A Neuro-Evolutionary Corpus-Based Method for Word Sense Disambiguation
Abstract
We propose a supervised approach to Word Sense Disambiguation based on Neural Networks combined with Evolutionary Algorithms. An established method to automatically design the structure and learn the connection weights of Neural Networks by means of an Evolutionary Algorithm is used to evolve a neural-network disambiguator for each polysemous word, against a dataset extracted from an annotated corpus. Two distributed encoding schemes, based on the orthography of words and characterized by different degrees of information compression, have been used to represent the context in which a word occurs. The performance of such encoding schemes has been compared. The viability of the approach has been demonstrated through experiments carried out on a representative set of polysemous words. Comparison with the best entry of the Semeval-2007 competition has shown that the proposed approach is almost competitive with state-of-the-art WSD approaches.
Domains
Artificial Intelligence [cs.AI]
Origin : Files produced by the author(s)
Loading...