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Hybrid Possibilistic Conditioning for Revision under
Weighted Inputs

Salem Benferhat1 and Célia da Costa Pereira2 and Andrea G. B. Tettamanzi3

Abstract. We propose and investigate new operators in the possi-
bilistic belief revision setting, obtained as different combinations of
the conditioning operators on models and countermodels, as well as
of how weighted inputs are interpreted. We obtain a family of eight
operators that essentially obey the basic postulates of revision, with
a few slight differences. These operators show an interesting variety
of behaviors, making them suitable to representing changes in the
beliefs of an agent in different contexts.

1 Introduction
Belief revision with uncertain input has been studied by Spohn [12],
who has shown its close relationship with Jeffrey’s rule of condition-
ing [11] in probability theory, a generalization of Bayesian condition-
ing. Belief revision with uncertain inputs has to do with how an agent
should revise its beliefs when told information either by a partially
trusted source, or by a fully reliable source which provides a degree
of certainty for information it reports. Possibilistic counterparts to
the revision by uncertain inputs have been discussed in [6]. At the
syntactic level, such a form of revision comes down to adding a for-
mula to a belief base at a certain prescribed level of necessity. The
problem is made difficult because the belief base must be modified
so that the added formula maintains its prescribed priority, that is, it
is neither implicitly inhibited by higher priority formulas that contra-
dict it, nor pushed to higher priority levels by formulas that imply it.
A first step towards an efficient way for doing this has been proposed
in [2]. In that paper, the authors pursue the study of revision with
sure and uncertain inputs within the framework of possibility the-
ory. They start from investigating efficient syntactic implementation
schemes for both belief revision and contraction in possibilistic logic
and they show their full agreement with semantics. The authors also
took advantage of the connections of the ordinal conditional func-
tions framework [12] with possibility theory.

To the best of our knowledge, almost all of the existing
possibilistc-based approaches are based on homogeneous operators
for revision: the same operator is used to model the revision of the
possibility distribution on the models (the interpretations that are
consistent with the incoming information) and on the countermodels
(the interpretations that contradict the incoming information). How-
ever, since the conditioning of the models and of the countermodels
are independent, one might as well decide to use different opera-
tors on models and countermodels, thus obtaining hybrid possibilis-
tic conditioning operators for belief revision. Indeed, in some ap-
plications, it may happen that a given operator provides the desired
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behavior on models, but a counterintuitive one on countermodels, or
viceversa.

Here, we investigate, at the level of semantic representation, the
properties of such hybrid operators in comparison to standard “ho-
mogeneous” operators. The results are interesting: the new operators
essentially obey the same postulates as the homogeneous operators,
with a few slight differences. Taking the way weighted inputs are in-
terpreted as an additional parameter of a possibilistic conditioning
operator, we end up with eight operators (homogeneous and hybrid)
showing an interesting variety of behaviors, which make them suit-
able to representing the changes in the agent beliefs in a variety of
application contexts. More precisely, these operators may be classi-
fied according to their behavior: a first class of operators can be used
when a completely trusted source told the agent that the certainty of
a formula ϕ is a, (N(ϕ) = a). In such a case, even if ϕ was believed
to a higher degree, its degree of belief after revision will be exactly
a. A second class of operators treats incoming information (ϕ, a) as
an indication that ϕ is true provided by a source partially trusted to
degree a. A third class of operators reacts to repeated confirmations
of the same input ϕ by different sources by adopting belief ϕ with the
same degree as the degree of trust (or reliability) of the most reliable
among those sources. A fourth class of operators treats any confir-
mation of ϕ, even by little reliable sources, as additional evidence
in favor of ϕ, thus increasing the degree of belief in ϕ. A fifth class
of operators raises the possibility of all worlds that are compatible
with incoming information. Finally, a sixth class of operators raises
to 1 just the models of ϕ that were deemed most possible before the
arrival of the input.

The paper is organized as follows: the representation of epistemic
states with possibility theory is briefly presented in Section 2; Sec-
tion 3 introduces iterated revision by possibilistic conditioning, start-
ing from the simple scenario where the inputs are totally reliable,
then extending it to cases in which the inputs are weighted, for which
eight operators are presented. Section 4 concludes and suggests pos-
sible extensions of this work.

