

Home conservation strategies for tomato (Solanum lycopersicum): Storage temperature vs. duration – Is there a compromise for better aroma preservation?

Christian Ginies, Barbara Gouble, Sylvie Bureau, Mathilde Causse, Catherine C. Renard

▶ To cite this version:

Christian Ginies, Barbara Gouble, Sylvie Bureau, Mathilde Causse, Catherine C. Renard. Home conservation strategies for tomato (Solanum lycopersicum): Storage temperature vs. duration – Is there a compromise for better aroma preservation?. Food Chemistry, 2013, 139 (1-4), pp.825-836. 10.1016/j.foodchem.2013.01.038. hal-01328646

HAL Id: hal-01328646 https://hal.science/hal-01328646v1

Submitted on 28 May 2020

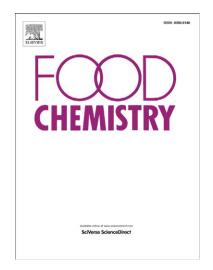
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Accepted Manuscript

Home conservation strategies for tomato (*Solanum lycopersicum*): storage temperature *vs.* duration – is there a compromise for better aroma preservation?

Catherine M.G.C. Renard, Christian Ginies, Barbara Gouble, Sylvie Bureau, Mathilde Causse


PII: S0308-8146(13)00062-9

DOI: http://dx.doi.org/10.1016/j.foodchem.2013.01.038

Reference: FOCH 13585

To appear in: Food Chemistry

Received Date: 17 August 2012 Revised Date: 19 November 2012 Accepted Date: 14 January 2013

Please cite this article as: Renard, C.M.G., Ginies, C., Gouble, B., Bureau, S., Causse, M., Home conservation strategies for tomato (*Solanum lycopersicum*): storage temperature *vs.* duration – is there a compromise for better aroma preservation?, *Food Chemistry* (2013), doi: http://dx.doi.org/10.1016/j.foodchem.2013.01.038

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

- 1 Home conservation strategies for tomato (Solanum
- 2 lycopersicum): storage temperature vs. duration is there a
- 3 compromise for better aroma preservation?

4

- 5 Catherine M.G.C. Renard^{1*}, Christian Ginies¹, Barbara Gouble¹, Sylvie Bureau¹ & Mathilde
- 6 Causse²

7

- 8 1 INRA, UMR408 Sécurité et Qualité des Produits d'Origine Végétale, F-84000 Avignon,
- 9 France
- 10 1 Université d'Avignon et des Pays de Vaucluse, UMR408 Sécurité et Qualité des Produits
- 11 d'Origine Végétale, F-84000 Avignon, France

- 12 2 INRA, Unité de Génétique et d'Amélioration des Fruits et Légumes, F-84143 Montfavet,
- 13 France

15	
16	Expression of dissatisfaction with tomato aroma prompted us to lead this study on the impact
17	of domestic storage conditions on volatile compounds.
18	Two storage modalities (20 °C and 4 °C) and two cultivars (Levovil and LCx) were used.
19	Volatile compounds were analyzed by gas chromatography-mass spectrometry detection after
20	accelerated solvent extraction. Physical characteristics, lipoxygenase activity, hydroperoxide
21	lyase activity; linoleic acid and linolenic acid were monitored.
22	Storing tomatoes at 4 °C induced a drastic loss in volatiles, whatever their biosynthetic origin.
23	After 30 days at 4 °C, the concentration of volatiles had decreased by 66 %. Reconditioning
24	for 24 h at 20 °C was able to recover some aroma production after up to 6 days storage at 4
25	°C. Volatile degradation products arising from carotenoids and amino acids increased when
26	tomatoes were kept at 20 °C, while lipid degradation products did not vary.
27	Storing tomatoes at fridge temperature, even for short durations, was detrimental for their
28	aroma. This should be taken into account to formulate practical advice for consumers.

29

30

Keywords

ABSTRACT

14

31 Storage, volatiles, lipoxygenase, GC-MS, accelerated solvent extraction

1.	Introduction

34	In recent years, consumption of fresh tomatoes by French consumers has stagnated, and
35	market research points to dissatisfaction with the sensory quality of fresh tomatoes on sale.
36	This motivated the Agence Nationale de la Recherche [French national research agency]
37	project "QualitomFil", which aims to find ways to maintain a high quality supply chain from
38	farm to fork. This study was led under the QualitomFil program. Our hypothesis is that
39	inadequate storage conditions at the consumer's home contributes to the perceived flavour
40	loss. Little is known about the fate of tomatoes at the last link of this chain — the consumer.
41	The consumer has two main possibilities for tomato storage: at room temperature or in the
42	refrigerator at around 4 °C. The general physico-chemical characteristics of ripe (light red or
43	red) tomato, such as soluble solids and acidity, are little modified during home storage
44	(Auerswald, Peters, Brückner, Krumbein, & Kuchenbuch, 1999; de Leon-Sanchez, Pelayo-
45	Zaldivar, Rivera-Cabrera, Ponce-Valadez, Avila-Alejandre, Fernandez, et al., 2009; Maul,
46	Sargent, Sims, Baldwin, Balaban, & Huber, 2000). However, this is not the case with volatile
47	compounds, and one of the key sensory parameters for tomato frequently mentioned in
48	consumer complaints is loss of its characteristic aroma. This motivated our investigation of
49	the fate of tomato volatiles during storage in domestic conditions.
50	
51	Data, mostly on unripe tomatoes, indicates that low temperature affects volatiles production.
52	As chilling injury is a well-known risk for this fruit, temperatures > 10 °C are recommended
53	and relatively few studies can be found dealing with the impact of low temperatures on taste
54	and flavour volatiles. Stern , Buttery, Teranishi, Ling, Scott & Cantwell (1994) stored
55	tomatoes harvested mature green, breaker (defined as the maturity stage when the red colour
56	starts becoming visible at the tip of the tomato) to red-ripe at temperatures from 5 °C to 20

