
HAL Id: hal-01329024
https://hal.science/hal-01329024

Submitted on 7 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards High-performance Robot Plans with Grounded
Action Models: Integrating Learning Mechanisms into

Robot Control Languages
Alexandra Kirsch

To cite this version:
Alexandra Kirsch. Towards High-performance Robot Plans with Grounded Action Models: Integrat-
ing Learning Mechanisms into Robot Control Languages. International Conference on Automated
Planning & Scheduling (ICAPS), Jun 2005, Monterey, CA, United States. pp.47-49. �hal-01329024�

https://hal.science/hal-01329024
https://hal.archives-ouvertes.fr


Towards High-performance Robot Plans with Grounded Action Models:
Integrating Learning Mechanisms into Robot Control Languages

Alexandra Kirsch

Abstract

For planning in the domain of autonomous robots, abstraction
of state and actions is indispensable. This abstraction how-
ever comes at the cost of suboptimal execution, as relevant
information is ignored. A solution is to maintain abstractions
for planning, but to fill in precise information on the level of
execution. To do so, the control program needs models of its
own behavior, which could be learned by the robot automat-
ically. In my dissertation I develop a robot control and plan
language, which provides mechanisms for the representation
of state variables, goals and actions, and integrates learning
into the language.

Motivation
A key challenge for the next generation of autonomous
robots is the reliable and efficient accomplishment of pro-
longed, complex, and dynamically changing tasks in the real
world.

One of the most promising approaches to realizing these
capabilities is the plan-based approach to robot control. In
the plan-based approach, robots produce control actions by
generating, maintaining, and executing plans that are tai-
lored for the robots’ respective tasks. Plans are robot control
programs that a robot can not only execute but also reason
about and manipulate. Thus a plan-based controller is able
to manage and adapt the robot’s intended course of action —
the plan — while executing it and can thereby better achieve
complex and changing goals. The use of plans enables these
robots to flexibly interleave complex and interacting tasks,
exploit opportunities, quickly plan their courses of action,
and, if necessary, revise their intended activities.

Making plan-based controllers effective requires pro-
grammers to abstract away from details of the physical
world. In order to reduce the size of the state space, the
robot’s belief state is described in terms of abstract situa-
tions and events. Similarly actions are described as discrete,
instantanious events. As an example let us consider an au-
tonomous household robot. A situation can be described as
the robot being “near the door”. When someone wants to
enter the room the robot should perform the action “clear
the door”. A description like this totally disregards the ac-
tual position of the robot, the actual distance to the door and
the precise position to where the robot should go in order to

Figure 1: Realistic simulation for a household robot.

clear the door. These are the kinds of abstraction that make
automatic planning feasible.

However, abstracting away from the low-level state de-
scription often yields suboptimal behavior. In our example
where the robot is blocking the door, it might move away
from the door so that it can be opened, but it might still be
in the way of the person entering the room. Or the robot
might have been standing near the door, because it was stir-
ring the soup on the hearth. If it moves away to make room
for someone to enter, the soup might be burning. In this
situation, the robot should have looked for an alternative po-
sition that still allowed it to reach the hearth. The problem
here is that the action “clear door” deliberately ignores the
robot’s precise start and goal positions. For the planner, this
is fine, since the actions should be kept simple. But when
it comes to executing the plan, the robot should consider its
current situation, goals and possible outcomes of its action.

In my research I develop mechanisms that allow the pro-
grammer to keep a high degree of abstraction for planning.
Only during the execution of the abstract plans, the low-level
details are taken into account and the plan steps are opti-
mized with respect to the current context. To perform an
action in a certain situation the control program needs infor-
mation about (1) why the action is to be performed, (2) other
goals that might interfere, and (3) the behavior of the proce-
dures used for achieving the action.

The information about the current program state can be



provided by a declarative structure of the control program
making concepts such as goals, procedures and belief state
explicit. Knowledge about the interference of goals or the
behaviour of routines is provided by models. In the case of
interfering goals the models might be provided by the pro-
grammer. But it would be a hard job to predict the behavior
of every available control routine in every conceivable situa-
tion. Here automatic learning techniques are indispensable.

