, that corresponding to the class of symmetry C4v with
the notation used in [39]. In such case, any non linear vector-valued function
can be written into the general form:

V (J) = F (I1, I2)J +G(I1, I2)Π (46)

in which I1 and I2 are the two scalar invariants:

I1 = J2
1 + J2

2 , I2 = J2
1J

2
2 (47)

while Π is a vector whose components are:

Πi =

⎛
⎝J3

1

J3
2

⎞
⎠ (48)
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The solution of the unit cell problem (4), without any approximation, is non
linear with respect to the applied macroscopic pressure gradient, and the asso-
ciated filtration law can be put into the general form given by (46). However,
in the latter, functions F (I1, I2) and G(I1, I2) are undetermined. In order to
derive the polynomial expression of the macroscopic law, a polynomial expres-
sion must then be considered for the two functions F (I1, I2) and G(I1, I2):

F (I1, I2) = k0 + k2I1 + k4I
2
1 + k′4I2 + k6I

4
1 + k′′6 I1I2 + ... (49)

G(I1, I2) = k′2 + k′′4 I1 + k′′′6 I21 + k′′′′6 I2... (50)

Introducing these expressions in (46) and collecting all the term with the same
power in G gives:

V 0(J) = k0J

V 1(J) = 0

V 2(J) = k2I1J + k′2Π

V 3(J) = 0

V 4(J) = k4I
2
1J + k′4I2J + k′′4 I1Π

V 5(J) = 0

V 6(J) = k6I
4
1J + k′′6 I1I2J + k′′′6 I21Π + k′′′′6 I2Π

...

(51)

When J is oriented along the axis of symmetry (Ox1 or Ox2), the velocity field
is colinear to J . Indeed, consider the particular case corresponding to J1 = 1
and J2 = 0, on observe that the second component of vector Π, that is given
by J3

2 , is null. Consequently, the component V2 is also null. This result is also
true when the J is oriented along the direction Ox2. Consider now the case of
a pressure gradient applied along an arbitrary direction θ, the components of
J can then be put in the form:

J1 = ‖J‖ cos(θ), J2 = ‖J‖ sin(θ) (52)

where ‖J‖ represents the norm of the pressure gradient. Denoting n = J/‖J‖
and t the vector orthogonal to n, their components are respectively n1 =
cos(θ), n2 = sin(θ), t1 = − sin(θ), t2 = cos(θ), and using the non linear
relation

V(J) = F (I1, I2)J+G(I1, I2)Π (53)

we found after some elementary mathematical manipulations:

V .n = F (I1, I2)‖J‖+G(I1, I2)‖J‖
3(cos4(θ) + sin4(θ)) (54)

V .t =
1

4
G(I1, I2)‖J‖

3 sin(4θ) (55)

It appears that the fluids flows along the same direction that J if θ = 0,
θ = π/2 or θ = π/4. For all other values of θ, the direction of fluid flow is not
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colinear to the direction of the applied pressure gradient, that is in agreement
with the recent results of Lasseux et al. [19].

4.2 Computation of permeability tensors

In the numerical applications provided in this section, the solution is expanded
at the fifth order, leadings to the identification of coefficients k0, k2, k

′
2, k4, k

′
4

and k′′4 using the FFT algorithm. For instance, the values of these coefficients
are provided in table 1 for the case of an array of cylinder with circular crossed
section with radius R = 0.05, R = 0.25 and R = 0.45. The variations of the

R k0 k2 k′
2

k4 k′
4

k4′′

(10−3) (10−8) (10−8) (10−14) (10−13) (10−14)