57	°C. Red-ripe tomato held at 5 °C had significantly less volatiles than when stored at 20, 15 or
58	10 °C for the same duration (6 days). Stern et al. (1994) further verified lack of volatile
59	development when unripe tomatoes were stored at chilling conditions, and highlighted that
60	final ripening temperature was a paramount determinant of ultimate odour intensity. Maul et
61	al. (2000) reported that light-red tomatoes stored at 5 °C are rated by a trained panel as
62	significantly lower for ripe aroma, sweetness and tomato flavour and significantly higher in
63	sourness than when stored at 20 $^{\circ}\text{C}$ for the same duration. The concentrations of sugars were
64	actually higher at 5 °C than at 20 °C while pH and titratable acidity were not statistically
65	different. The authors also reported significant losses in hexanal, 2+3-methylbutanol, (E)-2-
66	heptenal, and 2-isobutylthiazole for all fruits stored below 20 °C.
67	De Leon-Sanchez et al. (2009) recently compared sensory analysis, volatiles and alcohol
68	dehydrogenase activity in tomatoes harvested at the light red stage and stored either at 10 $^{\circ}\text{C}$
69	or 20 $^{\circ}$ C. The first modifications detected at low temperature were a decrease in hexanol and
70	an increase in 3-methylbutanal, linked to a modification of the aldehyde/alcohol balance,
71	which the authors explained by a decrease in alcohol dehydrogenase activity during low-
72	temperature storage. In the sensory evaluation, little difference was reported for storage at 20
73	°C (up to 14 days), while at 10 °C the assessors detected an increase in "solvent-humidity"
74	and a decrease in "lemon tea" descriptors.
75	
76	Tomato aroma during eating has two main sources: the pre-existing volatiles, and a series of
77	major volatile compounds known as lipoxygenase-derived products (or LOX products)
78	(Baysal & Demirdoven, 2007; Riley & Thompson, 1998; Robinson, Wu, Domoney, & Casey,
79	1995). These volatile compounds result from the oxidative degradation of linoleic and
80	linolenic acids that occurs when the internal structure of the cells is broken down. This loss of
81	cellular structure can be provoked by mastication or grinding (Riley & Thompson, 1998; Xu 4

93	2. Material and methods
94	
95	2.1 Plant material
96	Plants were grown in a heated glasshouse in Avignon (southeast France) during spring 2008.
97	Fruits were harvested at the red-ripe stage on Levovil, characterized by its large fruits and
98	pharmaceutical sensory attributes, and LCx, an introgressed line carrying five chromosome
99	regions from the Cervil cherry tomato identified as bearing the quantitative trait loci for
100	quality traits, notably tomato aroma intensity (Chaib, Lecomte, Buret, & Causse, 2006) in the
101	Levovil background. In order to eliminate bias linked to maturation patterns, both tomatoes
102	were harvested at the red-ripe stage. To ensure homogeneous maturity and avoid the presence
103	of overripe tomatoes, plants were first unloaded of all their red fruits and 3 days later the
104	fruits which had ripened from orange to red were harvested. Each line was represented by 18
105	plants.
106	
107	2.2 Chemicals
108	All standard volatile compounds, linolenic acid, yeast alcohol dehydrogenase, soybean type I-
109	B lipoxidase and NADH were purchased from Sigma Aldrich (St Louis, MO). Solvents were
110	from Carlo Erba Reagents (Val de Reuil, France). Hydromatrix TM (diatomaceous earth) was
111	from Agilent Technologies (Les Ulys, France). BF ₃ /Methanol was purchased from VWR
112	international (Fontenay-sous-Bois, France).
113	
114	2.3 Tomato storage
115	At harvest, tomatoes were divided into 12 modalities: fresh; storage at 20 °C for 1, 3 or 6
116	days; storage at 4 °C for 1, 6, 15 and 30 days; same, followed by 24 h reconditioning at 20 °C

