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Explicit effective elasticity tensors of two-phase periodic composites
with spherical or ellipsoidal inclusions
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ABSTRACT

The effective elasticity tensors of two-phase composites are estimated by solving the localization prob-
lem in the wave-vector domain for the case of non overlapping spherical or ellipsoidal inclusions. With
previous works showing that the effective properties can be computed from lattice sums, we propose a
method to compute the sums analytically and obtain the explicit expressions for the effective tensors. In
the case of different periodic cells leading to cubic or orthotropic elasticity tensors, the effective elastic-
ity tensors are obtained in closed forms that are in good agreement with the exact solutions for a large
range of physical parameters. In the random distribution cases, the statistical connection of the effective
tensor to the structure factor is shown and a closed-form expression is obtained in the infinite volume
limit.
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1. Introduction (Kaminski, 1999; 2005; Liu et al., 2005; Michel et al., 1999;
Eyre and Milton, 1999; Monchiet and Bonnet, 2012). Generally,

One objective of micromechanics is to model the overall be- it is more difficult to apply analytical techniques to periodic mi-
havior of composites by studying physical problems at the scale crostructures due to the special boundary conditions and the ge-

of heterogeneities, followed by averaging the physical quantities ometry of the unit cell. The most sophisticated complete semi-
on volumes of interest. The usual homogenization procedure is to analytical methods use an expansion of the solution on the basis
construct a representative volume element (RVE) containing the of periodic functions and expand the basis functions on spherical

distribution of different constituting phases and then to use con- harmonics or spheroidal functions (Nunan and Keller, 1984; San-

tinuum mechanics to analyze the localization problem. For elas- gani and Lu, 1987; Kushch, 1997; 2013), whereas estimates can be

tic periodic media, it was shown that the effective elasticity ten- obtained by perturbation methods (Cohen, 2004).

sor is rigorously defined from the average stress/strain linear re- In this paper, we use the Nemat-Nasser-lwakuma-Hejazi (NIH)

lation (Sanchez-Palencia, 1974, 1980) obtained by studying only a approximation (Nemat-Nasser et al., 1982) to treat the specific case

unit cell. of two-phase periodic composites with spherical or ellipsoidal in-
Most closed-form estimations of the effective elasticity ten- clusions. This method has the same level of approximation as pro-

sor are based on simplifications of RVE containing assemblages vided by the Clausius-Mossotti (CM) assumption, that is, it pro-
of coated spheres or ellipsoids (Eshelby, 1957; Christensen and vides good estimates for a large range of inclusion concentrations.

Lo, 1979; Benveniste and Milton, 2003; Tsukrov and Kachanov, It takes into account the distribution of inclusions, but it is nomore
2000). For periodic problems, the solutions are usually obtained accurate for very large concentrations of inclusions. In this con-
from numerical methods such as the finite element method (FEM), text, it rests on Fourier expansion and is very versatile, thus ac-

boundary element method (BEM) and fast Fourier transform (FFT) counting for the interaction between inclusions or cracks of dif-

ferent kinds: such as ellipsoids, and cuboids. Further, it can ad-

— dress a fully anisotropic behavior. This method is much easier
*+ Corresponding author at: Laboratoire Modelisation et Simulation Multi Echelle,

Université Paris-Est, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée o use than ﬁfmy numerl cal methods.. Nevert.heless. l.t necessmgte's
Cedex 2, France. Tel.: +33160957310. the computation of lattice sums, which requires obviously a mini-
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components, checking the convergence of the lattice sums, etc. In
some cases, like for some cubic cases, alternative methods pro-
vided, under similar assumptions, simple expressions of the ef-
fective elasticity tensors (Cohen, 2004). For further applications,
the computation of lattice sums for further applications can also
be avoided by interpolating some results coming from the NIH
method, like for fiber composites (Luciano and Barbero, 1994). The
main contribution of our work is also to avoid the computation of
the lattice sums, but by estimating these sums analytically in more
general periodic cells containing spheres or ellipsoids. By consider-
ing such different arrangements inside the unit cell (e.g., simple
orthorhombic (SO), body-centered orthorhombic (BCO), and face-
centered orthorhombic (FCO)), we derive explicit closed-form ex-
pressions of the effective elasticity tensors.

The next part of this work deals with the random distribution
case. As an extension of our previous work on conduction phenom-
ena (To et al., 2013; To and Bonnet, 2015), we establish the statisti-
cal connections between the effective tensor and local arrangement
factors such as the form factor P (&), the structure factor S(&), and
the scattering intensity Z(&) used in the scattering theory (Hunter
and White, 2001; Bohren and Huffman, 1998) and more generally
in solid-state physics (Rossler, 2009). These factors provide useful
insight into the local structure of the particles, and it is worth not-
ing that they can be obtained experimentally. Finally, a closed-form
solution is also obtained in this case.

The present paper is composed of five sections. After the In-
troduction, Section 2 is dedicated to the homogenization theory of
periodic media using the integral equation approach and NIH es-
timation. In Section 3, closed-form solutions for elasticity tensors
related to different arrangements of spherical or ellipsoidal inclu-
sions are derived. Section 4 deals with the random cases; some
numerical applications and comparisons with different solutions of
the literature are reported in Section 5 and finally, the summary
and remarks are presented in Section 6.

The usual notations of tensor algebra are adopted throughout
the paper. For example, tensors are in bold characters, tensor prod-
ucts are denoted by ”®" (tensor products) and ”., :  (inner prod-
ucts). The Einstein summation convention is used for repeated in-
dices.

2. Homogenization of elastic periodic composites

First, the governing integral equations of the homogenization
problem are derived along classical means (Christensen, 1979;
Milton, 2002), however with more attention given to the periodic
case and the use of Fourier transforms. Next, the estimation of ef-
fective elasticity tensors based on the integral equations (Nemat-
Nasser et al., 1982) is introduced.

2.1. Governing integral equations

We consider an infinite elastic composite the fourth-order elas-
ticity tensor C of which is a periodic function of the local coordi-
nates X(xq, X3, X3) with periods aq, ay, as:

C(X1.X3,X3) = C(X1 +nyay, Xy + Ny0Gy, X3 + N303),
Vni,na.n3eZ (1)

The homogenization procedure of the periodic material was
rigourously established from the asymptotic development of the
involved quantities, stress o, strain €, and displacement u in terms
of the scaling parameter & (Sanchez-Palencia, 1974; 1980). Match-
ing the powers of ¢ in the elasticity equations yields different
relations between the quantities, including the definition of the

effective elasticity tensor C°. To summarize, the following periodic
boundary value problem in a unit cell V:

o(x)=C(x):€(x) VxeV
€(x) = %(Vu(x) +VTux)), VxeV

V.o(x)=0, VxeV
u(x) — Ex periodic,
o (x).n antiperiodic (2)

must be solved, allowing finally the computation of the effective
elasticity tensor C° from the relation between macroscopic strain
E and stress X:

X=C:E ZX=(o)y. E={(e). (3)

Here, we adopt the notation ()y to refer to the average over vol-
ume V of the quantity inside the brackets, for example,

@ =y [ gav. @)

Due to the periodicity of the problem, it is useful to express the
periodic quantities in the form of Fourier series and apply Fourier
analysis to the elasticity Eq. (2). For example, if ¢ is a periodic
function of xq, x5, x3, it can be expressed as a Fourier series:

x) =Y hE)e . &) = (px)e"), . (5)

§20

where ¢ can be stress o, strain €, elasticity tensor C, etc. For the
sake of simplicity, we differentiate quantities in Fourier space and
in real space by adding the variable after the same symbol: ¢(£) is
the Fourier transform of the real function ¢(x) defined by (5),. We
note that the infinite sum in (5); involves all discrete wave vectors
& with components &1, £, and &3 satisfying

&

_ 2@y

i=1,2,3, ny,nyn3el. (6)

1
The periodic boundary value problem (2) can be solved by an in-
tegral equation approach. By introducing a constant reference elas-
ticity tensor C° and polarization tensor ¢* (or eigenstress tensor)
defined by

o(x) =C°: €(x) +0*(x), (7)
it can be shown that €, o can be determined via the expressions
€(&)=-T§) 1 0" (). (8)

In (8), T9(&) is the Green operator for strain in Fourier space. When
the reference material is isotropic with Lamé constants Ay and p,
for example,

Gt = 20818 + Ho(88ji +8a8j), (9)

tensor T'? admits the following form:
1 - - - - -
ng, ) = 4—uo(aik§j§l + 8u€ & + S&i& + 8&iki)

hotpo iz
——————§i€i&). 10
o(ho + 2”0)5151&54 (10)
In [9,10], §;; is the usual delta Kronecker symbol and £, is the direc-
tion cosine of the wave vector &. By using the definition of the po-
larization tensor (7) and relation (8), we obtain the integral equa-
tion in €(x):

€(x) =E —T%% (C(x) —C%) : e(x). (11)

The transformation of (11) into an equation for eigenstrain €*
is straightforward by making use of the relations defining the



eigenstrain €*:
o =C": [e(x) — e (x)],
or equivalently (€% —C(x)) : €(x) = C? : €*(x) = —0*. (12)

Finally, we obtain the same equation as the one reported by
Nemat-Nasser et al. (1982):

C?:e*(x) = (C' - C(x)): [E +) €S T0() e*(g)]. (13)
££0

2.2. Estimations of effective elasticity tensors based on integral
equations

From now on, we consider the specific case of a matrix-
inclusion composite where each phase is isotropic with elastic-
ity tensors and Lamé constants being C™, Am, fm (matrix), and
€', 2j, i (inclusion). Following the NIH procedure (Nemat-Nasser
et al, 1982), we shall estimate the effective elastic properties
on the basis of integral equation (13). Taking the matrix as the
reference material, that is, C® = C™ and averaging both sides of
(13) over the inclusion volume Q with fraction f = Q/V yields

C" (e (X))q=(C" - CT') : [E+Z(€‘§"‘)QF'"(§) :CM: e*(S)}-
££0
(14)
Nemat-Nasser et al. (1982) noted that the eigenstrain vanishes out-

side the inclusion and thus proposed the following approximate
evaluation of €*(&):

€ () = fler(x)e™ %) g =~ fle" (x))ale™%)q. (15)
By defining the following shape functions (&) and P(&)

f

1§) = Q). PE) = 51BN (-6). (16)
and applying the approximation (15) to (14), we obtain
C": (e (X))q = (C"—C): [E+ Y :C": (e"(x))al, (17)

where the tensor 1" is the following lattice sum in the reciprocal
space:

Y =3 PETE). (18)
&0

Inverting (17) yields the average eigenstrain (e*(x))q
(e®)g=[@C"-c)":cm-Y:c"] " E (19)

Next, we average (12) with the matrix as the reference material,
and we find the relation between E, X, and (€*(x))q:

T=C":(E-(e"(x))y). or Z=C":(E- f(e"(x))g). (20)

Finally, comparing (20) with (3) and accounting for (19), we can
derive the overall tensor C*:

ce=cm - e —c) -] 1)
The success of the NIH estimation relies on the accuracy of Eq.
(15). Theoretically speaking, if the inclusions have an ellipsoidal
shape and occupy a sufficiently small volume fraction f, approx-
imation (15) is valid. Indeed, Eshelby (1957) proved that the
stress/strain fields inside an ellipsoidal inclusion embedded in an
infinite matrix and subject to homogeneous stress/strain boundary
conditions at infinity are also homogeneous. For interacting inclu-
sions, the inclusion stress/strain fields are no longer uniform, al-
though (15) is still expected to yield accurate results for a large
range of volume fractions.

2.3. Tensor Y and its relation with the periodic Eshelby tensor

The periodic Eshelby problem can also be addressed, where the
inclusions in the above study are made of the same material as
the matrix (i.e., C' = C™) but are subjected to a uniform eigenstrain
€* = E* inside their domains 2. Different from the classical Eshelby
problems, the strain field inside each inclusion is generally not uni-
form. However, if we average this strain field over each inclusion,
we can still define the periodic Eshelby tensor SP as follows:

(e(x))q =SP : E*, (22)

As strain field € can be computed from €* via [8,12] with relation
(15) becoming exact, this tensor can be determined by

SP = ZP(E)I""(E) . cm, (23)
20

It is clear that if the domain V is sufficiently large compared with
the size of the inclusion, SP should be equal to the classical Es-
helby tensor 5. Nevertheless, there is always a simple connection
between SP and Y:

SP=Y:Cm (24)

This leads to an alternative interpretation of NIH approximation:
the NIH approximation corresponds to an estimation of the mean
strain over the inclusions produced by the periodic Eshelby tensor.
From (24), we find that the tensor Y plays the same role as the
classical Hill tensor, but here in the periodic setting. This "periodic
Hill tensor” provides the average deformation inside the inclusions
due to a constant polarization field.!

On returning to our original problem, combining (74) with (10),
this tensor Y can be written as follows:
o lw__Amtim
2fdm Hm A + 2fAm)
where W and U are fourth-order tensors that depend only on the
geometry.

In the following, the unit cell is assumed to be symmetrical
with respect to three orthogonal planes. Under this condition, the
matrix representations of W and U are given in Kelvin's notation
by:

(25)

25 0 O 0 0 0
0 25 0 0 0 0
0 0 25 0 0 0
WI=10o 0 0 s+ o0 0 (26)
0o 0 o0 0 S3+ 51 0
0o 0 o0 0 0 S14 5
and
S4 S9 S 0 O O
S S5 S 0 0 O
S8 S S 0 0 O
WI=19 0 0 25, 0o o a7
0 0 0 0 25 O
0 0 0 0 0 25
where S; with i =1,2,..,9 are the lattice sums given by
Si= 1P Sus =2 POEL Sus =3 PEEEL
&40 ££0 ££0
i jk=1,2,3, i#j#k#I (28)

These_lattice sums are not independent because of the relation
§22 +§22 +§32 =1, which leads to three relations:

Sivz+Sj+6+See =S L jk=1,2,3, i#j#k#i,  (29)

! The classical Hill tensor, frequently used in micromechanics, is defined as the
product between the compliance tensor (C™)~' and the classical Eshelby tensor 5%
(Hill, 1965)



It implies that only six of these lattice sums are independent and
that not all of the elastic constants are independent, as shown,
for example, by Cohen (2004) in the cubic case. It is worth not-
ing that the symmetry of the effective tensor is the same as that
of tensor 1" and that this tensor is orthotropic, which corresponds
to the symmetry assumptions on the periodic cell. To obtain the
overall elasticity tensor, we need to invert (C™ — C)~! — Y in (21).
These tensors can be inverted through lengthy expressions for a
general distribution with orthotropic symmetry (Luciano and Bar-
bero, 1994). Further, in some special cases (for example, cubic sym-
metries), we can obtain simple analytical expressions, as recalled
thereafter.

3. Closed-form expressions for effective tensors in the case of
inclusions centered on periodic lattices

31. Lattice sum computation and integral approximation

Before obtaining the effective properties, the method for analyt-
ical estimation of the lattice sums S; with i = 1,2, ..,9 is introduced
in the general form

Z ﬁizuf]fﬂH('l). i,j=1,2,3 (30)
7#0
with

n=RE H() =PE&), "7=%~ n=1nl €2
Here, @ and B are non negative integers and R is the inclusion
characteristic length used to generate the dimensionless wave vec-
tors 5 from &. It is noted that the » points form a rectangular lat-
tice in three-dimensional (3D) space with density:
_ ay1axas
T (2mR)*
If H(n) is a decaying function of 7, we can reasonably estimate the
sum

S HO) = p [ E2E HOpdn, (33)
&D

(32)

for a sufficiently remote and large region D where H(x) varies
slowly. As a result, the infinite lattice sum can be estimated by a
finite sum of several leading terms and a continuous integral for
longer wave vectors, for example,

S HO) = Y ) +p [ Hpa .
7#0 [nl<ne e
(34)

The cutoff radius n¢ in (34) determines the number of leading
terms from the series that are retained in the new formula. In
many cases where H(#) depends on the modulus 7 alone, we can
calculate the integral in the right-hand side (RHS) of (34):

p/ H(n)fl?"ﬁf"dn=p/ H(rzmzdnI
e Te

The second integral of the RHS involving the unit sphere surface
[n] =1 can be evaluated analytically in numerous cases. The first
integral can also be computed if the explicit expression of H(n)
is known. For example, the simple cubic distribution of spherical
inclusions studied in the next section corresponds to the following
expression of H(n):

menifds  (35)

nl=1

9[sin(n) — ncos(n)|?
n° '
The associated integrals involving H(») can be computed by

pf H(m)n*dn =9pf](nc) (37)
Ne

H(p) = fe).

p(n) = (36)

where
_m cos2p 1. 1 1 sin2n  cos2n

](n)_g_G_ﬂ_ESl(z")+ﬁ+W_3_7]2_ B
(38)

and Si(n) is the sine integral

N ci /
Si(n) =f SO0y (39)
o N

The above summation method can be extended to the more gen-
eral cases where H() is the function of the modulus |L=1.y| with
L1 being any linear transformation. Indeed, by simply posing

=Ly Hm=H(®) (40)

we can calculate the sum using grid »’ as follows:
L) Lyn))*PH' (')

(Lygm)? + Lyenp)? + (Lagmy )2 Je+P

(1)
n'#0 [

We can keep several leading terms by using the radius . and es-
timating the remaining series with an integral. The integral esti-
mation method introduced previously can be applied as the grid
)’ is obtained from 3 by a homogeneous deformation L~'; thus,
the grid #’ is also uniform. The only difference now is to compute
the integral on the unit sphere surface. Taking the example of an
ellipsoidal inclusion studied in the next section, we have

Hp = fo'), 0= m/x3+m3/x3 +n3/x3 (42)

where x; are dilatation coefficients. The associated surface integral
becomes

( . ()Za( . 28
/ - Xilli : )2(1 1) 7770 i.J not summed
Ii=1 [OGan? + (x2ny)? + (xan3)? e+

(43)

which can yield closed-form solutions in numerous cases.

Finally, we note that if the ratio R/a; — 0Vi= 1,2, 3, the 5 grid
becomes infinitely dense. As a result, the relation (33) must hold
for all domain D, and the infinite lattice sum is equivalent to the
integral over the whole space:

S Hp) =/ﬁf"ﬁfﬁH(n)pdn. (44)
n#0

Although p — oo, the product H(n)p is generally bounded for the
cases examined in the later section. As a result, the integral in RHS
of (44) is well defined. Further, one can also expect to recover an-
alytical results corresponding to the infinite volume domain limit.

3.2. Cubic lattice arrangements

In this subsection, we consider microstructures composed of
identical spheres of radius R arranged in a cubic lattice of period
a (see Fig. 2). We note that the Fourier transform of the indicator
function of a spherical inclusion of radius R located at xc admits
the simple closed form
47 R?

Vs = ——,

i& X,
€= 3

siny—ncosny
—_— n=E&R. (45)

/ eiE"dx = 3Vg
Using the elementary result (45), one can determine I(&) and P(§)
for any distribution of spheres inside the unit cell. For cubic crys-
tal system arrangements (see Fig. 2), To et al. (2013) derived the
following expressions for P(€) (or equivalently H(7)):

P(&) =H) =afem), (46)
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Fig. 1. Grid  and »’ in Fourier space.

Fig. 2. Unit cell of cubic lattice structures (from left to right: simple cubic, body-centered cubic, and face-centered cubic).

with ¢(7) being defined in (36). The coefficient  depends on the
geometry, equal to 1 for simple cubic arrangement. For other ar-
rangements, it can be computed as follows:

+ Body-centered cubic (BCC)

a =1 if ny + ny +n3 is even, otherwise o = 0, (47)
+ Face-centered cubic (FCC)
« = 1if ny,ny, n3 are all even or odd, otherwise « = 0.
(48)

Due to the symmetry of the cell and the definition of P(£) in
(16), the lattice sums present the equalities

$1=5,=53. S4=S55=5. S7=358=350.
whereas Sy, S4, and S; are linked via the property
S4+25 =5;. (49)

As a result, " is a cubic tensor and one can easily compute the
effective tensor C¢ from the results of Appendix A.

+ The effective bulk modulus x. is determined by

f

T %, (50)

Km—Ki  3Km+4jlm

+ The first and the second effective shear modulus ¢ and
are determined by

K®=Knp—

- f(;im_—ﬂu.')‘ Dl f(/at,:sfu) 51)
where the coefficients B and B* are defined as
B = 2(fm — i) (3Km +41m)S1 — 2(3Km + 1m)S7
Hm 3Km + 4l
6(tm — i) [mSa+ 3 (Km + [m)S7
* = . 52
b Hm 3Km + 4ftm (32)

It is worth noting that these expressions are identical in form
to those given by Cohen (2004). Using this latter work, the terms
depending on the geometry and concentration are given by

S1=u.

3 (53)

54=%[1_f—2(A1f+A2f5’3)]v 4

S, =11—5[1—f+ 3(ALf +A2f)], (55)

where A; and A, are coefficients depending on the geometry that
characterize the kind of lattice up to second order. They were com-
puted by Cohen (2004). This shows the very similarity between the
present approach and that of Cohen (2004) despite the difference
in nature. It is clear that the result of Cohen (2004) is easier to use
than ours, because the expressions for Sy, S4 and S; are the same
for any cubic lattice of the same kind. However, as shown subse-
quently, the previously described results and their expressions in
closed forms that are described thereafter can be extended readily
to other geometries of the microstructure.

Eqgs. (50-51) can be further simplified by evaluating the lat-
tice sums Sy, S4, and S; analytically using the method described
in Section 3.1 with grid density p = a?®/873R3. It has been previ-
ously reported that S; can be easily computed from S; and S4 via
relation (49). For BCC and FCC arrangements, due to the fluctua-
tion of « (see Eqs. 47 and 48), H(3) in the integral (34) should be
replaced by its average H(1). Generally, we have

H(n) =afe(n) (56)

where @ = 1(SC), -l,(BCC) and %(FCC). However, we note that the

composite coefficient
= 1

Paf =7

is independent of the microstructure, leading to a unique expres-

sion for the long wave integral

* Bmntdn = >~
pf”‘ Amntdn = —J(no

Assuming € = 27TR/a, the expressions of S; and S, for different cu-
bic systems are finally presented by keeping the first terms of the
lattice sums. The numerical evidence shows that keeping four to
six leading terms produces satisfying results. The terms that are
kept corresponding to the value of 7. are given as follows:

(57)

(58)



fo) S‘ (full sum)
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S, (full sum) =
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01

0.05-"~
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Fig. 3. Comparison between the full lattice sums with resolution —128 < n; < 128
and Eq. (59) for the simple cubic case. At f =0, the lattice sums take the limit
values Sy = 1/3, S4 =1/5, and S; = 1/15.

- Simple cubic system (SC) with 5. = 2¢
S1= %1(26) + f2¢(€) + 49 (V2€) + gtp(ﬁe)uw(k)].

Sy = %}(26) + fI2¢(€) +2¢(V2€) + gw(ﬁe) +2¢(2¢)].
(59)
- BCC with 5. = V12e

S = %j(\/ﬁe) + fl4¢ (V2€) 4+ 2¢(2¢€) + 8¢ (V6e) +4¢ (v/Be)
+8<p(\/ﬁe)+§¢(\/ﬁe)].
Sa= %}(\/ﬁe) + f2¢(V2€) + 29 (2¢€) + 49 (V6e) + 29 (VBe€)

2 (WT0e) + S (/T2e)) (60)
- FCC with 5. = 4e

5 = %}(46)+fl§¢(\/§e)+2w(2€)+4§0(\/§6) +8p(V1le)

+§¢(J56) +2¢(46)),
Sy = %}(46) + f[%w(ﬁe) +2¢(2€) +2¢(v/8¢)
+2 0 (VTTe) + B9 (/T2e) + 20(46). (61)

The maximal relative difference between the analytical expressions
and the full lattice sums is 2% (see Fig. 3). For FCC and BCC, more
leading terms than in the SC case are retained to achieve the high
precision level, due to the fluctuation of the coefficient «. Using
four leading terms for FCC and BCC cases can result in a simpler
expression but a higher maximal error (up to 8%). Even if this error
was found to have a small impact on the effective properties in the
case of thermal conduction, we shall use the accurate expressions
[60,61] in the remaining part of the paper.

As mentioned earlier (see Eq. 44), when the ratio Rfa — 0 and
f— 0, we obtain the limit that is independent of the microstruc-
ture and volume fraction f:

6 1
Si=z2]0) =< (62)
This interesting property can be explained in relation to the Es-
helby tensor for periodic spheres discussed in Section 2.3 (which
becomes equal to the classical Eshelby tensor in the dilute case),
as also observed in Fig. 3.

3.3. Orthorhombic arrangements of spheres

As will be seen thereafter in the numerical examples, the pre-
viously described closed-form solution for the effective properties
of cubic lattices leads to results that are very similar to those of
Cohen (2004). In addition, this earlier solution is expressed by sim-
ple expressions of the effective elasticity tensor. Thus, in this sec-
tion and the following, we show that the solution described in the
previous subsection can be readily extended to other kinds of pe-
riodic cells.

First, the case of an array of spheres with orthorhombic sym-
metry is considered, the center of the spheres being lattice points
of an orthorhombic lattice characterized by ay, ap, as, with a1 #
ay # az # ap. In this case, the effective elasticity tensor is again
given by expression (21). It can be seen that all tensors appearing
in this expression are isotropic except the orthotropic tensor 1" that
is characterized by the symmetry of the lattice. Expressions for all
effective elasticity components are explicit, but cumbersome, as a
3 x 3 matrix needs to be inverted, except for the shear compo-
nents that are listed below:

Cgkj(:l‘l'm_ fl‘l“m .
. Gha — (Sj+5) +agnifn s,
i,jk=1,2,3, i#j#k#i. (63)

Regarding the computation of the lattice sum S;, it is clear that the
continuous integral estimation of the remaining series is identical
to the cubic lattice case, except for the density that is now given
by the general expression (32). This implies that the contribution
of longer wave vectors to the sum does not contribute to the or-
thotropic anisotropy of the material. The related anisotropic terms
are contained in the complementary finite sum, and the number of
independent terms to keep in the finite sum is usually higher than
in the case of the cubic lattice.
The infinite sum in (63) can be computed as follows:

2 )
Si=—J@o)+f ) ifapm).

n<ne
2 .
Sivs = £=(n0) + f 3 i ngep (m),
n<ic
ijk=1,2,3, i#jEk#i (64)

The lattice sums Sy, S5, and Sg contributing to the effective com-
ponents other than C5;,,, ({55, and Cf,;, are given as follows for
completeness:

6 _ .
Sis = g0 + f ) ifap(m). i=1.2.3. (65)

n<ne

The coefficient « is a function of nq, ny, n; with the same meaning
as in [47,48]. It can be translated to the SO, BCO, and FCO cases.

3.4. Orthorhombic arrangements of ellipsoids

For an ellipsoid of principal radii R/, R/ x>, and R[y 3 located
at Xc, we know the elementary result

. : I _n ’ 3
‘/‘; eXdx = 3Vewewxc. Vo = %

N = RE. (66)
Again, the procedure described in Section 3.1 is used to obtain

the analytical solution. Assuming that the ellipsoid is located at
the center of the rectangular cuboid of dimension a; x a, x aj

0=/ xt+n3/x3+n3/x3) "2
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Fig. 4. Comparison between the full lattice sums with resolution —128 <n; < 128
and Eqs. (67,68) for the FCO case. The spheroids and the unit cell have the same
dimension ratio a x @ x 0.5a and R x R x 0.5R. The cutoff radius is »; = 4¢ and
€ =27 R/a. For the sake of clarity, only the sums S,, S4 and S; are presented.

and performing the transformation r)’] = r]1/X1.n’2 =1y/x2 and
1 =13/ X3, the lattice sums can now be evaluated by

/24,2
aw el AUBE

3
Si=s—=TJn)+f
D D RS BT

n'<ne
2

3 n?x?
Siia=—_T; ’/ i A a ’ .
i+3 2772 I+3I(nc)+fn§;[nqzxf+nézxg+ngzxsz (p(n)

3 NEXINEXE
Sie = ——=T; (,’)+ 1 ag( /).
46 = 2z Tvd 1) + 1 ,,,Zd‘;; mEZ+nZxZ +nZx 2 o
i k=123, i#jEk+#£i (67)

The surface integrals on the unit sphere surface T; are defined by

T =f (xin})*dsS
=1 [Oan)? + (zng)? + (x3n3)?]
Ton — (xim})4ds
e /m:l [Oan)? + Oeny)? + (any)?)?
T — (m? Q) *ds
i _./lz;'|=1 [Gan)? + Oany)? + Gang)? P’
ijk=1.23 i£jAk#IL (68)

Regarding the cutoff radius n/ in function of €, it can be set to
the same value as 1. in (59) with € = max (27 R/ x a1, 27R/ x2a5,
2R/ x3a3). It is interesting to note that if xja; = xya; = x3as.
that is, if the ellipsoid and the unit cell have the same aspect ra-
tio, the grid 5’ is a cubic grid and the leading terms kept in the
series are as simple as for the cubic lattice cases (59-61). Fig. 4 is
an example showing that the analytical expression for the FCO ar-
rangement is highly accurate, compared to the full computation of
the lattice sums.

It can be shown that Ty, T,, and T; are expressed as functions of
elliptical integrals (see, e.g., Eshelby, 1957; Mura, 1987). Assuming
that xq < x2 < x3. these integrals read

AT X2 X3 X3

(X3 = xHVxs = xt

A X3 %3 1
;= [—\/x2 -xt —E(9.k)]
X2 -xHxZ-peley = M

Tz =4 - T] - T3 (69)

[F(6.k)—E(®,k)]

where

2}
F(9.k)=/ o dw
0 /1—k2sin®w

6 = arcsin

2]
E6.k) = f 1 — k2 sin® wdw
0

X3 (x2 - x3)

. 70
X3 (x3 - xt) (70)

1-xi/x3 k=

In the general case, there are no available explicit analytical ex-
pressions for the remaining integrals T;, i =4.5,..,9 except for
spheroidal inclusions. Obviously, only T;, i =4,5,6 are necessary,
due to the general relation between S;. It can be shown that each
of these coefficients can be obtained from one simple scalar inte-
gral, which is in any case easier to compute than the full lattice
sum. The related scalar integrals are provided in Appendix C.

For the case of spheroids where the axes of cylindrical sym-
metry are oriented along the x3 axis, we can set ;= x2 =1 and
X3 = x and evaluate analytically T; in spherical coordinates (see
Appendix B). The final results are given as follows:

471 2
yf (v -8)

2
hahe y—’ZwXZ—y). -

T=Ts = e =95+ 7 (2 + )

2 2
Ts = ’;2‘ (r2x2+1) - 3¢2)
2
B =Ty = 6 (07 +2)8 = 3p),
T
o= gsOCOC -9 +y(x* +2). (71)

with ¥y = /x2 -1 and § = arctan y for oblate inclusions (y > 1)
and y = /1-x2and § = tanh™! y for prolate inclusions (x < 1).

4. Closed-form expressions for random distributions of spheres
or ellipsoids

In the previous sections, we considered only the cases of lat-
tice distributions of spheres and ellipsoids. This section is devoted
to random distributions of spheres and ellipsoids. Therefore, the
periodic cell now contains a random distribution of aligned inclu-
sions. To proceed, the ergodic media hypothesis (Torquato, 2001)
is adopted, that is, the ensemble average results, notation (...)ens.
and the volume average results are identical for one sample in
the infinite-volume limit. This assumption guarantees the existence
and uniqueness of the effective tensor C°.

Obviously, the ergodic assumption is not sufficient to estimate
the effective properties. It is necessary to introduce also prob-
abilistic assumptions on the distributions of inclusions to reach
this objective. These assumptions can be based on the introduc-
tion of probability density functions, correlation functions in the
real space, but also on quantities defined in Fourier space. Let
us consider in a first step the notions defined in the real space
that sustain our work. Following Torquato (2001), it is convenient
to introduce the probability density function Py such that Py(ry,
ry, ..)dridr;... represents the probability of finding the center of
inclusion 1 in drq, the center of inclusion 2 in dr,, ... By a conve-
nient partial integration of this probability function, the pair corre-
lation function can be simplified into the radial distribution func-
tion g(ryy) (with ri, = ||ry —rq||) under the assumption of statis-
tical isotropy.

However, our method uses quantities defined in Fourier space
and it is possible to define also ensemble average on functions
defined in Fourier space. So, in a first step, such functions will
be defined. In a second step the link between such ensemble



averages and the radial distribution function g, defined by using
the full probabilistic machinery will be provided.

As a result of the ergodic assumption, from (20), we can find
that the following relation must hold true:

(e*(x))g = ({e*(X))@)ens if V — 00 (72)

Taking the ensemble average of (17) and accounting for (72), we
find that

M (€* (X))@ = (C" —C) ([E4 (YV)ens : C™ 2 (€* (X)),  (73)

Consequently, the final expression of the effective tensor (21) for
random media is slightly modified, Y now being replaced by its
ensemble average (Y)ens. In what follows, we shall examine the
properties of (Y),s given by the expression

(T)ens = Z(P(g»msrm(g)- (74)
££0

Considering the integral over the volume of one particle V), of arbi-
trary shape located at xc and the definition of two functions F (&)
and P(&)

'[/ exdx = F(£).e¥%, P(§) = }'(E)J-'( £) (75)

P

Here, 7 () is the integral on the same volume V) located at the
origin. In the scattering theory, F(&) and P(£) are called form fac-
tors and are equivalent to the definitions I(£) and P(&) for the case
of one particle. For random distribution of particles, P(&) in (14-
74) can be replaced by the ensemble average (P(&))ens. The latter
is linked to the form factor P(£), structure factor S(€), and scatter-
ing intensity Z(£) of the system via the relations

V
(P(§))ens = V"I('s')- I

1/, N
S(€)=N<2i:e'§"“zi:e"5""‘> . (76)

ens

=P(§)S(&),

In (76), we assume that there are N particles of characteristic
dimension R in a cubic cell of dimension a and x; is the lo-
cation of the particle number i in the cell. It is interesting to
note that Z(&) can be obtained experimentally by scattering tech-
niques. Conversely, theoretical results of Z(&) for some ideal sys-
tems are known, for example, those governed by Ornstein-Zernike
(0Z) equation and Percus-Yevick (PY) closure approximation. As
long as Z(£) is known, the infinite lattice sums S; can also be com-
puted. At the infinite volume limit R/a — 0, taking R as the radius
of the sphere having the same volume as V, (ie. Vp =47R?/3),
those sums can be replaced by the integrals

1 _ 1 _
Si= ﬁfnl?l(g)dq, Siya = anf‘l(é)dn-

Siv = g zfn,nfl(é)dn n=RE,
i, jk=1,2,3, i#j#k#I (77)

In the case where the particles are identical spheres of radius R
with isotropic distribution (see Fig. 5a), the associated isotropic
quantities (iso as superscript) Z°(&), P5°(£), and S*°(&) are all
functions of the modulus & (or n). In addition, the structure fac-
tor S¥°(£) is related to the radial distribution function g(r) via the
relation

Sso(g) =1 +3f/

For nonoverlapping spheres gr)=
property holds:

/"" [ncosn —siny]?
0 n°

sinnF T

[g(r) = 1]FdF, = B (78)

0 when 7 < 2, the following

sin(nf)dn =0, Vi=2. (79)
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Fig. 5. Randomly distributed spheres (left) and ellipsoids (right). The distribution
of spheres of radius R is isotropic. The latter is obtained by scaling the former with
ratios 1/, 1/x2, and 1/x3 along directions 1, 2, and 3.

As a result, the integrals S; admit the simple expressions

5,=5=5=0=D ¢ 5500
3 5
e . a-h
S5 =53=5 = T (80)
Substituting (80) back into [50,51,52], we obtain:
f
K¢ =Kmp— 4 3ap
Km—Ki  3Km+8jlm
f
W= p = pm — T 6(kmt2itm)(1=)) ' (81)
Fom—iti — 5ftm Gkm+Aiim)

Eq. (81) shows that, at the infinite volume limit, the effective ma-
terial is isotropic and that its effective elasticity tensor corresponds
to the Hashin-Shtrikman bound (Hashin and Shtrikman, 1963), or
equivalently to the Mori-Tanaka estimation for spherical inclusions
(Mori and Tanaka, 1973). Interestingly, this equivalence has been
noted previously in the issue of heat conduction (To et al., 2013)
and has is now rediscovered in linear elasticity.

It is worth noting that the Mori-Tanaka estimate has been re-
covered along the previous lines using statistical information, in-
cluding the ergodic hypothesis, although this estimate is usually
presented by using different ad hoc assumptions. Indeed, following
Benveniste (1987), such an ad hoc assumption can be expressed as
“if introducing a single inclusion into a homogeneous matrix under
boundary conditions corresponding to an overall strain € results
in an average strain in the inclusion given by € = T.€p, then intro-
ducing a single inclusion into a deformed matrix having an average
strain €y will result in an average strain in the inclusion given by

=T.ey."

Our results can be compared with full results on random distri-
butions of particles. For example, Segurado and Llorca (1987) mod-
eled the behaviour of composites containing randomly distributed
spherical inclusions using finite elements. For low concentrations
of inclusions, their results are very close to the Mori-Tanaka esti-
mates, as predicted previously by our developments. However, for
higher concentrations where the inclusions strongly interact, the
present approach is not sufficiently accurate. In this case, higher-
order correlation functions can be used to address these issues, as
done by Nguyen et al. (2016) for the heat conduction phenomenon.

For anisotropic distributions of identical ellipsoids, there exists
an analytical solution for the special case where the distribution of
inclusions can be obtained from an isotropic distribution by uni-
form dilatation transformation with coefficients 1/yq, 1/x,, and
1/ x5 along the three directions 1, 2, and 3 (see Fig. 5b). In other
words, not only are the spherical inclusions transformed into ellip-
soids of dimensions R/ 1, R/ x>, and R/ 3 but their coordinates are
scaled with the same ratios as well. In doing so, we also obtain a
system containing nonoverlapping ellipsoids with the same volume



Table 1

Ratio of the effective elastic constants Cyyyi/um of a simple cubic array of sphere, vi = vy =
0.3. Comparison between the closed-form solution of the present work (PR), Clausius-Mossotti
(CM)-type solution from Cohen (2004), and solutions based on multiple expansion (ME) from

Kushch (2013).

wiltm  f=0.1 f=03 f=05

PR (a%) ME PR ™ ME PR (€% ME
0 2794 2799 2799 1852 1836 1818 1137 1148 1.048
10 4.097 4101 4.102 5.913 5880 5930 8580 8645 9.646
100 4226 4248 4248 6720 6758 6.887 1094 11453 17.71

fraction f. To respect the definition of the characteristic length R
defined in the beginning of the present subsection, xix2x3 =1 is
assumed. The anisotropic (ani as superscript) and isotropic statisti-
cal quantities associated to two systems are interconnected, say

P ) =P VEIXT+EIG+EIK).

Sani(€) = 5"‘"(\/512/x% +E2/ X3+ Ef/xf).

I(E) =I“°(\/§f/xf +&/03 + Ef/x%)- (82)
Again, by changing the variable, we obtain
o TI * i50 (! ’
S"Wfo 75 dn,
E' = VEUXE+E/x3+E3/x3. W =RE. (83)

Combined with the results for the isotropic case, S; admits the sim-
ple form

T;
Si=H(1—f).

which results again in a closed-form expression of the effective
constants.

(84)

5. Numerical examples and comparisons

To illustrate the method described previously, we first consider
numerical applications in the case of cubic microstructures. The
closed-form solutions derived in this work are used to compute
the effective properties, and these results will be compared with
exact semi-analytical, numerical, and approximate solutions from
the literature including

* Numerical results with NIH approximation (Iwakuma and
Nemat-Nasser, 1983; Nemat-Nasser et al., 1982)

« CM-type approximation in electrostatics, which was applied to
linear elasticity and carefully compared with other types of so-
lutions by Cohen (2004)

+ Exact series expansion of elastic polarizabilities and approxima-
tion up to third-order correlation (To) (Torquato, 1997, 1998)

+ Semi-analytical solution based on periodic singular distribution
(SL) (Sangani and Lu, 1987), using an expansion onto a basis
of periodic functions and projection onto a basis of spherical
harmonics.

+ The multipole expansion (ME) method, which can provide accu-
rate solutions by keeping a high number of terms in the series
(Kushch, 2013).

As an example, we choose a specific composite with the same
Poisson’s ratio in both the matrix and inclusions v; = v, =0.3.
Next, the dimensionless effective coefficient q’m /Mm is computed
at different contrast ratios j¢;/(tm. The results tabulated in Table 2
show that the closed-form solution, which is based on NIH approx-
imation, agrees very well with CM and ME solutions in the range
il ptm = 100 and f = 0.5. At higher contrasts, some discrepancies

Table 2

Comparison between S; results of the present work (present) and those from Table
3 in Iwakuma and Nemat-Nasser (1983) (IN). The unit cell is cubic of dimension a
and the aspect ratio x,: x»: x3 of the spheroids in SO arrangement are 3: 3: 4
(case 1) and 1: 1: 2 (case 2). Note that results presented by Iwakuma and Nemat-
Nasser (1983) are obtained from full lattice sums with resolution —50 < n; < 50.

f 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Case 1
Sy =S, Present 0268 0240 0230 0216 0196 0.171 0.148
IN 0273 0255 0236 0217 0196 0175 0154
S3 Present 0397 0.387 0376 0363 0353 0345 0.340
IN 0392 0380 0369 0359 0351 0343 0337
S4=Ss Present 0172 0.172 0170 0.164 0153 0139 0.123
IN 0170 0171 0168 0.161 0152 0.139 0.124
S Present 0279 0286 0292 0294 0295 0297 0299
IN 0275 0281 0286 0290 0293 0295 0297
Case 2
S1=S; Present 0218 0.196 0174 0.148 0120
IN 0216 0195 0172 0.147 0119
S3 Present 0.514 0.505 0.502 0.502 0508
IN 0.507 0.500 0496 0497 0504
S4=Ss Present 0129 0126 0120 0.107 0.088
IN 0127 0126 0119 0107 0.089
Ss Present 0397 0407 0422 0439 0458
IN 0391 0403 0418 0436 0455

are observed between the approaches. However, as noted in previ-
ous works (Hoang and Bonnet, 2013; Cohen, 2004), both methods
(NH and CM) fail in this range. In this case, only the ME solution
provides an accurate solution (Kushch, 2013).

The first extreme case is related to void inclusions. By making
il tm — 0, the limit of (50-51) yields the following simple ex-
pressions:

K€ 1 f(1=vy)

—_—l——__m 5
Km 1—vn—(1+vp)Ss (85)
ne o f( —vm)
Pt T (¢ gy o gy g (86)
e f(1—vy)

=1- . 87
Jim T=vm = (1= 251 — G —40m)5; (87)

In the other extreme case of rigid inclusions, that is, p;/ptm — oo,
the effective properties can be determined as follows:

ke 1 f(]—Vm)

km T+ vm)Ss’ (88)
e _ f(] — Vm)
= A -5 ()
e f(1—vm)

=1 . 90
Hm + (1 =2v)S1 + (5 =4vy,)S, (90)

In these examples, the Poisson’s ratio of the matrix is fixed at
vy = 0.3. The resulting effective properties are plotted in Fig. 6 for
spherical voids and Fig. 7 for rigid inclusions.
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Fig. 7. Effective shear modulus p®/up for a simple cubic array of rigid spheres. .

All figures show that the results obtained by our closed-form
solution compare well with Cohen's results. For voids, a discrep-
ancy with Sangani and Lu’s results is observed, as with Cohen's
results. However, in this case, Cohen (2004) expressed doubts with
Sangani and Lu’s results. For rigid inclusions, our results coincide
in the range of concentrations up to 0.5 with Cohen's results. Co-
hen compared these results with a few semi-analytical or approx-
imate models, which were found to be accurate in this range of
concentrations of inclusions.

In the case of orthotropic materials, one considers distribu-
tions of ellipsoids located at central positions of a cubic lattice.
Table 2 shows the comparison between our estimation of S;.i=
1..6 and the results obtained by the computation of the full lattice
sums (lwakuma and Nemat-Nasser, 1983) for two examples char-
acterized by yy = x, and the values of x3/x; =4/3 or x3/x1 =2.
This comparison proves that the closed-form expressions obtained
in the previous section accurately reproduce the values of S; com-
puted from the full lattice sum.

Finally, we consider examples concerning orthorhombic and
random arrangements of spheroids. For orthorhombic arrange-
ments, the unit cell has the dimensions a x a x 0.5a and the
spheroids has axes R x R x 0.5R. Regarding the constitutive ma-
terials, the Poisson's ratios of both materials are v; = v;; = 0.3 and
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Fig. 8. Dimensionless effective shear moduli G}, ,/um for FCO, BCO, SO, and ran-
dom arrangements of spheroids. .
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Fig. 9. Dimensionless effective shear moduli Cj, ,/um for FCO, BCO, SO, and ran-
dom arrangements of spheroids.

the Young modulus ratio is E;/E, = 10. Figs. 8 and 9 display the
results of analytical solutions for the shear constant obtained in
this paper. It is noted that all the curves are relatively close at a
small volume fraction (f = 0.15), which can be explained by the
independent behavior of each inclusion. In this range, the dilute
estimation is valid, that is, the effective properties only depend on
the volume fraction f. At higher f, the interaction of the inclusions
is significant and their relative positions in the matrix are not neg-
ligible. Although curves start to deviate from each other, the FCO
curves are still close to the random curves. This observation sug-
gests that the structure of the FCO arrangements and the random
structures proposed previously present some similarities.

6. Concluding remarks

Effective elasticity tensors of two-phase matrix inclusion com-
posite materials have been obtained when the inclusions are
spherical or ellipsoidal and distributed either along the sites of an
orthorhombic crystal system or randomly. The basis of the analysis
is the eigenstrain integral equation and the NIH-type estimation
(Nemat-Nasser et al., 1982). We have shown that this estimation
is related to the use of the “periodic Eshelby tensor” which allows
to recover the mean strain within the inclusions when a constant
eigenstrain is applied over the periodic set of inclusions.

A first validation is provided in the specific case of cubic mate-
rials: all our results fully reproduce those of Cohen (2004), which
were obtained by a perturbation method, in relation to the CM
approximation of electrostatics. We have shown that the expres-
sions of the components of the elasticity tensor reproduce those
of Cohen (2004), in the sense that the lattice sums S; of the NIH
approximation can be obtained using the coefficients obtained by
Cohen's perturbation method.

We have shown that our method can also estimate the or-
thotropic elasticity tensor in the case of arrangements obtained



by parallelelipedic lattice cells of spheres or ellipsoids. All closed-
form solutions are fully extended to the case of cells containing
spheroids. For the case of fully ellipsoidal inclusions, only lattice
sums Sy, S;, S3 can be obtained in a closed form, whereas Sy, Ss,
Sg are provided by simple scalar integrals, which are in any case
easier to compute than full lattice sums. Our results compare well
with those obtained by the full computation of lattice sums as
shown by Iwakuma and Nemat-Nasser (1983).

In the case of a random distribution of spheres, the statisti-
cal connection of the effective tensor to the structure factor is
shown. A closed-form expression is obtained in the infinite volume
limit for an isotropic distribution of spheres, which reproduces the
Mori-Tanaka estimate. Although this approximation is usually ob-
tained by “ad hoc” assumptions, our work shows that this estimate
can be based on precise statistical information, thus extending a
result obtained similarly in the case of conduction through a ran-
dom distribution of spheres (To et al., 2013).

As a final remark, the present method can also be extended
to a more general case where the principal axes of ellipsoids (or
spheroids) do not necessarily coincide with the axes xi, x2, and
x3 of a rectangular unit cell, as considered in this paper. In such
situations, it is sufficient to use the linear transformation L as dis-
cussed in Section 2; that is, the grid 5’ is obtained by rotation and
dilatation of the grid 7. However, in this case, the effective elastic-
ity tensor is no longer orthotropic, and it leads to a larger number
of lattice sums S; to be computed.

Appendix A. Algebraic operations between cubic tensors

Algebraic operations between cubic tensors can be made simple
using the base B = {I,i®i.N} and Table A.3 where I is the fourth-
order identity tensor and i the second-order identity tensor. Tensor
N in this case is equal to

N=e;gej@e1Re1+e:0e,0e20€2+€30€;30€3 €3,
(A1)
in which eq, e,, and e; are the unit vectors along directions 1, 2,

and 3 of the coordinate system. The inversion of cubic tensors is
also simple enough to work with symbolic notations, for exam-
ple,
A .
1®
u+a)Br+2u+a)
1 o
+—I-———N A2
21 22 +a) (A42)

Thus, when combined with (1
in base B as

[Mi@i+2ul+aN]"

0), the tensor )" can be rewritten

Y =Al+Bi®i+CN (A3)
where the coefficients A, B, C are defined by the formulae:
2(Am + m)
A=-——"T"T0 § 4 —S
Mo (Am + 2 4m) b
B= _M 2
Mo (Am + 2 4m)
(Am + Hm) 3(Am + Mm)
C=- A4
Hom (Am + 2 4m) 4 M (Am + 2fAm) ’ (A4)
Table A3
Basic algebraic operations between tensors in base B.
I i®i N
I I i®i N
i®i i®i 3ii i®i
N N i®i N

Only three lattice sums appear, due to the cubic symmetry (49). In
addition, due to (29), these sums are interdependent via the rela-
tion S4 + 257 = S;. As each phase is an isotropic material, the ten-
sors C™ and (C' —C™)~!, etc. in (21) can be expressed in base B.
This evidence leads to the final cubic effective tensor C*

C*=2%i®@i+2uT+a’N (A5)

where the coefficients A¢, ¢, and @® can be used to determine the
three effective elasticity coefficients «¢, u®* by

A+ 218 +af 208 +at
P % u* = % (A6)

The final explicit expressions of «¢ p° and p® are given in
(50) and (51).

Appendix B. Computation of T; coefficients for spheroidal
inclusions

In the spherical coordinate system (r, 8, ¢), the surface integrals
have the following forms:

T =T / sin? ¢sm Osinfdodg
T sin? 6 + x2cos2 6
x?cos? @sinfdAdg
sin?6 + x2cos26
sin* ¢ sin® @ sin@dod¢
T4 = *Ts =/ 32 s
[sin“6 + x2cos26]?
x*cos*8sinfdodgp
[sin?6 + x2cos2 @2’
x%cos? 6 sin® 8 sin’ ¢ sinfdod¢g
[sin®6 + x2cos26]2 '
I / sin 6 sin® ¢ cos? ¢ sin6dH de
' [sin®6 + x2cos20]2
6el0.7). ¢el0.27]. (B.1)

Eliminating ¢ and making variable change t = cos#, the integrals
T; can be reduced to more tractable forms:

A

; A

LH=Tg=

1 2
. (1—t2)de
TI_TZ_H‘/:]—(]—IZ)+X21'2'
1 2,2

_ xotede
TB‘Z”/I = e
37r (1—12)%de
=T = LA =) + 22
xAtdde
Ts = 2”/ (A=) + 22
T7=Ts=7r ' X (l_tz)tzdt

t2)2dt
f1 [a=e2)+ 222 —t2)+)(2t2]2

Finally, the integration leads to the closed-form expressions given
in (71).

(B.2)

Appendix C. Computation of tensors T;, i = 4..6 for fully
ellipsoidal inclusions

For fully ellipsoidal inclusions, coefficients T;,i = 4..6 are given
by the scalar integrals

4 w2
T= % A F(¢)do (1)

3



where F; are the following functions:

f o MA-40)+¢2E+1)Q
4= 7405

cos*(¢)

tan® pF;
P; (¢ +2)-3¢tM

K

F= - o (C.2)
where ; - L"’XIZ;'M‘
3
-1
= — C-3
Q ‘/ 7 (C3)
M =tanh™'(Q) (C4)
for¢ = 1,
1-¢
= [—= C5
Q 7 (C5)
M = arctan(Q) (C.6)
for { < 1, whereas
F= ? cos*(¢) (C7)
E = tan*¢F
2
R=z (C.8)
for¢ =1.
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