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Ultrasound-modulated optical tomography (UOT) is a technique that images optical contrast deep
inside scattering media. Heterodyne holography is a promising tool able to detect the UOT tagged
photons with high efficiency. In this work, we describe theoretically the detection of the tagged
photon in heterodyne holography based UOT, show how to filter the untagged photon discuss, and
discuss the effect of speckle decorrelation. We show that optimal detection sensitivity can obtain, if
the frame exposure time is of the order of the decorrelation time.
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Light scattering prevents optical imaging from achiev-
ing high resolution inside scattering media deeper than
about 1 mm in tissue. Ultrasound-modulated optical to-
mography (UOT)[1, 2] also called acousto-optic imaging
[3], has been developed to overcome this limit by combin-
ing ultrasonically defined spatial resolution and optical
contrast (i.e. sensitivity to the bulk optical properties
like absorption). One of the purpose of the technique is
to use the optical contrast to detect breast tumors that
cannot be seen with ultrasound, because the ultrasonic
contrast is too low. In an UOT experiment, the light
scattered through a diffusing sample crosses an ultrasonic
beam, and, due to the acousto-optic effect, undergoes a
frequency shift equal to the ultrasonic frequency [4, 5].
By detecting the frequency-shifted photons, called tagged
photons, and by plotting their weight as a function of the
ultrasonic beam geometry, 2D or 3D images of the sample
can then be obtained with ultrasonic spatial resolution.

Various methods have been developed to detect the
very low tagged photons signal out of a large background
of untagged photons [2, 3]. First experiments use single-
pixel detector and detection of the tagged photon AC
modulation at the ultrasonic frequency [4, 6, 7]. Since
each speckle grain oscillates with a different phase, the
single pixel method detects, with a good efficiency, no
more than one speckle grain. This severely limits the de-
tection etendue (defined as the product of the detection
area and the acceptance solid angle). To increase the de-
tection etendue without reducing the modulation depth,
three types of methods have been developed. The first
type relies on incoherent detection with a narrow spec-
tral filter (∼MHz) that filter out the untagged light. A
large-area single-pixel detector can be used. Examples
include Fabry-Perot interferometers [8–10] and spectral-
hole burning [11–13] based methods. These techniques
require bulky and expensive equipment. The second and
third types of method use interferences and are thus sen-
sitive to the signal phase decorrelation due to the living
tissue inner motions, and to the corresponding Doppler
broadening. For breast, this broadening is 1.5 kHz [14].
The second method is based on a photorefractive crystal,
which records the volume hologram of the sample scat-

tered field. This hologram can be then used to generate
a diffracted field able to interfere with the scattered field
on a large area single-pixel detector [15–18]. The method
has a large optical etendue (∼ 108 speckle), but is some-
what sensitive to decorrelation, since the response time of
the crystal is usually much longer than the speckle corre-
lation. Promising results are expected with Sn2P2S6:Te
and Nd:YVO4 crystals, because of their short response
times [19, 20].

The third type of method uses a pixel array, i.e., a
camera, to detect the UOT tagged photons [21–24]. The
optical etendue (∼ 105 to 106 speckle) is then related
to the number of pixels of the camera. The camera
method has been improved by adapting the heterodyne
holography technique [25] to the tagged photon detec-
tion [26]. By tuning the LO beam frequency near the
ultrasonic sideband, and by using a properly adjusted
spatial filter, the tagged photons were detected selec-
tively. Moreover, optimal noise detection was obtained,
since shot noise is the dominant noise in heterodyne
holography [27–29]. The reference [26] experiment was
nevertheless performed with a phantom sample, whose
decorrelation is low, and it is generally considered that
the heterodyne holography UOT method cannot be used
with a living sample, whose speckle decorrelation time
τc is shorter than the time needed to record four cam-
era frames (where τc = 0.1 ms for the light scattered ”in
vivo” through a woman’s breast [14]). Resink et al. [3]
wrote, for example, ”all frames of the one to four phases
[i.e. the four frames of the camera] should be taken within
the speckle decorrelation time”.

In this work, we analyzed theoretically the heterodyne
holography UOT detection scheme, and we calculated
how untagged photons, speckle noise, shot noise, decorre-
lation and etendue, affect the UOT signal. By adjusting
the calculation parameter, we got results very similar to
the ones of [26]. By comparing results obtained with and
without decorrelation, we showed that the Resink et al.
remark is not valid, and that heterodyne holography re-
mains, with decorrelation, an optimal detection scheme
of the tagged photons. Note that this point was already
demonstrated for the detection of the untagged photon
in experiments done without ultrasound [30–35].