117	Each modality comprised 3 replicates of 5 fruits. All storage was carried out in temperature-
118	controlled, air-circulated chambers. To eliminate effects of temperature on enzyme activity
119	during the aroma extraction procedure, to matoes stored at 4 $^{\circ}\mathrm{C}$ were brought back to 20 $^{\circ}\mathrm{C}$
120	prior to analysis by incubation (30 min) in water at 20 °C.
121	Tomatoes were characterized at harvest and after storage for weight, firmness and colour.
122	Fruit colour was measured in the CIE L*C*h* (lightness, chroma and hue) colour space using
123	a CM-1000R-series Minolta chromameter (Minolta, Ramsey, NJ).
124	Fruit texture was measured with a multi-purpose texturometer (Texture analyzer TAplus:
125	Ametek, Lloyd Instruments Ltd., Fareham, UK). This apparatus registered force/deformation
126	curves by measuring the reaction force in response to an increasing mechanical constraint
127	applied to the fruit by a 5 cm flat disc and a 250 N load cell. Probe speed was 20 mm.min ⁻¹ .
128	Fruit firmness (F) was the force necessary to obtain a deformation corresponding to 3 % of
129	the fruit diameter.
129 130	the fruit diameter.
	the fruit diameter. 2.4 Accelerated solvent extraction (ASE)
130	
130 131	2.4 Accelerated solvent extraction (ASE)
130 131 132	2.4 Accelerated solvent extraction (ASE) Five tomatoes were ground for 1 min in a blender (Waring-Nova, Grosseron, St Herblain,
130 131 132 133	2.4 Accelerated solvent extraction (ASE)Five tomatoes were ground for 1 min in a blender (Waring-Nova, Grosseron, St Herblain,France), and approximately 15 g of juice was transferred to a beaker. After 2 minutes, 15 g of
130 131 132 133 134	2.4 Accelerated solvent extraction (ASE) Five tomatoes were ground for 1 min in a blender (Waring-Nova, Grosseron, St Herblain, France), and approximately 15 g of juice was transferred to a beaker. After 2 minutes, 15 g of Hydromatrix TM and 16 μ g of 4-nonanol (internal standard) were mixed with the tomato juice
130 131 132 133 134	2.4 Accelerated solvent extraction (ASE) Five tomatoes were ground for 1 min in a blender (Waring-Nova, Grosseron, St Herblain, France), and approximately 15 g of juice was transferred to a beaker. After 2 minutes, 15 g of Hydromatrix TM and 16 μg of 4-nonanol (internal standard) were mixed with the tomato juice to obtain a homogeneous powder while inactivating enzymes. The powder was rapidly
130 131 132 133 134 135	2.4 Accelerated solvent extraction (ASE) Five tomatoes were ground for 1 min in a blender (Waring-Nova, Grosseron, St Herblain, France), and approximately 15 g of juice was transferred to a beaker. After 2 minutes, 15 g of Hydromatrix TM and 16 μg of 4-nonanol (internal standard) were mixed with the tomato juice to obtain a homogeneous powder while inactivating enzymes. The powder was rapidly transferred to a 33 ml pressurized extraction cell for immediate extraction. The extractor was
130 131 132 133 134 135 136	2.4 Accelerated solvent extraction (ASE) Five tomatoes were ground for 1 min in a blender (Waring-Nova, Grosseron, St Herblain, France), and approximately 15 g of juice was transferred to a beaker. After 2 minutes, 15 g of Hydromatrix TM and 16 μg of 4-nonanol (internal standard) were mixed with the tomato juice to obtain a homogeneous powder while inactivating enzymes. The powder was rapidly transferred to a 33 ml pressurized extraction cell for immediate extraction. The extractor was an ASE 200 system (Dionex, Sunnyvale, CA). Extraction conditions were: solvent

141	volatile compounds compared to distillation at ambient pressure (Trad, Ginies, Gaaliche,
142	Renard, & Mars, 2012).
143	
144	2.5 GC-MS
145	Volatile samples (2 µl) were injected into a GC-MS system (QP2010; Shimadzu, Kyoto,
146	Japan) equipped with a UB Wax capillary column [30 m, 0.32 mm i.d., 0.5 μ m film thickness]
147	(Interchim, Montluçon, France) as described in Birtic, Ginies, Causse, Page & Renard (2009).
148	A total of 44 volatile compounds were detected (Table 1).
149	
150	Detection of LOX volatile oxidation products used a CPSIL 5 CB capillary column [30 m,
151	$0.25\ mm$ i.d., $0.5\ \mu m$ film thickness] (Interchim, Montluçon, France). The injection port was
152	used in split mode (1/15), and carrier gas (He) velocity was kept at a constant 35 cm.s ⁻¹ . The
153	initial oven temperature of 40 °C was held for 2 min then ramped up at 3 °C per min to 60 °C
154	then at 10 °C per min to 230 °C. This final temperature was held for 10 min. The mass
155	spectrometer was operated in electron ionization mode at 70 eV. Single-ion monitoring (SIM)
156	was used for quantification: ions 55, 44, 41 and 83 were used to monitor 1-penten-3-one,
157	hexanal, (E)-2-hexenal and (Z)-3-hexenal, respectively.
158	
159	2.6 Fatty acids contents
160	Fatty acids were analyzed by GC-MS after transesterification to fatty acid methyl esters
161	(FAME). Total lipid extract was based on Schäfer (1998), with modifications. 500 mg of
162	freeze-dried tomato (without seed) was homogenized with 10 g of Fontainebleau sand and
163	transferred into a 11 ml pressurized extraction cell, and then 0.25 mg of nonadecanoic acid
164	(internal standard) was introduced. The extractor was an ASE 200 system (Dionex,