2 Possibilistic representations of epistemic states

Let L be a finite propositional language; ⊢ denotes the classical con-
sequence relation. Ω is the set of classical interpretations or worlds,
and, given a formula ϕ ∈ L, let [ϕ] denote the set of classical mod-
els of ϕ. Often epistemic states (or cognitive states), viewed as a set
of beliefs about the real world (based on the available information),
are represented by a total pre-order either on Ω, or on the set of for-
mulas as in epistemic entrenchment relation presented in [8]. These
orderings reflect the strength of the various beliefs maintained by an
agent.



In this section, we describe the representation of epistemic states
in possibilistic logic at semantic level, where priorities are encoded
by reals in the interval [0,1]. An equivalent representation of epis-
temic states at the syntactic level is possible (see, for instance, [2]),
but is left out of the scope of this paper for the sake of simplicity.

2.1 Semantic representation of epistemic states
At the semantic level, an epistemic state is represented by a possibil-
ity distribution π, which is a mapping from Ω to the interval [0,1].
π(ω) represents the degree of compatibility of ω with the available
information (or beliefs) about the real world. π(ω) = 0 means that
the interpretation ω is impossible, and π(ω) = 1 means that nothing
prevents ω from being the real world. The interpretations such that
π(ω) = 1 are considered as normal, expected. When π(ω) > π(ω′),
ω is a preferred candidate to ω′ for being the real state of the world.
The less π(ω) the more abnormal ω is. A possibility distribution π is
said to be normalized if ∃ω ∈ Ω, such that π(ω) = 1.

Given a possibility distribution π, we can define two different mea-
sures on formulas of the language:

• the possibility degree Ππ(ϕ) = max{π(ω) : ω ∈ [ϕ]} which
evaluates the extent to which ϕ is consistent with the available
information expressed by π.

• the necessity degree Nπ(ϕ) = 1 − Π(¬ϕ) which evaluates the
extent to which ϕ is entailed by the available information.

When there is no ambiguity, we simply write Π(ϕ) (resp. N(ϕ))
instead of Ππ(ϕ) (resp. Nπ(ϕ)). Note that Π(ϕ) is evaluated from
the assumption that the situation where ϕ is true is as normal as can
be. The duality equation N(ϕ) = 1−Π(¬ϕ) extends the one existing
in classical logic, where a formula is entailed from a set of classical
formulas if and only if its negation is inconsistent with this set.

Lastly, given a possibility distribution π, the semantic determina-
tion of the belief set (corresponding to the agent’s current beliefs)
denoted by BS(π), is obtained by considering all formulas which
are more plausible than their negation, namely

BS(π) = {ϕ : Π(ϕ) > Π(¬ϕ)}.

Namely, BS(π) is a classical base whose models are the interpreta-
tions having the highest degrees in π. When π is normalized, models
of BS(π) are interpretations which are completely possible, namely
[BS(π)] = {ω : π(ω) = 1}. The formula ϕ belongs to BS(π) when
ϕ holds in all the most normal situations (hence ϕ is expected, or
accepted as being true).

Example 1 Let π be defined as follows:

ω π(ω)

qr 1
q¬r 1
¬qr .7
¬q¬r .5

BS(π) will contain formula q, because Π(q) = 1 > Π(¬q) = 0.7,
and also q ∨ r, because Π(q ∨ r) = 1 > Π(¬(q ∨ r)) = 0.5, but,
for instance, not q ∧ r, because Π(q ∧ r) = Π(¬(q ∧ r)) = 1.

3 Iterated semantic revision in possibilistic logic
The choice of a revision method partially depends on the status of
the input information. We first consider revising with a totally reli-
able input, then we discuss the revision with an uncertain input. In the

case of uncertain information, the input is of the form (ϕ, a) which
means that the classical formula ϕ should be believed to a degree of
certainty a exactly. Here, uncertain input is treated according to the
two views existing in the literature: (i) as a constraint which is en-
forced (as proposed in [2]) and (ii) by taking it into account only if
it leads to a strengthening of the certainty (as proposed in [6]). Be-
sides, for each view we consider two new possible combinations of
the operators min and product: (1) the min operator for represent-
ing the models and the product for representing the countermodels
(min/product) and (2) the product for representing the models and
the min for representing the countermodels (product/min). We will
denote by π the possibility distribution representing the epistemic
state before the arrival of input (ϕ, a) and by π′ the possibility distri-
bution revised according to input (ϕ, a). Accordingly, we will denote
by N and Π the necessity and possibility measures induced by π and
by N ′ and Π′ the necessity and possibility measure induced by π′.

3.1 Revision with a totally reliable input
In the case of revision with a totally reliable (or certain, sure) input
ϕ, it is assumed that all interpretations ω that falsify ϕ are declared
impossible (π(ω) = 0). This is performed by means of a condition-
ing device which transforms a possibility distribution π and a new
and totally reliable information ϕ into a new possibility distribution
denoted by π′ = π(· | ϕ). As stated in [2], natural properties for π′

are the following AGM postulates [1], translated into a possibilistic
setting:

A1: π′ should be normalized;
A2: ∀ω ̸∈ [ϕ], π′(ω) = 0;
A3: ∀ω, ω′ ∈ [ϕ], π(ω) > π(ω′) iff π′(ω) > π′(ω′);
A4: if N(ϕ) > 0, then ∀ω ∈ [ϕ] : π(ω) = π′(ω);
A5: if π(ω) = 0, then π′(ω) = 0.

A1 means that the new epistemic state is consistent. A2 confirms
that ϕ is a sure piece of information. A3 means that the new pos-
sibility distribution should not alter the previous relative order be-
tween models of ϕ. A4 means that, when N(ϕ) > 0 (ϕ is a priori
accepted), then revision does not affect π. A5 stipulates that impos-
sible worlds remain impossible after conditioning. Then it can be
verified that any revision of the belief set BS(π) by ϕ, leading to
BS(π(· | ϕ)) with π(· | ϕ) obeying A1–A5, satisfies all AGM pos-
tulates.

The previous properties A1–A5 do not guarantee a unique defi-
nition of conditioning. Moreover, the effect of axiom A2 may result
in a sub-normalized possibility distribution. Restoring the normaliza-
tion, so as to satisfy A1, can be done, in principle, by choosing any
continuous t-norm ∗ such that x ∗ x = 0 if and only if x = 0, and
defining, when Π(ϕ) > 0,

π(ω | ϕ) =
{

Π(ϕ) ⇒ π(ω), if ω |= ϕ,
0 otherwise,

where ⇒ denotes the residuum of t-norm ∗ [5]. However, we will
focus here on the idempotent t-norm (i.e., min) and the product t-
norm, just because these two basic operations have been widely used
in a belief-revision context, thereby obtaining two different types of
conditioning [7]:

• In an ordinal setting, we assign maximal possibility to the best
models of ϕ, then we get:

π(ω |m ϕ) =


1, if π(ω) = Π(ϕ) and ω |= ϕ,
π(ω), if π(ω) < Π(ϕ) and ω |= ϕ,
0 if ω ̸|= ϕ.



This is the definition of minimum-based conditioning.
• In a numerical setting, we proportionally rescale all models of ϕ

upwards:

π(ω |� ϕ) =

{
π(ω)
Π(ϕ)

, if ω |= ϕ,
0, otherwise.

This is the definition of product-based conditioning.

These two revision methods satisfy an equation of the form

∀ω, π(ω) = π(ω | ϕ) ∗Π(ϕ),

which is similar to Bayesian conditioning, where ∗ may stand for
min and the product respectively. The rule based on the product is
much closer to genuine Bayesian conditioning than the qualitative
conditioning defined from the minimum which is purely based on
comparing levels; product-based conditioning requires more of the
structure of the unit interval. Besides, when Π(ϕ) = 0, π(ω |m ϕ) =
π(ω |� ϕ) = 1,∀ω, by convention.

