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Abstract— Recently, a regularization framework for ill-posed
inverse problems governed by linear partial differential equa-
tions has been proposed. Despite nominal equivalence between
sparse synthesis and sparse analysis regularization in this con-
text, it was argued that the latter is preferable from computational
point of view (especially for huge scale optimization problems aris-
ing in physics-driven settings). However, the synthesis-based opti-
mization benefits from simple, but effective all-zero initialization,
which is not straightforwardly applicable in the analysis case. In
this work we propose a multiscale strategy that aims at exploiting
computational advantages of both regularization approaches.

1 Introduction

Linear partial differential equations (pde) are ubiquitous in
mathematical models of physical laws. Hence, whether in im-
plicit or explicit form, they appear in various signal processing
inverse problems (ranging from, e.g. sound source localiza-
tion to brain imaging). Inspired by impressive results in sparse
signal recovery and compressed sensing [1], several works e.g.
[2, 3, 4, 5, 6] have proposed an explicit use of such physical
models in regularization of some highly ill-posed inverse prob-
lems (baptized “physics-driven” regularization methods).

Generally, a linear pde models the relation among two phys-
ical quantities (x, z) as Ax = z, where the linear operator A
encapsulates the pde with appropriate initial and/or boundary
conditions. Analogously, one can write x = Dz, where D is
a linear operator acting as an “inverse” to A. Particularly, D is
the integral operator encoding the so-called Green’s functions,
i.e. impulse responses of the operator A. One is interested in
inferring the quantity z, which is often characterized by a small
number of free parameters (representing, for instance, domi-
nant sources of brain activity in an EEG application). On the
other hand, we are only given a few measurements y of the
quantity x (e.g. voltage measurements at the surface of the
head). The measurements are, therefore, acquired by apply-
ing a subsampling operator M to the signal x. This problem is
severely ill-posed, and one way of addressing it is by asking for
an estimate ẑ (analogously, Ax̂) having the lowest complexity,
i.e. the fewest degrees of freedom possible.

Analytical solutions of pdes are available only in certain re-
stricted regimes. In other cases, one approaches the problem
numerically and discretizes the involved quantities and opera-
tors (A → A ∈ Rn×n, x → x ∈ Rn, D → D ∈ Rn×n,
z → z ∈ Rn, M → M ∈ Rm×n, y → y ∈ Rm). It should
be clear that D = A−1, which is identical to computing the
response of a linear system defined by A for an impulse placed
at every point of a discrete n-dimensional domain.
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Low complexity can be promoted through sparsity [1] of z
(minimizing ‖z‖0) or cosparsity [7] of x (minimizing ‖Ax‖0).
A common relaxation to these problems is the constrained `1
norm minimization (a.k.a. basis pursuit), either in the sparse
analysis

minimize
x

‖Ax‖1 subject to Mx = y, (1)

or sparse synthesis flavor

minimize
z

‖z‖1 subject to MDz = y. (2)

The pde-encoding matrix A thus represents the analysis oper-
ator, while the row-reduced Green’s function-encoding matrix
MD represents the (synthesis) dictionary.

2 The Chambolle-Pock algorithm
A popular method for solving large scale nonsmooth problems
such as (1) and (2) is the so-called Chambolle-Pock or precon-
ditioned ADMM algorithm [8]. It is a primal-dual approach
based on the saddle point interpretation of the original con-
strained problem. Iteratively solving intermediate primal and
dual problems avoids matrix inversion, hence its per-iteration
cost is dominated by the cost of evaluating matrix-vector prod-
ucts and proximal operators. To make the latter efficient, one
needs to appropriately customize the saddle-point problem to
leverage all available structures.

Particularly, in the analysis case, we exploit the fact that M is
a row-reduced identity matrix. This allows for cheap projection
to a set Θ = {x | Mx = y}, leading to the following saddle
point formulation:

minimize
x

maximize
λ

〈Ax,λ〉+ χΘ (x)− `∗1(λ), (3)

where χΘ is the indicator function of the set Θ and `∗1 is the
convex conjugate [9, 11] of the `1 norm function (i.e. an indi-
cator function of the `∞ ball). In the synthesis case, we exploit
the separability of the ‖z‖1 objective, which yields the standard
Lagrangian problem:

minimize
z

maximize
λ

〈MDz− y,λ〉+ `1(z). (4)

In both cases, λ represents the corresponding dual variable.
The Chambolle-Pock algorithm essentially evaluates two

proximal operators per iteration, each assigned to primal and
dual variable, respectively. For the presented problems, the al-
gorithm is actually (asymptotically) first-order optimal, since
it obtains O(1/k) convergence rate1 [8, 10] when all penalties
are non-smooth, but structured [11]. More precisely, decrease
of the primal-dual gap is proportional to ‖A‖22/k, in the analy-
sis, and to ‖MD‖22/k, in the synthesis case (‖ · ‖2 denotes the
induced 2-norm of a matrix).

1Where k denotes the iteration count.



3 Computational differences
Assuming that the regularization indeed yields well-posed
problems, solving (1) or (2) is equivalent, in the sense that using
the solution of one problem, we can easily recover the solution
of another (since Ax = z). However, as demonstrated in [12],
the two optimization problems significantly differ from com-
putational point of view. In fact, if the applied discretization
is locally supported (which is often the case with, e.g., finite
difference or finite element discretization methods), the anal-
ysis operator A is extremely sparse (with O(n) nonzero en-
tries), while the dictionary MD is most often a dense matrix
(O(mn)). But the differences do not end there: as widely rec-
ognized [13], physical problems are often unstable, since small
changes in z can induce large fluctuations of x. In line with
that, discretization usually leads to increasingly ill-conditioned
systems: the condition number κ = σmax/σmin of A (eq. D)
grows fast with n. However, one can often factorize the anal-
ysis operator (with abuse of notation) as τA, where the scale
factor τ depends only on the discretization stepsize and the en-
tries of A remain constant (this will be validated on the actual
example in the following section). Notice that, in the basis pur-
suit problem (1), the scale τ does not affect the solution, and
can be neglected. Now, the growth of κ is due to decrease of
the smallest singular value of A (i.e. increase of the largest sin-
gular value of D = A−1), hence σmax(A) = ‖A‖2 is stable.

The consequence for the primal-dual algorithm discussed
previously, is that (at worst) the synthesis approach will require
orders of magnitude more iterations to converge, in addition to
high computational cost per iteration. Given these arguments,
one may conclude that it should be completely avoided in the
physics-driven context. However, it has an important advantage
over the analysis-based optimization: since the expected solu-
tion is sparse, a simple all-zero initial estimate is already close
to the optimal point. In order to exploit this feature, we propose
a simple scheme: i) apply crude (low-resolution) discretization,
and solve the problem (4) to obtain the crude estimate x̃ = Dz̃;
ii) interpolate x̃ to a target high-resolution discretization and
use it as an initial point x̂(0) for the problem (3).

4 An example: 1D Laplacian
We will demonstrate the idea on a simple one-dimensional
problem. Assume that on a domain r ∈ [0, φ], a physical pro-
cess is modeled as

d2x(r)

dr2
= z(r), (5)

with x(0) = x(φ) = 0 (e.g. modeling a potential distribution
of a grounded thin rod, with sparse “charges” z(r)).

By applying the second order finite difference discretization
to this problem, we end up with a well-known symmetric tridi-
agonal Toeplitz matrix A (i.e. 1D discrete Laplacian), with a
“stencil” defined as τ [−1, 2, −1] (henceforth, we neglect τ ).
This simple matrix allows for fast computation of A−1z using
the Thomas algorithm [14]. In addition, it admits simple an-
alytical expressions for extremal singular values [15], namely
σmax = 2 − 2 cos( nπ

n+1 ), and σmin = 2 − 2 cos( π
n+1 ). The

ill-conditioning with regards to the size n is obvious, but the
true value of ‖MD‖2 is somewhat lower than 1/σmin, since
it also depends on the number of measurements m and the re-
alization of the presumed random sampling. In general, one
expects ‖MD‖2 → 1/σmin as m→ n.

Figure 1: “Objective” := ‖s‖1 + ‖r‖22, where s is a sparse estimate
(e.g. Ax) and r is a residual vector (e.g. Mx− y).

To verify our claims, we simulated the problem of size
n = 103, with the size of the support set being ‖z‖0 = 10 (cho-
sen uniformly at random from the set [1, n], with coefficients
iid distributed asN (0, 1)). The measurement vector y contains
(selected uniformly at random) m = 250 samples of the signal
x = A−1z. The iteration threshold is set to kmax = 5× 104.

We first solve both problems (1) and (2) (using the appro-
priate versions of the Chambolle-Pock algorithm), by generat-
ing the initial points x̂(0) and ẑ(0) randomly (iid sampled from
N (0, 1)), and then re-running both versions with all-zero ini-
tialization. Objective function decrease graphs in Figure 1 con-
firm our findings: when both algorithms are randomly initial-
ized, the analysis one exhibits considerably faster convergence
(moreover, the synthesis version does not reach the ground truth
value). However, when the synthesis algorithm is initialized
with an all-zero vector, it converges rapidly, outperforming the
analysis approach in both cases (for which, interestingly, the
two initializations yield the same convergence curve).

Unfortunately, in practice we are rarely capable of efficiently
applying the synthesis approach, since cheap computation of
A−1z is possible only in specific cases. Otherwise, MD needs
to be explicitly computed and stored, leading to memory bot-
tlenecks and high per-iteration cost. To alleviate this issue, we
exploit the aforementioned multiscale strategy. First, the syn-
thesis version is appropriately initialized (with an all-zero vec-
tor) and solved on a crude, nlow = 500 grid. Then its spline-
interpolated (cf. [15]) estimate is used to initialize the full reso-
lution analysis-based solver. The “analysis (multiscale)” graph
presented in Figure 1 verifies that this scheme is indeed very ef-
ficient, in this case converging the fastest among all considered
algorithms and initializations.

5 Conclusion
We have presented a simple, yet effective acceleration of
the analysis-based optimization, in the physics-driven set-
ting. Leveraging the synthesis-based initialization enables or-
ders of magnitude faster convergence compared to the naive
case. Even though only a simple 1D Laplacian case was dis-
cussed and justified, we feel that the same methodology holds
in more involved scenarios, comprising different multidimen-
sional pdes with complicated boundary conditions.
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