165	Sunnyvale, CA), with CHCl ₃ /Methanol (2/1, v/v) as solvent, 100 bars, 120 °C, 5 min
166	preheating then 5 min static incubation, flushed 50 % and one cycle.
167	A 1 ml aliquot of extract was transesterified by adding 1 ml of BF $_3$ /methanol (10 %) then
168	incubated at 85 °C for 1 h. After cooling, 2 ml hexane and 2 ml of HCO ₃ 0.2 mol/L were
169	added. The tube was vortexed and the organic phase was dried.
170	1 μL of FAME was injected on the UBWAX capillary column [30 m, 0.25 mm i.d., 0.5 μm
171	film thickness] (Interchim, Montluçon, France). The injection port was operated in splitless
172	mode for the first 30 s, after which the carrier gas (He) velocity was kept a constant 35 cm.s ⁻¹ .
173	The initial oven temperature of 50 °C was held for 1 min and then ramped up at 20 °C per min
174	to 200 °C then at 3 °C per min to 230 °C. This final temperature was held for 15 min. The
175	mass spectrometer was operated in electron ionization mode at 70 eV with continuous scans
176	(every 0.5 s) from mass-to-charge ratio (m/z) 50 to 360.
177	Fatty acid levels were expressed in milligrams of methyl nonadecanoate equivalent.
178	
179	2.7 Enzyme activities
180	Enzyme extraction was based on Riley, Willemot, & Thompson (1996) and Rodrigo, Jolie,
181	Van Loey, & Hendrickx (2007). Proteins were extracted by grinding 50 g of tomato pericarp
182	with 50 g of cold 0.2 mol/L sodium phosphate buffer pH 6.5 containing 2 ml/L of Triton X-
183	100, followed by centrifugation at 10000 g for 10 min at 4 °C. Protein concentration was
184	measured by the Bradford method (Bradford, 1976).
185	
186	LOX activity was measured by increase in absorbance at 234 nm corresponding to the
187	generation of conjugated double bonds in linoleic acid (Surrey, 1964). The supernatant (40
188	$\mu L)$ was added to 2 ml of phosphate buffer pH 6 and 40 μl of a linoleic acid solution
189	(dissolved at 6 μg/ml in NaOH 24 mmol/L plus Tween 20 10 mg/l). Absorbance at 234 nm

190	was monitored for 5 min. Activity was expressed as absorbance per min per ml of tomato
191	extract.
192	HPL activity was measured using the NADH-coupled enzyme assay of Vick (1991) as the
193	decrease in absorbance at 340 nm on oxidation of NaDH, a co-factor for alcohol
194	dehydrogenase. The hydroperoxylinolenic acid substrate for HPL was prepared according to
195	Vick (1991). The assay mixture contained 200 μ l of supernatant, 500 μ L of substrate, 150 μ I
196	of 150 units yeast alcohol dehydrogenase solution, and 50 μ l of 10 mmol/L NADH. A blank
197	was performed with the assay mixture to check NADH stability during analysis.
198	
199	2.8 Statistical analysis
200	Results are presented as mean values, and the reproducibility of the results is expressed as a
201	pooled standard deviation. Pooled standard deviations were calculated for each series of
202	replicates using the sum of individual variances weighted by the individual degrees of
203	freedom (Box, Hunter, & Hunter, 1978). PCA was carried out using ExcelStat (Microsoft,
204	Redmond, WA).
8	

205	3. Results
206	3.1 Tomato characteristics
207	The two tomato lines presented the expected general characteristics. In order to eliminate bias
208	linked to maturation patterns, both tomatoes were harvested at the red-ripe stage. Levovil
209	were much bigger than LCx (Table 2) and were also less firm. Firmness decreased during
210	storage for both varieties. For LCx, the decrease was delayed by storage at 4 °C, while for
211	Levovil temperature had no influence on loss of texture (Fig 1A and B). Both were picked
212	fully red-ripe as visible from their high saturation values and hue angles close to 45 $^{\circ}$. No
213	significant variations during storage were found for fruit weight, luminance or saturation
214	(Table 2). Hue angle decreased significantly during storage at 20 °C (but not at 4 °C) for LCx
215	(Fig. 1C) whereas it increased significantly for storage at 4 °C (but not 20 °C) for Levovil
216	(Fig. 1D). The time-course evolution of physical characteristics during storage was conform
217	to the expected behavior of tomatoes, with loss of texture and an increase in red colour
218	(lycopene production) at 20 °C.
219	
220	
221	3.2 Volatiles in the fresh tomatoes
222	Total volatiles concentration was much higher overall in LCx than in Levovil (Fig. 2, Tables
223	3-5). Eugenol and 2-methoxyphenol were detected only in Levovil, and methyl salicylate was
224	>50 times higher in Levovil than in LCx (Table 3). The difference in concentrations was also
225	particularly clear for volatiles originating from phenylalanine and from sulfur-containing
226	amino acids (Table 4). Benzylalcohol concentration was 22-fold higher, benzaldehyde 7-fold
227	higher and 2-phenylethanol about 4-fold higher in LCx than in Levovil. All products
228	identified as originating from sulfur-containing amino acids were 4-7-fold more concentrated