In this framework an action in a plan doesn’t necessarily
correspond to a certain control routine. In many cases, there
are several routines, the performance of each varying in dif-
ferent contexts. The choice of which routine to call in the
given situation is based on models. Although it is possible
to program all these routines by hand, program development
could be advanced by learning routines automatically.

Unfortunately, the performance of learned routines of-
ten drags substantially behind those of programmed ones,
at least if the control tasks are complex, interact, and are
dynamically changing. In our opinion this is not due to a
poor performance of learning algorithms, but to the insuffi-
cient integration of learning into control languages. With
a synthesis of learning and programming, parts adequate
for learning need not be programmed explicitly, while other
parts can be implemented manually. In order to get a smooth
transition between the two worlds, the learning process must
take place inside the controller. This means that the robot
has to acquire training experiences, compute a suitable fea-
ture language representation, execute the learning process
and integrate the result into the control program.

Contributions
The aim of my dissertation is the development of an exten-
sion of a robot control and plan language, which provides
mechanisms for
• modelling interaction with the physical environment;
• the representation, inference and execution of abstract

modalities like state variables, goals and actions;
• the smooth interaction of programming and learning.

For the first point I develop representations that provide
the program with information about the physical meaning of
state variables. Inference mechanisms can use this informa-
tion for example to generate abstract feature languages that
are needed for automatic learning.

An explicit representation of state variables, goals and ac-
tions provides knowledge about the execution state of the
program. Thus when executing an action, the program can
find out why this action is to be performed and use this in-
formation in choosing appropriate parameterizations.

In order to integrate learning into a programming lan-
guage, we need an explicit and declarative representation of
learning problems, as well as mechanisms for executing the
learning steps and embedding the resulting procedure seam-
lessly into the code.

For the empirical evaluation of the language I develop, we
have two testbeds. One is a simulated household robot that
has to perform sophisticated tasks in a kitchen (figure 1).
The other one is our autonomous robot soccer team, where
real robots have to be controlled in highly dynamic situa-
tions.

Realization
The concepts for declaratively describing the physical
world, for representing beliefs, goals and procedures, and
the learning mechanisms are implemented as an extension
to RPL, which is a plan language implemented as LISP
macros.

Interaction with the physical world
The representation of the robot’s belief is implemented by
state variables, which don’t only contain the robot’s current
belief about the world, but includes models about the phys-
ical meaning of each state variable. So, when specifying
a state variable, we give the unit of measurement and the
physical dimension of each value.

Changes in the values of physical quantities are propa-
gated by fluents, variables that vary over time. Using fluents,
the robot can wait for events and react accordingly.

For a more high-level description of the robot state we
have the concept ofderived state variables, which are a
composition of other state variables. In the robot soccer en-
vironment, such a derived state variable could be the robot’s
current distance to the ball.

Goals, Actions and State
The robot control program uses explicit representations of
the robot’s state, its goals and the procedures for fulfilling
the goals (figure 2).

Goals

State Variables Procedures

change

triggerfulfill
co

ns
tra

in

Figure 2: Interconnections between state variables, goals
and procedures. The drawn through arrows denote mech-
anisms that are explicitly represented in the language. The
dashed lines show interactions that are not mirrored in lan-
guage constructs.

A goal class is defined as a restriction over a state vari-
able. Such a state variable is calledcontrollable. For a goal
class the programmer must also specify a procedure to ful-
fill the goal. A goal can beachieved, where the adequate
control procedure is invoked in order to fulfill some success
criterion, ormaintained, where the success criterion is con-
stantly checked and if required, restored.

For a goal class the programmer has to state which proce-
dure is to reach the goal. In many cases there are several pos-
sible routines with different characteristics in different situ-
ations. If we know models of these routines, we can choose
the best according to the circumstances. For this we intro-
duce the conceptcontrol task. The control task can choose
between differentcontrol routines, given the current belief
and models of the control routines. A control routine can be



Goal Routine Control Task Low-Level Routine

Goal

Figure 3: Calling hierarchy of goals and procedures.

either agoal routine, which is the only kind of procedure that
can set new goals, or alow-level-routine, which controls the
robot directly by giving commands to the robot architecture
(figure 3).

Integrating Learning into Robot Control
Considering the current state-of-the-art, developing robotic
agents that learn autonomously is rather an opaque art
than an engineering exercise. One of the main reasons
is that modern robot control languages do neither en-
force nor strongly support the rigorous design of learning
mechanisms. With the language ROLL (formerly called
RPLLEARN ) (Beetz, Kirsch, & M̈uller 2004), we attempt to
improve this situation by extending a robot control language
with constructs for specifying experiences, learning prob-
lems, exploration strategies, etc. Using these constructs,
learning problems can be represented explicitly and trans-
parently and become executable.

Agent Program

E
nv

iro
nm

en
t

Percept

Performance
Element

Control
Signals

Critic

Learning
Element

Problem
Generator

da
ta

ba
se

of
ex

pe
rie

nc
es

le
ar

ni
ng

sy
st

em
s

Figure 4: Learning agent after (Russell & Norvig 1995).

Figure 4 shows the parts of a learning agent. Every aspect
of a learning problem is represented explicitly within ROLL.

Theperformance elementrealizes the mapping from per-
cepts into the actions that should be performed next. The
control procedures therein might not yet be executable or
optimized. These are the procedures we want to learn.

The critic is best thought of as a learning task specific
abstract sensor that transforms raw sensor data into infor-
mation relevant for the learning element. To do so the critic
monitors the collection of experiences and abstracts them
into a feature representation that facilitates learning.

The learning elementuses experiences made by the robot
in order to learn the routine for the given control task.

Theproblem generatorgenerates a control routine that is

executed by the performance element in order to gather use-
ful experiences for a given learning problem. The problems
are generated according to a probability distribution as given
in the learning problem specification.

is called with an experience class and returns a control
routine that, when executed, will generate an experience of
the respective class. The new parameterizations are gener-
ated as specified in the distribution of parameterizations of
the experience class.

The language constructs for learning described here have
been applied to reconstruct large parts of the control pro-
gram of our soccer robots (Beetzet al. 2003).

Progress
In the current state, mechanisms for the representation of
physical knowledge inside the state variables are imple-
mented. Also goals, procedures and state variables are rep-
resented explicitly. The mechanisms shown in figure 2 are
now reflected in programming constructs.

A first version of the language ROLL has been imple-
mented independently of the other model-based concepts.
We applied this language to several learning problems in the
context of robot soccer. The constructs were also used by
students in a practical course. We are integrating a revised
version of the learning constructs into the model-based lan-
guage context. For this purpose we store experiences in a
database, so that data mining techniques for data cleaning
can be applied easily to the training examples.

We used an earlier implementation (Müller, Kirsch, &
Beetz 2004) of the language for implementing the control
program of our soccer robots for the 2004 world champi-
onship in Lisbon. Also, learned routines for navigations
tasks were included, whose performance reached the level
of programmed ones (Kirsch, Schweitzer, & Beetz 2005).

A more recent version was employed for controlling the
simulated kitchen robot. In this context we haven’t per-
formed any learning yet.

References
Beetz, M.; Stulp, F.; Kirsch, A.; M̈uller, A.; and Buck, S.
2003. Autonomous robot controllers capable of acquiring
repertoires of complex skills. InRoboCup International
Symposium 2003, Padova.
Beetz, M.; Kirsch, A.; and M̈uller, A. 2004. RPL-LEARN:
Extending an autonomous robot control language to per-
form experience-based learning. In3rd International Joint
Conference on Autonomous Agents & Multi Agent Systems
(AAMAS).
Kirsch, A.; Schweitzer, M.; and Beetz, M. 2005. Making
robot learning controllable: A case study in robot naviga-
tion. submitted to Nineteenth International Joint Confer-
ence on Artificial Intelligence.
Müller, A.; Kirsch, A.; and Beetz, M. 2004. Object-
oriented model-based extensions of robot control lan-
guages. In27th German Conference on Artificial Intelli-
gence.
Russell, S., and Norvig, P. 1995.Artificial Intelligence: A
Modern Approach. Englewood Cliffs, NJ: Prentice-Hall.