Example 2 Let us revise the possibility distribution π given in Ex-
ample 1 by the information that q is certainly false. If we use
minimum-based conditioning we get:

ω π(ω |m ¬q)
¬q r 1
¬q ¬r .5

qr 0
q ¬r 0

However, if we use the product-based conditioning, we get:

ω π(ω |� ¬q)
¬q r 1
¬q ¬r 5/7

qr 0
q ¬r 0

3.2 Revision with an uncertain input
We shall now consider the revision of π by some uncertain input
information of the form (ϕ, a) into a new epistemic state denoted
by π′ = π(ω | (ϕ, a)). The input (ϕ, a) may be interpreted, and
therefore treated, according to two slightly different views:

1. as a constraint which forces π′ to satisfy

N ′(ϕ) = a, (i.e., Π′(ϕ) = 1 and Π′(¬ϕ) = 1− a); (1)

this is the view taken in [2];
2. as information from a partially trusted source, which is taken into

account only if it leads to a strengthening of the certainty; in other
words, it forces π′ to satisfy

N ′(ϕ) = max{N(ϕ), a}, (2)

i.e., the previously held degree of belief in ϕ is not lowered just
because a less trusted sources confirms it; this is the view taken in
[6].

Both views have their intuitive justification in some context and there
is no reason to privilege one or the other a priori.

Clearly, properties defined for revision are all suitable for revising
with uncertain input, with the exception of A2, which is no longer
appropriate since Π′(¬ϕ) ̸= 0 for a < 1. A2 is replaced by the
following two axioms:

A′
2: Π′(ϕ) = 1, Π′(¬ϕ) ≤ 1− a;

A′′
2: ∀ω, ω′ ̸∈ [ϕ], if π(ω) ≥ π(ω′) then π′(ω) ≥ π′(ω′).

A′′
2 preserves the relative order between countermodels of ϕ, but in a

weaker sense than in axiom A3 for the models of ϕ. Note that there
is no further constraint which relates models of ϕ and countermodels
of ϕ in the new epistemic state.

A′
2 is general, in the sense that it covers both views of the un-

certain input; however, for View 1, it might be replaced by a stricter
version

A′
2=: Π′(ϕ) = 1, Π′(¬ϕ) = 1− a.

A3 and A′′
2 suggest that revising with uncertain input can be

achieved using two parallel changes with a sure input: first, a condi-
tioning on ϕ and one on ¬ϕ. Then, in order to satisfy A′

2, the distri-
bution π(· | ¬ϕ) is “denormalized”, so as to satisfy Π′(¬ϕ) = 1−a.
Therefore, revising with uncertain information can be achieved using
the following definition:

π(ω | (ϕ, a)) =
{

π(ω | ϕ), if ω |= ϕ;
(1− a) ∗ π(ω | ¬ϕ), otherwise,

(3)

where ∗ is either min or the product, �, depending on whether condi-
tioning is based on the product or the minimum operator.

When ∗ = product (resp. min) the possibilistic revision is called
product-based (resp. minimum-based) conditioning with an uncer-
tain input, denoted π(ω |� (ϕ, a)), (resp. π(ω |m (ϕ, a))).

One important thing to remark is that conditioning is performed
on models (ω : ω |= ϕ) and countermodels (ω : ω ̸|= ϕ) indepen-
dently. Therefore, nothing forbids, in principle, applying one ∗ op-
erator to models and another ∗ operator on countermodels. Indeed,
in some applications, it may happen that one ∗ operator provides
the desired behavior on models, but a counterintuitive one on coun-
termodels, or viceversa. For example, minimum-based conditioning
lowers the possibility of all countermodels greater than 1− a, while
leaving untouched the others, which might be regarded as intuitively
correct when modeling belief revision in a cognitive agent; however,
on the other hand, it only raises the possibility of the most possi-
ble models, whereas one might find that it would be more desirable
that the possibility of all worlds compatible with incoming informa-
tion should increase proportionally, which is the behavior provided
by product-based conditioning. The independence of conditioning on
models and countermodels allows us to try different combinations of
operators to obtain exactly the desired behavior.

According to the two interpretations of uncertain inputs (namely,
as a constraint or as partially trusted information), two families of
possibilistic conditioning operators may be defined. For the sake of
clarity, we will replace the generic conditioning symbol “|” by two
distinct specific symbols, namely “↓” for Family 1 and “↑” for Fam-
ily 2. Furthermore, we will distinguish minimum-based and product-
based conditioning by the symbols m and �, added to the condition-
ing symbol as superscripts, to indicate their use for models, or as
subscripts, to indicate their use for countermodels.

Family 1: The minimum-based conditioning is defined,

• for ω |= ϕ (models), as

π(ω ↓m (ϕ, a)) =

{
1, π(ω) = Π(ϕ);
π(ω), π(ω) < Π(ϕ);

(4)



• for ω ̸|= ϕ (countermodels), as

π(ω ↓m (ϕ, a)) =


1− a, if π(ω) = Π(¬ϕ)

or π(ω) > 1− a;
π(ω), otherwise.

(5)

The product-based conditioning is defined,

• for ω |= ϕ (models), as

π(ω ↓� (ϕ, a)) =

{
π(ω)
Π(ϕ)

, Π(ϕ) > 0;

1, Π(ϕ) = 0;
(6)

• for ω ̸|= ϕ (countermodels), as

π(ω ↓� (ϕ, a)) =

{
(1− a) π(ω)

Π(¬ϕ)
, Π(¬ϕ) > 0;

1− a, Π(¬ϕ) = 0.
(7)

Family 2: The minimum-based conditioning is defined,

• for ω |= ϕ (models), as

π(ω ↑m (ϕ, a)) =

{
1, π(ω) = Π(ϕ);
π(ω), π(ω) < Π(ϕ);

(8)

• for ω ̸|= ϕ (countermodels), as

π(ω ↑m (ϕ, a)) = min{1− a, π(ω)}. (9)

The product-based conditioning is defined,

• for ω |= ϕ (models), as

π(ω ↑� (ϕ, a)) =

{
π(ω)
Π(ϕ)

, Π(ϕ) > 0;

1, Π(ϕ) = 0;
(10)

• for ω ̸|= ϕ (countermodels), as

π(ω ↑� (ϕ, a)) = (1− a)π(ω). (11)

From the above definitions, it is clear that the new ranking on mod-
els of ϕ is simply obtained using conditioning with a sure input.

For Family 1 conditioning operators, the new ranking of counter-
models of ϕ depends on the relative position of the a priori certainty
of ϕ, and the prescribed posterior certainty of ϕ:

• If N(ϕ) ≤ a and when ∗ = min, all countermodels that were
originally more plausible than 1 − a, are forced to level 1 − a,
which means that some strict ordering between countermodels of
ϕ may be lost. When ∗ = product, all plausibility levels are pro-
portionally shifted down (to the level 1− a).

• If N(ϕ) > a the best countermodels of ϕ are raised to level 1 −
a. Moreover, when ∗ = product, the plausibility levels of other
countermodels are proportionally shifted up (to level 1− a).

For Family 2 conditioning operators, the new ranking of counter-
models of ϕ depends on the relative position of the a priori certainty
of ϕ, and the degree a to which the source of input ϕ is to be trusted:

• As it is the case with Family 1, if N(ϕ) ≤ a and when ∗ = min,
all countermodels that were originally more plausible than 1− a,
are forced to level 1−a. When ∗ = product, all plausibility levels
are proportionally shifted down (to the level 1− a).

• However, if N(ϕ) > a the best countermodels of ϕ are left un-
touched or even, when ∗ = product, proportionally shifted down
by a factor 1− a.

Note that, in both families, when a = 1, we recover conditioning
by a totally reliable input.

When ∗ = product, a stronger version of A′′
2 holds whereby the

order of countermodels of ϕ is fully preserved, hence it satisfies:

A6: ∀ω1, ω2 ̸∈ [ϕ], π(ω1) ≤ π(ω2) iff π′(ω1) ≤ π′(ω2).

Moreover, if N(ϕ) ≤ a, we can check that the following two
postulates are also satisfied:

A7: If ω1 |= ϕ and ω2 |= ¬ϕ, then π(ω1) < π(ω2) implies
π′(ω1) < π′(ω2).

A8: If ω1 |= ϕ and ω2 |= ¬ϕ, then π(ω1) ≤ π(ω2) implies
π′(ω1) ≤ π′(ω2).

Example 3 Let us again consider the possibility distribution π of
Example 1. Let (q ∨ r, .2) be the uncertain input. Note that Nπ(q ∨
r) = .5, and hence taking into account the input should decrease our
belief in the information q ∨ r. Using minimum-based conditioning,
we get:

ω π(ω |m (q ∨ r, .2))

q r 1
q ¬r 1
¬q r .7
¬q¬r .8

In this example, the product-based conditioning leads to the same
result. Note that the main difference with conditioning with sure input
is that countermodels of ϕ are no longer impossible.

In Example 3, the uncertain input is treated as a constraint which is
enforced; therefore, a Family 1 operator is used. If the input had been
treated as information from a partially trusted source, no revision
would have taken place.

3.3 Generalized Conditioning Operators
We now introduce the family of generalized conditioning operators,
arising from all possible combinations of

• the view according to which the input is treated;
• the conditioning operator to be applied to models;
• the conditioning operator to be applied to countermodels.

Therefore, we have eight operator definitions, as summarized in Ta-
ble 1, for all ω, ϕ and a.

Proposition All the operators defined in Table 1 satisfy axioms
A1, A′

2, A′′
2 , A3, A4, A5, A7, and A8.

Additionally, all four ↓ operators satisfy also axiom A′
2=, and op-

erators ↓m� , ↓��, ↑mm, ↑m� , ↑�m, and ↑�� satisfy axiom A6.

Proof: Omitted due to lack of space.

For the reader’s convenience, Table 2 provides a summary of the ax-
ioms satisfied by each operator.

Based on the axioms satisfied by each operator, we may notice
that Family 2 constitutes a homogeneous cluster of conditioning op-
erators, whereas Table 2 suggests that Family 1 should be divided



Table 1. Definitions of the eight generalized conditioning operators.

ω |= ϕ ω ̸|= ϕ

π(ω ↓mm (ϕ, a)) 1, if π(ω) = Π(ϕ) 1− a, if π(ω) = Π(¬ϕ) or π(ω) > 1− a
π(ω), if π(ω) < Π(ϕ) π(ω), otherwise

π(ω ↓m� (ϕ, a)) 1, if π(ω) = Π(ϕ) (1− a) π(ω)
Π(¬ϕ)

, if Π(¬ϕ) > 0

π(ω), if π(ω) < Π(ϕ) 1− a, if Π(¬ϕ) = 0

π(ω ↓�m (ϕ, a)) π(ω)
Π(ϕ)

, if Π(ϕ) > 0 1− a, if π(ω) = Π(¬ϕ) or π(ω) > 1− a

1, if Π(ϕ) = 0 π(ω), otherwise
π(ω ↓�� (ϕ, a)) π(ω)

Π(ϕ)
, if Π(ϕ) > 0 (1− a) π(ω)

Π(¬ϕ)
, if Π(¬ϕ) > 0

1, if Π(ϕ) = 0 1− a, if Π(¬ϕ) = 0

π(ω ↑mm (ϕ, a)) 1, if π(ω) = Π(ϕ) min{1− a, π(ω)}
π(ω), if π(ω) < Π(ϕ)

π(ω ↑m� (ϕ, a)) 1, if π(ω) = Π(ϕ) (1− a)π(ω)
π(ω), if π(ω) < Π(ϕ)

π(ω ↑�m (ϕ, a)) π(ω)
Π(ϕ)

, if Π(ϕ) > 0 min{1− a, π(ω)}
1, if Π(ϕ) = 0

π(ω ↑�� (ϕ, a)) π(ω)
Π(ϕ)

, if Π(ϕ) > 0 (1− a)π(ω)

1, if Π(ϕ) = 0

Table 2. Summary of the axioms satisfied by each operator.

↓mm ↓m� ↓�m ↓�� ↑mm ↑m� ↑�m ↑��
A1 • • • • • • • •
A′

2 • • • • • • • •
A′

2= • • • •
A′′

2 • • • • • • • •
A3 • • • • • • • •
A4 • • • • • • • •
A5 • • • • • • • •
A6 • • • • • •
A7 • • • • • • • •
A8 • • • • • • • •

into two homogeneous sub-families, which we might call Family 1.1,
comprising ↓mm and ↓�m, and Family 1.2, comprising ↓m� and ↓��. Fam-
ily 1.1’s specificity is that it does not always fully preserve the order
of countermodels of ϕ, thus causing some information loss. Fam-
ily 1.2, on the other hand, fully preserves the order of countermodels
of ϕ, like Family 2, while forcing the necessity of ϕ to a.

Example 4 Let us again consider the possibility distribution π of
Example 1 and let us revise it for inputs (¬q, .2), (q ∨ r, .4) and
(r, .6) using every single operator defined in Table 1. Notice that the
former input requires a revision, whereas the latter two bring about
an expansion of the belief base. We get the results shown in Table 3.

While essentially obeying the same postulates, with a few slight
differences, the eight operators show an interesting variety of behav-
iors, which make them suitable to a variety of contexts. Given an
application, it is highly likely that one can find among them the one
that fits the requirements of a belief revision operator in that context.
The following are some guidelines to help the reader to single out the
particular operator that suits her needs:

• The four ↓ operators treat incoming information (ϕ, a) as a fully
reliable indication of the degree of necessity of ϕ; in other words,
they act as if a completely trusted source told the agent that

Table 3. Results of revising possibility distribution π of Example 1 for the
inputs of Example 4 with every operator of Table 1.

ω =−→ qr q¬r ¬qr ¬q¬r
π(ω ↓mm (¬q, .2)) 0.8 0.8 1 0.5
π(ω ↓mm (q ∨ r, .4)) 1 1 0.7 0.6
π(ω ↓mm (r, .6)) 1 0.4 0.7 0.4
π(ω ↓m� (¬q, .2)) 0.8 0.8 1 0.5
π(ω ↓m� (q ∨ r, .4)) 1 1 0.7 0.6
π(ω ↓m� (r, .6)) 1 0.4 0.7 0.2
π(ω ↓�m (¬q, .2)) 0.8 0.8 1 0.7143
π(ω ↓�m (q ∨ r, .4)) 1 1 0.7 0.6
π(ω ↓�m (r, .6)) 1 0.4 0.7 0.4
π(ω ↓�� (¬q, .2)) 0.8 0.8 1 0.7143
π(ω ↓�� (q ∨ r, .4)) 1 1 0.7 0.6
π(ω ↓�� (r, .6)) 1 0.4 0.7 0.2
π(ω ↑mm (¬q, .2)) 0.8 0.8 1 0.5
π(ω ↑mm (q ∨ r, .4)) 1 1 0.7 0.5
π(ω ↑mm (r, .6)) 1 0.4 0.7 0.4
π(ω ↑m� (¬q, .2)) 0.8 0.8 1 0.5
π(ω ↑m� (q ∨ r, .4)) 1 1 0.7 0.3
π(ω ↑m� (r, .6)) 1 0.4 0.7 0.2
π(ω ↑�m (¬q, .2)) 0.8 0.8 1 0.7143
π(ω ↑�m (q ∨ r, .4)) 1 1 0.7 0.5
π(ω ↑�m (r, .6)) 1 0.4 0.7 0.4
π(ω ↑�� (¬q, .2)) 0.8 0.8 1 0.7143
π(ω ↑�� (q ∨ r, .4)) 1 1 0.7 0.3
π(ω ↑�� (r, .6)) 1 0.4 0.7 0.2



N(ϕ) = a; therefore, even if ϕ was believed to a higher degree,
its degree of belief after revision will be exactly a. In iterated re-
vision, it is always the last input about ϕ that determines N(ϕ).

• The four ↑ operators treat incoming information (ϕ, a) as an indi-
cation that ϕ is true provided by a source partially trusted to degree
a; therefore, the agent’s degree of belief in ϕ will never decrease.
By the way, this is the intuitive motivation for using symbol ↑ for
this family of operators.

• The two ↑m operators react to repeated confirmations of the same
input ϕ by different sources by adopting belief ϕ with the same
degree as the degree of trust (or reliability) of the most reliable
among those sources. We might say these operators are rather
weary or conservative.

• The two ↑� operators, instead, treat any confirmation of ϕ, even
by little reliable sources, as additional evidence in favor of ϕ, thus
increasing the degree of belief of ϕ. These two operators will be
appropriate for modeling the behavior of a credulous agent.

• The four |� operators re-normalize the possibility distribution π′

proportionally, i.e., they raise the possibility of all worlds that are
compatible with incoming information; in a sense, they model the
behaviour of an open-minded agent who, upon being convinced
of ϕ more than it was before, concedes that all worlds in which ϕ
holds are now less unlikely.

• In contrast, the four |m operators re-normalize π′ in the most
conservative way, by raising to 1 just the models of ϕ that were
deemed most possible before the arrival of the input; they model
the behavior of a more opinioned agent, who is not willing to give
up any of its beliefs unless absolutely forced to do so by new evi-
dence and, even then, only by the smallest amount possible.

It is hard to give a general recipe suggesting the proper opera-
tor to use in each situation, because some of the differences among
them are very subtle. A reasonable suggestion would be to determine
experimentally which of the eight operators (or of a subset thereof,
determined a priori based on some desired properties) is most suit-
able to a given application scenario. This is, after all, the usual way to
proceed when it comes to choosing from a parametric family of op-
erators, e.g., logical connectives or defuzzification operators in fuzzy
logic.

4 Conclusion, Related, and Future Work
We have defined on the semantic level eight belief revision operators
based on possibilistic conditioning showing an interesting variety of
behaviors while obeying the basic postulates of belief revision.

The possibilistic conditioning operators we denote by ↑mm and ↑��
were proposed and characterized by Dubois and Prade [6]; the ones
we denote by ↓mm and ↓�� were studied by Benferhat, Dubois, Prade,
and Williams [2]. Finally, one of the hybrid operators, namely the
one we denote by ↑�m, was proposed and characterized by da Costa
Pereira and Tettamanzi [3] to model belief revision in BDI agents
with partially trusted sources.

The next obvious step will be to work out the syntactic implemen-
tation of the operators studied, in agreement with the semantics, so
that the revision of a belief base can be efficiently computed.

Several authors have proposed postulates for iterated belief re-
vision which are added to the AGM postulates. Benferhat and col-
leagues describe in [2] the intuition behind the Darwiche and Pearl
(DP) postulates [4] and conclude that possibilistic revision with un-
certain input is more in the spirit of the DP postulates, except that in
possibilistic revision there is no limitation on the input (ϕ, a) leading
to a revision.

The proposed operators could be improved in order to deal with
some “weaknesses” typical of the operators obeying the AGM and
the DP postulates.

In [10], the authors propose an approach to deal with the problem
of “drowning effect”. This problem is raised by the fact that after
revising a belief base Σ with a totally reliable formula ϕ, the result
of revision does not include the formulas whose weights are lower
than the inconsistency degree of the new base. The problem consists
then in the possible loss of too much information if the inconsistency
degree is high. Like in [2], the operators proposed here do not deal
with this problem. This is kept for future work.

The two families of conditioning operators studied in this paper
consider the input (ϕ, a) as the constraint N ′(ϕ) = a and N ′(ϕ) ≥
a, respectively. In the same vein, one could also consider revising
with (negative) uncertain inputs giving the constraint N ′(ϕ) ≤ a,
with a < 1. This is an interesting issue that has not been considered
before, and we leave it for consideration in future work. To be sure,
to address this issue one would need to modify Equation 2.

Another proposal that could be taken into account for future work
is Jin and Thielscher’s [9] Independence postulate for iterated be-
lief revision, which aims at overcoming the “weakness” of the AGM
and DP postulates which force an agent to delete everything it has
previously learned upon reception of an input which contradicts its
currently held beliefs.
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