229	in LCx than in Levovil. For products originating from leucine/isoleucine, 3-methyl-1-butanol
230	was 4-fold higher in LCx whereas 2-isobutylthiazole was slightly higher in Levovil. Furaneol
231	(from carbohydrates) was also present in higher concentrations in LCx.
232	Noticeable but lower differences were found for the lipid-derived volatiles (Table 5). The
233	LOX (lipoxygenase) pathway is the origin of the C6 volatiles in tomatoes. The lipid-derived
234	volatiles are formed from the breakdown of linoleic (C18:2) and linolenic acids (C18:3) that
235	are cleaved by lipoxygenase to form C13 intermediates, themselves further modified by other
236	enzymes in the LOX pathway, notably hydroperoxide lyase (HPL). Only (E)-2-hexenal was
237	7-fold more concentrated in LCx than in Levovil, while for all others the LCx/Levovil ratios
238	were close to 2. Amounts of the linoleic and linolenic acid precursors as well as global LOX
239	and HPL activities were similar between LCx and Levovil (Table 6).
240	There were only limited differences between the two lines in terms of products of carotenoid
241	catabolism (Table 3), except farnesylacetone which was 3-fold higher in LCx.
242	
243	3.3 Time-course evolution of volatiles during storage
244	3.3.1.General
245	During storage (Fig. 2), total volatiles increased at 20 °C and decreased markedly at 4 °C for
246	both LCx and Levovil lines. Reconditioning at 20 °C allowed some recovery of volatile
247	production for LCx (though not at 30 days) but not for Levovil.
248	
249	3.3.2. Global characterization
250	Principal Component Analysis (PCA) was carried out to obtain a general overview of the
251	specific volatiles during storage. The original PCA was carried out using all individuals and
252	volatiles; for readability, Fig. 3 shows the PCA carried out using averages of the three
253	replicates and variables selected by keeping only one of the most highly-correlated variables.

254	Similar patterns were obtained with the full and the simplified data set. As expected, LCx and
255	Levovil were clearly differentiated on the first plane of PCA (71% of variance) (Fig. 3A).
256	LCx was in the same quadrant as most volatiles in the correlation circle (Fig. 3B), which can
257	be related to its generally higher production of volatiles. The Levovil/LCx separation along
258	principal component 2 also corresponded to the position of the phenylpropanoid derivatives
259	on the correlation circle. Methylsalicylate, (eugenol and 2-methoxyphenol are correlated with
260	methylsalicylate but not represented on the figure) present in Levovil but not in LCx, and 4-
261	vinyl-2-methoxyphenol, almost exclusively present in LCx (Table 3), were opposed.
262	Evolutions of sample projections during storage were very different depending on
263	temperature, but followed similar trends in the two lines (Fig 3A). The evolution observed for
264	storage at 4 °C was negatively correlated with all volatiles while the evolution for storage at
265	$20~^{\circ}\text{C}$ was correlated with a majority of detected volatiles, which is in agreement with the
266	global evolution described in Fig. 2. Levovil samples moved mostly along axis 2 (up with
267	storage at 20 °C, down with storage at 4 °C) while for LCx the coordinates along axes 1 and 2
268	were affected to the same extent (up and to the right at 20 $^{\circ}$ C, down and to the left at 4 $^{\circ}$ C).
269	The effects of reconditioning at 20 °C for 24 h (samples in italics) were most marked for
270	samples kept for shorter storage durations. For tomatoes that had only been stored 24 h at 4
271	°C, the volatile compositions after a further 24 h at 20 °C were very close to those of the
272	tomatoes that had only been stored for 24 h at 20 °C. Impact of reconditioning was much
273	lower for long storage at 4 °C.
274	The PCA map shows that the volatile compositions of the two lines were initially contrasted
275	and stayed clearly distinct during storage; however the evolution trends were affected
276	primarily by storage temperature.
277	
278	3.3.3.Evolution of LOX products

279	The main group of volatiles consisted of the so-called LOX products (Table 5), most of which
280	correlated with and contributed strongly to axis 1 of the PCA (Fig. 3B), with the exception of
281	(E,E)-2,4-decadienal and 2-pentylfuran, close to axis 2, and (Z)-3-hexen-1-ol, which had an
282	intermediate behavior. LOX products are major determinants of the aroma of tomato
283	products. During storage at 20 °C (Table 3), we noted little significant modification in the
284	LOX products, which mostly only tended to increase, nor in enzyme activities or substrate
285	concentrations (Table 6).
286	During storage at 4 °C (Table 3), the production of most LOX products decreased markedly;
287	after 24 h back at 20°C, LOX products tended to recover in LCx but not in Levovil. For
288	volatile products from lipid degradation further downstream, such as (E,E)-2,4-decadienal, the
289	situation was much less clear-cut, and we found a trend towards increased concentrations for
290	prolonged storage at 4 °C. In contrast, LOX activities remained fairly stable during storage
291	(Table 6), with values at 4 °C tending to decrease for LCx but increase for Levovil. HPL
292	activities initially decreased at 4 °C but stabilized after 1 (LCx) or 6 (Levovil) days. Linolenic
293	and linoleic acid concentrations actually increased during storage at 4 °C (Table 6).
294	
295	3.3.4.Time-course evolution of products from amino acid degradation
296	Volatiles derived from amino acids (Table 5) were mostly strongly correlated with principal
297	component 1 (Fig. 3) but showed a diverse range of behaviours during storage. In particular,
298	2-isobutylthiazole was strongly correlated with and contributed to principal component 2.
299	Production of 2-isobutylthiazole increased markedly at 20 °C in both lines (Table 5). The two
300	other products from leucine/isoleucine degradation, i.e. 3-methylbutanoic acid and 3-methyl-
301	1-butanol, were on the diagonal of principal components 1 and 2. 3-Methyl-1-butanol
302	concentration increased at 20°C in Levovil but not in LCx, and reached similar levels in both
303	lines after 6 days of storage. Products from the phenylalanine pathway followed a similar