0.05 133.356 −1.51103 1.33103 2.05105 8.19104 −1.84105

0.25 19.9045 -3.3531 2.7617 3.3948 1.2469 -2.2710

0.45 0.31852 −9.0510−7
−2.1610−6 4.9010−10

−3.5010−10 8.7910−10

Table 1 Effective permeability coefficients of the polynomial non linear Darcy law for an
array of cylinders with circular crossed section with radius R

macroscopic (dimensionless) velocity with the normalized pressure gradient J1
are provided on figure 3 for the array of cylinders with circular cross section
with the radius R = 0.05. On this figure, are compared, the first order approx-
imation (the linear Darcy law), the polynomial approximation at the third
and fifth order and the finite element solution of the full Navier-Stokes prob-
lem. Figures 4, 5 and 6 displays the same results but for the radii R = 0.25,
R = 0.45 and R = 0.49. Figure 7 provides the results for a cylinder with
rectangular cross section with a = 0.25. The FEM data, which are considered
as the reference solution since there obtained without any approximations,
are used to evaluate the accuracy of the approach based on series expansion.
Clearly, the improvement obtained with the third order and the fifth order
solution upon the linear approximation is difficult to distinguish on these fig-
ures. Indeed, in the range for which the FEM solution differs from the Darcy
law, the polynomial approximation fails to reproduce the non linear effects at
larger values of J .
Furthermore, the use of the third order and the fifth order approximation
improve the Darcy at small pressure gradient, however, in this domain the
differences between the FEM solution and the linear approximation is very
slight. The results show that the polynomial approximation is only applicable
for low values of J1 (or equivalently for low Reynolds number), however, in this
range, the correction to Darcy law is not really significant. It must be men-
tioned that these results are qualitatively similar to that already obtained by
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[6] in the case of the flow through a periodic axisymmetric sinusoidal channel.
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Fig. 3 Variations of the normalized macroscopic velocity V ∗

1
as function of the normalized

macroscopic pressure gradient J1 for the array of cylinder with circular cross section with
radius R = 0.05. Comparison between the first order, third order, fifth order approximation
and the (FEM based) full solution.

4.3 Determination of the radius of convergence

The computation of the solution of Navier-Stokes problems by means of a
polynomial is only valid at low values of the Reynolds number. At higher
values, the polynomial series diverges from the FEM data and thus whatever
the degree of the polynom considered. The radius of convergence radius of
a power series is determined by the behavior of its coefficients at infinity.
Since the values of the permeability coefficients depends on R the radius of
the cylinder, the radius of convergence then also depends of R. When the
higher order permeability coefficients are very small compared to the first order
permeability K0 (that appears in the linear Darcy law), the non linear effects
only appears for very large values of the pressure gradient. This is observed
particularly for R = 0.45 or R = 0.49 on figures 5 and 6. Conversely, these
non linear effects are observed for lower values of the pressure gradient (see
the cases R = 0.05 and R = 0.25 on figures 3 and 4).
There is various possibilities to evaluate numerically the convergence radius of
the polynomial series. When only the component J1 is applied to the system
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Fig. 4 Variations of the normalized macroscopic velocity V ∗

1
as function of the normalized

macroscopic pressure gradient J1 for the array of cylinder with circular cross section with
radius R = 0.25. Comparison between the first order, third order, fifth order approximation
and the (FEM based) full solution.
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Fig. 5 Variations of the normalized macroscopic velocity V ∗

1
as function of the normalized

macroscopic pressure gradient J1 for the array of cylinder with circular cross section with
radius R = 0.45. Comparison between the first order, third order, fifth order approximation
and the (FEM based) full solution.
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Fig. 6 Variations of the normalized macroscopic velocity V ∗

1
as function of the normalized

macroscopic pressure gradient J1 for the array of cylinder with circular cross section with
radius R = 0.49. Comparison between the first order, third order, fifth order approximation
and the (FEM based) full solution.

0 500 1000 1500 2000
0

5

10

15

20

25

30

35

40

45

50

 

Normalized gradient of pressure J1

Normalized macroscopic velocity V1*

FFT order 1

FFT order 3

FFT order 5

FEM
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macroscopic pressure gradient J1 for the array of cylinder with rectangular cross section
with a = h/2. Comparison between the first order, third order, fifth order approximation
and the (FEM based) full solution.
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Fig. 8 Relative error (in percents) between polynomial approximation and the solution of
full Navier-Stokes equation.

(we put J2 = 0), the series can be put into the form:

V ∗

1 = J1(c0 + c1J
2
1 + c2J

4
1 + ...) (56)

where c0 = k0, c1 = k2+k′2, c2 = k4+k′4+k′′4 etc. We propose to use the Domb
and Sykes [12] formula to evaluate the convergence radius of the polynomial
series. The convergence radius of the series c0 + c1x+ c2x

2 + c3x
3 + ... could

be evaluated by the formula

r = lim
n→+∞

cn−1

cn
(57)

Since the sign of the coefficients cn alternate between 1 and−1, the last formula
is then negative. In that case, the value of r must be interpreted as the opposite
of the radius of convergence.
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Fig. 9 Domb-Sykes plots giving the value of (cn−1/cn)−1/2 as function of n for various
values of the radius of the cylinder R = 0.05, R = 0.1, R = 0.15, R = 0.2, R = 0.25 and
R = 0.3.

Accepted Manuscript



20 Viet-Thanh To et al.

Moreover, since the series in (56) is in power of J2
1 the convergence radius

for J1 is given by:

RJ = lim
n→+∞

√
−
cn−1

cn
(58)

where RJ is the convergence radius of the series (56). Also, the convergence of
the series could be expressed in term of the dimensionless macroscopic velocity
V ∗
1 and is denotedRV . By computingRJ andRV numerically, and considering

that V ∗
1 = Re, the limit of the expansion series method can be also expressed

in term of the pore Reynolds numbers as follows:

Re ≤ RV (59)

Practically, the estimation of the convergence radius can be performed by
computing the variations of (−cn−1/cn)

1/2 as function of n. This is done of
figure 9. It must be recalled that we do not analyse the radius of convergence of
an analytical function but a numerical function that is determined by solving
a hierarchy of elementary problems. The radius of convergence is determined
by computing the first 13 coefficients of the series in (58). This requires the
resolution of the first 26 elementary problems since the problems of odd order
provides zeros coefficients in the expansion series and only the elementary
problems of even number provides the coefficients c0, c1, c2, etc in relation (56).
The values (−cn−1/cn)

1/2 as function of n are represented for various values
of the radius R of the cylinder on figure 9. In each case, a good convergence
of the series (−cn−1/cn)

1/2 is observed and an accurate value of the limit in
(58) can be determined after a few number of iterations. We have evaluated
the radius of convergence by taking the value of (−cn−1/cn)

1/2 for n = 13.
Once RJ and RV are determined the results are also interpreted in term of
the limit for the pore Reynolds number Re. For instance, on figure 10, we
first represent the limit RJ as function of the radius R of the cylindric solid.
It is observed that the dependence with R is almost linear in the log frame.
This proves that the radius of convergence is the largest for almost touching
cylinders. Conversely, for small cylinders, the radius of convergence is also
small and the non linear effect are expected to be important.
From figure 10, it is possible to determine the limit of the expansion series
approach for the applied pressure gradient. As for example, considering water,
the values of the dynamic viscosity and mass density are µ = 10−3Pa.s and
ρ = 1kg/m3 at room temperature. We also assume that the distance between
two neighboring cylinders is 1 millimeter (that corresponds to the size of the
unit cell, h = 1). Consequently, we have G1 = J1. The figure 10 then provides
the limit of the applied pressure gradient G1 in Pa/m for which the expansion
into polynomial series of the Navier-Stokes problem is possible. Considering
the flow of air, the dynamic viscosity is 1.8× 10−5Pa.s and the masse density
is ρ = 1.3kg/m3, it follows that G1 = 0.27J1. The application of results on
figure 10 for air must be applied after the multiplication by the factor 0.27.
On figure 10, we represent the limit of the expansion series for the Reynolds
number Re as function of the radius R of the cylinders. It is observed that
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the limit for Re is quasi independent of R and is approximatively equal to 9.5.
Similar results are displayed on figure 12 for the regular array of cylinders with
squared cross sections. Again, it is observed that the limit for the Reynolds
number is almost independent of the size of the squares (denoted by a) and
the expansion series is valid for, approximatively, Re ≤ 7.5.
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Fig. 10 Convergence radius of the polynomial series for J1 as function of the radius R of
the rigid cylinders with circular crossed sections.
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Fig. 11 Convergence radius of the polynomial series for V ∗

1
≡ Re as function of the radius

R of the rigid cylinders with circular crossed sections.

Accepted Manuscript



Title Suppressed Due to Excessive Length 23

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

7.5

R

RV

Fig. 12 Convergence radius of the polynomial series for V ∗

1
≡ Re as function of the dimen-

sion size a of the rigid cylinders with squared crossed sections.

4.4 Polynomial approximation of FEM results

By plugging the finite element data, it is obviously possible to approximate
the solution by a polymonial into the form given by (51). For instance, such
an approximation is performed on figure 13 using a third order or a fifth order
polynomial and the least square method for the data fitting. It is observed
that the polynomial approximation reproduce the FEM data but fails out
of the interval of interpolation that is inherent with the use of polynomials.
Additionally, note that the coefficients obtained by fitting the FEM data are
quite different that ones computed by the homogenization approach based on
asymptotic expansions. The non linear filtration law shown on figure 13 has
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been approximated with a polynomial containing terms of odd degree. The
representation of the non linear Darcy law with polynomial functions of odd
degree is exact at low Reynolds number but there are just considered as an
approximation when these are used in the range of higher values of pressure
gradient. There is in fact no arguments for not using polynomial functions
of even degree. More generally, the use of vector-valued polynomial functions
for the approximation of the non linear filtration law reproduce correctly the
dependence between the velocity and the pressure gradient. The expansion
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Fig. 13 Approximation of the FEM solution using polynomials.

method is really attractive because it consists in solving linear problems for
the unit cell and furthermore the use of the FFT algorithm is numerically inter-
esting for their computation. However, the results show that this approach is
not able to reproduce adequately the non linear effects in the range of pressure
gradient for which it becomes significant. In other hand, the full Navier-Stokes
problem cannot be solved by the FFT method presented in this paper due
to the nonlinearity. The technique based on FFT is interesting for computing
the problems with high dimensions, that is the case, for example, when the
microstructure is defined by digital images which come from microtomogra-
phy. The development of such type of algorithms for computing the solution
to Navier-Stokes equations is obviously of great interest in the field of homoge-
nization. Note that non linear homogenization problems has been tackled with
the FFT technique for various application to composite materials, see for ex-
ample [28,24,26]. However, in these studies, the non linearity comes from the
strain-stress relation that is quite different. It follows that the computation of
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the Navier-Stokes problem with FFT must be handled with the development
of new algorithms.

5 Conclusion

In this work, we have provided a numerical analysis of non linear correction’s
to Darcy law. These non linearities are accounted in the framework of periodic
homogenization of porous media in which the flow is described by the Navier-
Stokes equations with periodicity conditions on the boundary of the unit cell.
On the basis of earlier theoretical studies, the solution is approximated by a
Taylor expansion series that leads to solving a chain of elementary Stokes-type
problems which are must easier than solving the full Navier Stokes equation. A
Fast numerical algorithm based on FFT has been formulated to compute the
solution of each Stokes auxiliary problems and the higher order permeability
tensors. The capacity of this approach to reproduce the non linear effects has
been thereafter investigated numerically in the case of the flow through an ar-
ray of aligned cylinders with circular and squared cross sections and compared
to direct FEM resolution of Navier Stokes equation. The results show that the
range polynomial filtration law is only applicable within a limited range of
velocity for which the correction to Darcy law is in fact very small. In a larger
range, the polynomial approximation fails to reproduce the non linear correc-
tion to Darcy law. Moreover, while the FEM solution can be approximated
by a polynomial equation, the identification of the constitutive parameters
significantly differs from that delivered by the resolution of the successive ele-
mentary Stokes problems. Future work will focus on the development on FFT
based numerical approach for the resolution of full Navier-Stokes problem.
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Law. M3 AS Math. Models Methods Appl. Sci. 6(8), 1143Ű1155 (1996)
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