To introduce our theoretical discussion, let us consider
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FIG. 1. Typical UOT setup: BS1, BS2: beam splitter; M:
mirror; AOM1,AOM2: acousto optic modulator; PZT: piezo-
electric transducer that generates the ultrasonic beam US;
a: absorber embedded in the diffusing sample; A: rectangu-
lar aperture; L: lens of focal d; C: camera; ELO, ET , EU : LO,
tagged and untagged fields.

a typical heterodyne holographic UOT setup (Fig. 1). A
laser of frequency ωL is split by the beam splitter BS1
into a signal beam and a local oscillator (LO) beam. The
signal beam travels trough the diffusing sample S and is
scattered by it. The sample is explored by an ultrasonic
beam US of frequency ωUS . The light transmitted by the
sample exhibit to components. The first component at
ωT = ωL + ωUS is weak (∼ 10−2 to 10−4 in power), and
corresponds to the tagged photons that have interacted
with the ultrasonic (US) beam. The second component
at ωU = ωL is the main one (≃ 100% in power). It cor-
responds to untagged photons which have not interacted
with US.
A rectangular aperture A, located off axis near the

sample, control the size and location of the zone of the
sample where of the tagged and untagged fields ET and
ET are detected. The ET and ET fields are mixed with the
LO field ELO by the beam splitter BS2, and the camera C
records a sequence of M frames Im (with m = 0...M −1)
corresponding to the interference pattern: ET + EU +
ELO, Im being recorded at time tm = m∆t, where ∆t =
2πm/ωC is the pitch in time, and ωC is the camera frame
frequency. The hologram HC of the aperture A (that
is back illuminated by ET and EU ) is calculated, in the
camera plane C, by combining frames Im. The hologram
HA, in the aperture plane A, is then calculated from
HC . The signal of interest (tagged or untagged photon)
is calculated from HA.
To analyze theoretically the Fig.1 experiment, let us

define, in plane A and C, the untagged, tagged and LO
fields and their respective complex amplitudes, which are
slow varying with time t:

EA,U (X,Y, t) = EA,U (X,Y, t) ejωLt + c.c. (1)

EA,T (X,Y, t) = EA,T (X,Y, t) ej(ωL+ωUS)t + c.c.

EC,U (x, y, t) = EC,U (x, y, t) e
jωLt + c.c.

EC,T (x, y, t) = EC,T (x, y, t) e
j(ωL+ωUS)t + c.c.

EC,LO(x, y, t) = ELO ejωLOt + c.c.

where c.c. is the complex conjugate. Here, X,Y are the
coordinates in plane A, and x, y in plane C. To simplify
theory, we have considered here that ELO do not de-
pend on x, y and t. In plane A, the tagged and untagged
photon fields are fully developed speckle. The complex
fields EA,T/U (X,Y, tm) are thus random Gaussian com-
plex quantities uncorrelated from one pixel X,Y to any
other X ′, Y ′. The random amplitudes EA,T/U (X,Y, tm)
do not depend on tm without decorrelation, and are un-
correlated from one frame (i.e. m) to the next (i.e. m+1)
with decorrelation.
A lens L, which is located near the camera, and whose

focal plane is close to plane A, collects the fields. Because
of L, the tagged and untagged fields in planes C and A
are related by a Fourier transform

EA,U/T (X,Y ) = ẼC,U/T (kx, ky) = FFT(EC,U/T (x, y))

where (X,Y ) = (kx, ky)×|CA|/k with k = 2π/λ. To sim-
plify calculations, the discrete Fourier transform (FFT) is
made within a calculation grid that fits with the camera
pixels in plane C. The pitch ∆x of the discrete coordi-
nates x, y is thus equal to the size of the pixel of the
camera. Because of the FFT, the pitch ∆X in plane A
is

∆X = 2π|CA| /(Nk∆x) (2)

where N is the number of pixels of the camera (N =
1024 typically). The detection etendue is thus G =
SASD/|CA|2 = N2λ2, where SA = |N∆X |2 and SC =
|N∆y|2 are the areas of the calculation grid in plane A
and C. The number of modes or speckle grains that can
be detected is thus equal to the number of pixels of the
camera N2.
The frame signal Im correspond to the sum of the

tagged, untagged and LO photons. To detect the tagged
photons, ωLO is made close to the tagged photon fre-
quency ωL + ωUS . The LO and the tagged photons thus
interfere (and are summed in fields), while the untagged
photons do not interfere (and are summed in intensities).
We have thus:

Im(x, y) = |EC,T (x, y, tm) + cmELO|2 (3)

+ |EC,U (x, y, tm)|2

where c = ej(ωLO−ωUS−ωL)∆t is the LO versus tagged
photon shift of phase. On the other hand, to detect the
untagged photons, ωLO is close to ωL, and Im is given by
an equation similar to Eq. 3, where the indexes U and
T are exchanged, and where c = ej(ωLO−ωL)∆t. Because
of the random nature of light emission and camera photo
conversion, the frame signal Im is affected by shot noise
yielding I ′m:

I ′m(x, y) = Im(x, y) + s(x, y,m)
√

Im(x, y) ) (4)

where the term s
√
Im accounts for shot noise. Here, Im

must be expressed in photo electron Units per pixel and
per frame, while s is a real Gaussian random variable of
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FIG. 2. Tagged intensity images |HA(X,Y )|2 (a,b) and
curves 〈|HA(X)|2〉 (c,d) obtained by calculation (a,c) and
from ref.[26] experiment (b,d). The images |HA(X,Y )|2 (a,b)
are displayed in an arbitrary logarithmic scale. The curves
〈|HA(X)|2〉 (c,d) are normalized with respect to the back-
ground.

variance 〈s2〉 = 1 uncorrelated with pixels (i.e. X,Y )
and with frames (i.e. m).

The hologramHC is then calculated from I ′m. Without
decorrelation, four phase detection of the tagged photons

is made. We have thus: HC =
∑M

m=0 j
mIm (where M

frames is a multiple of four) and ωLO = ωL+ωUS+ωC/4
yielding c = j in Eq. 3. With decorrelation, two phase
detection with two frames is made: HC = I0 − I1, and
ωLO = ωL + ωUS + ωC/2 yielding c = −1. In HC , the
holographic term of interest: EC,TE

∗

LO (where ∗ is the
complex conjugate operator), is proportional to the field
EC,T . Because of L, the hologramsHA and HC in planes
A and C are related by a Fourier transform

HA(X,Y ) = H̃C(kx, ky) = FFT ( HC(x, y) ) (5)

We have calculated, without decorrelation, the tagged
photon hologram HA for M = 12 frames (like in [26]).
The calculation is made with |ELO|2 = 104, 〈|EA,T |2〉 =
1.33 and 〈|EA,U |2〉 = 3 × 103 photo electron per frame
and per pixel, where 〈 〉 is the average over X and Y
within the aperture. Note that tagged and untagged en-
ergies (

∑

pixels |E|2) are the same in planes A and C, be-
cause Eq.2 conserves energy. The coordinates of the up-
per left and bottom right aperture corners were (125, 50)
and (300, 974).

We have displayed in Fig. 2 the arbitrary logarith-
mic scale intensity image |HA(X,Y )|2 obtained by cal-
culation (a), and in experiment (b) [26]. Note that the
calculation parameters were chosen here to fit with [26].
To further compare our calculation with [26], we have

FIG. 3. Curves 〈|HA(X)|2〉 calculated without (a) and with
decorrelation (b) by switching on and off the tagged and un-
tagged photons signals.

calculated the curves 〈|HA(X)|2〉:

〈|HA(X)|2〉 = (1/N)
∑

X

|HA(X,Y )|2 (6)

Figure 2 (c,d) show the curves 〈|HA(X)|2〉 obtained by
calculation (c) and from [26] (d). The curves are nor-
malized with respect to the background that is obtained
without tagged and untagged photons and that corre-
sponds to shot noise. The good agreement with [26] val-
idates our theoretical calculation.
In figure 2, the tagged photon signal corresponds to the

image of the aperture, i.e. to the bright rectangular zone
1, which is located in the left of images (a,b), because the
aperture is located of axis. The aperture corresponds also
to the rectangular walls 1, in curves (c,d). On the other
hand, the blurred bright zone 2, in the center of (a,b),
and the triangular wall 2, in (c,d), corresponds to a para-
sitic detection of the untagged photon signal, which does
not cancel here because of decorrelation (in experiment)
and shot noise (in experiment and calculation). The par-
asitic detection of the LO fields yields a very narrow peak
located in the center of the calculation grid, which is only
visible on the curves (arrow 3). To the end, shot noise
yields a flat background in all points of the images and
the curve (zones 4).
To confirm this analyse of Fig.2, and to evaluate how

untagged photons, shot noise and decorrelation affect the
UOT signal, we have calculated the curves 〈|HA(X)|2〉
without and with decorrelation by switching on and
off the tagged and untagged photons. To better com-
pare results obtained without and with decorrelation,
the tagged and untagged photon energies were measured
within a time equal to the recording time of the se-
quence of M frames (2πM/ωC) without decorrelation,
and to the frame exposure time, which is made equal
to τc, with decorrelation. Calculations were made with
|ELO|2 = 104, M〈|EA,U |2〉 = 10000, M〈|EA,T |2〉 = 1 and
M = 12 without decorrelation, and with |ELO|2 = 104,
〈|EA,U |2〉 = 250 and 〈|EA,T |2〉 = 1 with decorrelation.
Note that the calculations are made with the same tagged
photon signal with and without decorrelation (1 photo
electron per pixel).
Figure 3 shows the curves obtained without (a) and
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FIG. 4. Curves 〈|HA(X)|2〉 obtained without (a) and with
decorrelation (b). Calculation is made with α = 1 (1), 0.5 (2),
0.25 (3) and 0.125 (4). Plots are made in arbitrary logarithmic
scale.

with (b) decorrelation. Curves 1 (back) were obtained
with tagged and untagged photons, curves 2 (red) with
tagged (and without untagged) photons, and curves 3
(blue) with untagged (and without tagged) photons. As
seen, the rectangular walls (located on the left side of
Fig.3(a) and on the left and right sides of Fig.3(b) ) cor-
respond to the tagged photon signal. On the hand, the
triangular walls (located in the center of Fig.3(a) and
(b) ) correspond to the untagged photons. Note that the
width of triangular walls is twice the width of the rect-
angular walls, which is itself proportional to the width
of the aperture. By a proper choice of the aperture size,
here and in [26], the rectangular and triangular walls are
well separated, making possible to filter off the unwanted
untagged photon signal. Note that the effect of the un-
tagged photons is much lower without decorrelation. To
still visualize them in Fig.3(a), we have performed the
calculation with a much larger unttagged signal without
decorrelation (〈|EA,U |2〉 = 104), than with decorrelation
(〈|EA,U |2〉 = 250).

To evaluate tagged photon detection sensitivity limits,
we have calculated 〈|HA|2〉(X) curves by varying the to-
tal tagged photon energy per τc. The curves are plotted
on Fig.4 with decorrelation (a) and without (b). Cal-
culations were made with |ELO|2 = 104, M〈|EA,U |2〉 =
10000, M〈|EA,T |2〉 = α and M = 12 without decorre-

lation, and with |ELO|2 = 104, 〈|EA,U |2〉 = 250 and
〈|EA,T |2〉 = α with decorrelation, where α is the num-
ber of tagged photons per pixel with α = 1, 0.5, 0.25,
0.125 and 0.0625 for curves 1 to 5. To better visual-
ize them, the curves were plotted in log scale, and the
curves were arbitrarily shifted up or down to better sep-
arate them from each other. The results of Fig.4 show
that heterodyne holography UOT exhibits roughly the
same sensitivity for the detection of the tagged photon
with and without decorrelation. The key parameter is
the tagged photon energy per pixel during the coherent
measurement time with is equal to τc with decorrelation,
and to time M2π/ωC needed to record the sequence of
M frames without decorrelation. A signal versus back-
ground ratio of 1 corresponds, with and without decorre-
lation, to one photo electron per pixel. By averaging over
the about 105 pixels of the rectangular aperture, the sen-
sitivity limit is improved down to about 1/

√
105 ∼ 1/300

photo electron. This result agrees with what observed
experimentally for the detection of the untagged photons
[14].
In this letter, we have proposed a theoretical model to

describe the detection of the tagged photons in hetero-
dyne holography UOT. This model, which agrees with
the results of [26], has been used to calculate how un-
tagged photons, speckle noise, shot noise, decorrelation
and etendue, affect the UOT signal. For a given coher-
ent measurement time, which is M2π/ωC and τc without
and with decorrelation, the model yields the same de-
tection sensitivity, and the same noise floor (one photon
electron per pixel). Heterodyne holography UOT is thus
shot noise limited. By averaging over the K ∼ 105 pixels
of the image of the aperture, the detection sensitivity be-
comes 1/

√
K photo electron per speckle (i.e per etendue

λ2). We hope this work will stimulate further UOT de-
velopment.
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