304	pattern 3-methyl-1-butanol. Concentrations of leucine/isoleucine and phenylalanine
305	degradation products were initially high in LCx and stayed high at 20 °C., whereas in Levovil
306	they were initially low but increased markedly during storage at 20 °C. Volatiles originating
307	from sulfur-containing amino acids, illustrated in Fig. 3 by 2-methylthioethanol, increased at
308	20 °C and for short storage at 4 °C, but decreased upon prolonged storage at 4 °C in both lines.
309	As a rule, volatiles originating from amino-acid degradation tended to increase during storage
310	at 20 °C and decrease at 4 °C, but the intensity of their variations were very different for LCx
311	and Levovil.
312	
313	3.3.5. Time-course evolution of carotenoid derivatives
314	Apocarotenoid volatiles are produced by oxidative cleavage of the various carotenoids present
315	in tomato, of which the major compounds are lycopene and β -carotene. Apocarotenoids are
316	generally described as having fruity or floral attributes, and have been shown (Vogel, Tieman,
317	Sims, Odabasi, Clark, & Klee, 2010) to contribute strongly to flavour acceptability. Most
318	carotenoid-derived compounds were highly correlated with principal component 1 (Fig. 3),
319	although specific groups emerged (Table 5). One of these groups, illustrated by 6-methyl-5-
320	hepten-2-one, a lycopene degradation product, was characterized by a marked increase during
321	storage at 20 °C but stable or slightly decreased concentrations at 4 °C, with very little
322	recovery during reconditioning. Another typical behaviour is that of dihydroactinidiolide,
323	originating from β -carotene, which increased in all storage conditions. Carotenoid-derived
324	volatiles thus showed different time-course evolution patterns during storage, with most
325	increasing in storage at 20 °C but some also increasing in storage at 4 °C.
326	
327	3.3.6.Miscellaneous

Storage at 20 °C increased the amounts of volatiles produced and changed their patterns. The LOX products stayed the most abundant class but their concentrations varied only moderately, with statistical significance depending on target compound. This is confirmed by the literature. Zhang, Zeng & Li (2008) compared the volatile composition of mature red and "stale" tomatoes (storage at 25 °C, but no details of storage duration) by headspace solidphase microextraction. They found an increase in the relative area of hexanal and a decrease of (E)-2-hexenal. This is the pattern observed here for hexanal, while hexenal (sum of (E)-2and (Z)-3-hexenal) did not vary. Krumbein, Peters & Brückner (2004) noted increases in hexanal, (E)-2-heptenal and (E,E)-2,4-decadienal in tomatoes stored at 20 °C for up to 7 (cv Pronto), 10 (cv Mickey) and 21 days (cv Vanessa). Contrasted behaviours were observed for (E,E)-2,4-decadienal in LCx and Levovil. Ties & Barringer (2012) also reported moderate increases in hexanal after 14-day storage of "Campari" tomatoes and an increase in (E)-2-

352	hexenal production from the flesh only. There are also reports of very limited evolution in
353	LOX pathway substrates and enzymes during storage at 20 °C, as observed by Ties &
354	Barringer (2012). Krumbein et al. (2004) and Maul et al. (2000) had already reported
355	increased 6-methyl-5-hepten-2-one and geranylacetone during storage of tomatoes at 20 °C.
356	Few reports are available on the time-course evolution of volatiles originating from amino
357	acids in ripe tomato. During storage at 20 °C, Krumbein et al. (2004) and Zhang et al. (2009)
358	reported increased 2-isobutylthiazole and Maul et al. (2000) found increased 2+3-
359	methylbutanol. Concerning phenylpropanoid derivatives, Krumbein et al. (2004) observed an
360	increase in methylsalicylate in three varieties of tomatoes stored at 20 $^{\circ}$ C. The main evolution
361	in volatile production during storage at 20 °C was a decrease of the relative proportion of
362	LOX products, notably relative to the carotenoid degradation products. This can be linked to
363	loss of the "green" or "grassy" notes as the tomatoes mature , whereas "fruity" aromas
364	become more marked (Baldwin, Scott, Shewmaker, & Schuch, 2000).
365	
366	Tomato volatiles were strongly affected by storage at 4 °C, though red-ripe fruits are less
367	sensitive to cold than earlier maturation stages. The decrease in production of LOX
368	compounds under cold conditions has been studied because they are major contributors to
369	tomato aroma. Maul et al. (2000) had already noted a marked decrease in the production of
370	LOX compounds (lipid-derived volatiles) during storage at low temperatures, but this loss
371	cannot be explained in a straightforward manner, and in particular is not explained by a loss
372	of substrate or global enzyme activity, as exemplified in Ties & Barringer (2012) or Bai,
373	Baldwin, Imahori, Kostenyuk, Burns, & Brecht (2011). Bai et al. (2011) observed an increase
374	in total LOX activity after 5-day storage at 5 °C and a decrease in HPL activity with some
375	recovery after 4-day storage at 20 °C, while Ties & Barringer (2012) found a slight increase
376	in total LOX activity, confirming our results. Bai et al. (2011) also indicated that the

377	divergence between enzyme activities (and transcript expression) and LOX product
378	production might be linked to substrate availability. However, as reported by Ties &
379	Barringer (2012), the concentrations of the LOX substrates linoleic and linolenic acid actually
380	increased during storage (Table 2). This divergence is therefore most likely linked to the
381	existence of different isoforms of LOX expressed in ripening tomato. Griffiths, Prestage,
382	Linforth, Zhang, Taylor, & Grierson (1999) reported no impact on generation of C6 aldehydes
383	and alcohols in antisense-transgenic tomatoes in which <i>TomloxA</i> and <i>TomloxB</i> were
384	inactivated, while the inactivation of <i>TomloxC</i> (Chen, Hackett, Walker, Taylor, Lin, &
385	Grierson, 2004) led to a marked reduction in the production of hexanal, hexenal and hexanol.
386	Kovács, Fray, Tikunov, Graham, Bradley, Seymour et al. (2009), studying the effect of
387	ripening mutations on volatile synthesis, also showed that LOX compounds (fatty-acid
388	derived volatiles) appear intimately linked to <i>TomloxC</i> expression. Bai et al. (2011) studied
389	the expression of $TomloxA$, B , C and D in chilled (5 days at 5 °C) tomatoes and found a
390	downregulation of all but <i>TomloxD</i> upon chilling, together with increased LOX activity. The
391	existence of a specific isoform downregulated during cold storage might explain the decrease
392	in LOX volatiles under cold storage without loss of substrates or global LOX activity.
393	The decrease in phenylpropanoid (eugenol and 2-methylphenol) concentrations in Levovil
394	during storage at 4 °C could actually be beneficial, leading to a loss (or at least a decrease)of
395	the "pharmaceutical" aftertaste.
396	
397	4.2 Comparison of the two cultivars
398	The study was performed on two tomato lines known for their contrasted sensory attributes:
399	Levovil, characterized by its large fruits and "pharmaceutical" aftertaste, and LCx, an
400	introgressed line carrying five chromosome regions from the Cervil cherry tomato identified
401	as bearing the qtls for quality traits, notably for tomato aroma intensity in the Levovil

402	background (Causse, Saliba-Colombani, Lecomte, Duffé, Rousselle, & Buret, 2002; Chaib et
403	al., 2006). The overall pattern of volatiles in the freshly-harvested red fruits (Tables 3 to 5)
404	confirms previous research (Birtic et al., 2009; Zanor, Eambla, Chaib, Steppa, Medina,
405	Granell, et al., 2009). The difference in total volatiles production could be partially explained
406	by the smaller size and therefore higher peel-to-flesh ratio of LCx, as higher concentrations of
407	volatiles and their precursors are found in tomato peel (Ties & Barringer, 2012). Eugenol and
408	2-methoxyphenol are responsible for the presence of "pharmaceutical" aftertaste in Levovil
409	(Causse et al., 2002; Chaib et al., 2006; Zanor al., 2009) and were absent in LCx, as in its
410	Cervil introgression parent (Birtic et al., 2009). The difference between the cultivars could be
411	due to different glycosidation patterns (Tikunov, de Vos, Paramas, Hall, & Bovy, 2010),
412	although Birtic et al. (2009) did not find high accumulation of the corresponding glycosides in
413	Cervil. The two lines also differed in terms of volatiles derived from phenylalanine and
414	sulphur-containing amino acids, though again this was less marked than in the Cervil/Levovil
415	comparison (Zanor et al., 2009). Smaller differences could be noted for volatiles derived from
416	the LOX pathway; concentrations of fatty acid precursors and enzyme activities (LOX and
417	HPL) were also quite similar. The fatty acid contents were in agreement with the levels
418	reported by Gray, Prestage, Linforth, & Taylor (1999). Linoleic acid was by far the
419	predominant fatty acid, with linoleic/linolenic ratio of 7.7 for Levovil and 6.1 for LCx, which
420	are high values in comparison to those reported by Gray et al. (1999) and Ties & Barringer
421	(2012). Hexanal originates from linoleic acid while hexenal originates from linolenic acid.
422	The hexanal/hexenal ratios (0.4 in Levovil, 0.5 in LCx) were about 10-fold lower than the
423	linoleic/linolenic acid ratio, but still much higher than those found by Gray et al. (1999). This
424	indicates preferential conversion of linolenic acid, as was also found by Ties & Barringer
425	(2012). The two lines exhibited the expected characteristics and contrasts, both in terms of
426	physical characteristics and volatiles production, though the differential was less visible than

with Cervil, the origin of the five introgressed chromosome region (Birtic et al., 2009; Chaib et al., 2006). The main differences concern volatile production, which was much higher in LCx, and the phenylpropanoid pathway, with only Levovil producing phenylpropanoid volatiles.

431

427

428

429

430

5. Conclusion

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

432

The storage conditions of red-ripe tomatoes modified both global volatiles production and volatiles profile. Cold storage was detrimental for tomato aroma even when starting from redripe fruits. Conservation at 4 °C led to a drop in volatile production and loss of aroma compounds. Storing tomatoes in a refrigerator thus jeopardizes all the efforts carried out throughout the supply chain to deliver a high-quality produce. Only in the earliest stages of fridge storage (< 1 week) could the aroma be restored by reconditioning the tomatoes at room temperature for 24 h. This conditioning can still have some positive effects after long (> 2 weeks) fridge storage, though with a marked imbalance compared to the fresh tomato. In particular, there was an increase of the relative importance of carotenoid degradation products and even some of the down-chain LOX products such as (EE)-2,4-decadienal. Aroma profiles of red-ripe tomatoes were positively impacted by storage at 20 °C, with an overall increase in volatile production. This was accompanied by a possible decrease of the "pharmaceutical" aftertaste in Levovil and an increase in the fruity notes brought by carotenoid degradation products in both Levovil and LCx. Clearly, conservation at room temperature should be advocated for consumers. Therefore, further consumer information efforts as well as specific storage guidelines could be highly beneficial for consumer perceptions of tomato quality.

450

451	
452	Acknowledgements
453	This work was funded by project ANR-06-PNRA-009 QualitomFil "Elaboration et
454	valorisation de la qualité organoleptique et nutritionnelle de la tomate tout au long de la
455	filière" program. The authors thank Antony Rech, Patrice Reling, and Marielle Bogé for the
456	excellent technical help.
457	
458	References
459	Auerswald, H., Peters, P., Brückner, B., Krumbein, A., & Kuchenbuch, R. (1999). Sensory
460	analysis and instrumental measurements of short-term stored tomatoes (Lycopersicon
461	esculentum Mill.). Postharvest Biology and Technology, 15(3), 323-334.
462	Bai, J.H., Baldwin, E.A., Imahori, Y., Kostenyuk, I., Burns, J., & Brecht, J.K. (2011).
463	Chilling and heating may regulate C6 volatile aroma production by different mechanisms in
464	tomato (Solanum lycopersicum) fruit. Postharvest Biology and Technology, 60(2), 111-120.
465	Baldwin, E.A., Scott, J.W., Shewmaker, C.K., & Schuch, W. (2000). Flavour trivia and
466	tomato aroma: Biochemistry and possible mechanisms for control of important aroma
467	components. <i>HortScience</i> , <i>35</i> (6), 1013-1022.
468	Baysal, T., & Demirdoven, A. (2007). Lipoxygenase in fruits and vegetables: A review.
469	Enzyme and Microbial Technology, 40(4), 491-496.

- 470 Birtic, S., Ginies, C., Causse, M., Renard, C. M. G. C., & Page, D. (2009). Changes in
- volatiles and glycosides during fruit maturation of two contrasted tomato (Solanum
- 472 lycopersicum) lines. Journal of Agricultural and Food Chemistry, 57(2), 591-598.
- Box, G.E.P., Hunter, W.G., & Hunter, J. S. (1978). Statistics for Experimenters: John Wiley
- and Sons, New York.
- Bradford, M. M. (1976). Rapid and sensitive method for quantitation of microgram quantities
- of protein utilizing principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-
- 477 254.
- 478 Causse, M., Saliba-Colombani, V., Lecomte, L., Duffé, P., Rousselle, P., & Buret, M. (2002).
- 479 QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the
- variation of sensory and instrumental traits. Journal of Experimental Botany, 53(377), 2089-
- 481 2098.
- Chaib, J., Lecomte, L., Buret, M., & Causse, M. (2006). Stability over genetic backgrounds,
- 483 generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato.
- 484 Theoretical and Applied Genetics, 112(5), 934-944.
- Chen, G.P., Hackett, R., Walker, D., Taylor, A., Lin, Z.F., & Grierson, D. (2004).
- 486 Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the
- generation of fatty acid-derived flavour compounds. *Plant Physiology*, 136(1), 2641-2651.
- 488 de Leon-Sanchez, F.D., Pelayo-Zaldivar, C., Rivera-Cabrera, F., Ponce-Valadez, M., Avila-
- Alejandre, X., Fernandez, F.J., Escalona-Buendia, H.B., & Perez-Flores, L.J. (2009). Effect of
- 490 refrigerated storage on aroma and alcohol dehydrogenase activity in tomato fruit. Postharvest
- 491 *Biology and Technology*, *54*(2), 93-100.

- 492 Gray, D.A., Prestage, S., Linforth, R.S.T., & Taylor, A.J. (1999). Fresh tomato specific
- fluctuations in the composition of lipoxygenase-generated C6 aldehydes. *Food Chemistry*,
- 494 64(2), 149-155.
- 495 Griffiths, A., Prestage, S., Linforth, R., Zhang, J., Taylor, A., & Grierson, D. (1999). Fruit-
- 496 specific lipoxygenase suppression in antisense-transgenic tomatoes. Postharvest Biology and
- 497 *Technology*, 17(3), 163-173.
- Hauck, T., Hübner, Y., