Generalised and Quotient Models for Random And/Or Trees and Application to Satisfiability - Archive ouverte HAL
Article Dans Une Revue Algorithmica Année : 2016

Generalised and Quotient Models for Random And/Or Trees and Application to Satisfiability

Résumé

This article is motivated by the following satisfiability question: pick uniformly at random an and/or Boolean expression of length n, built on a set of kn Boolean variables. What is the probability that this expression is satisfiable? asymptotically when n tends to infinity? The model of random Boolean expressions developed in the present paper is the model of Boolean Catalan trees, already extensively studied in the literature for a constant sequence (kn)n≥1. The fundamental breakthrough of this paper is to generalise the previous results for any (reasonable) sequence of integers (kn)n≥1, which enables us, in particular, to solve the above satisfiability question. We also analyse the effect of introducing a natural equivalence relation on the set of Boolean expressions. This new quotient model happens to exhibit a very interesting threshold (or saturation) phenomena at kn=n/lnn.

Dates et versions

hal-01329255 , version 1 (08-06-2016)

Identifiants

Citer

Antoine Genitrini, Cecile Mailler. Generalised and Quotient Models for Random And/Or Trees and Application to Satisfiability. Algorithmica, 2016, 1, pp.1-33. ⟨10.1007/s00453-016-0113-3⟩. ⟨hal-01329255⟩
99 Consultations
0 Téléchargements

Altmetric

Partager

More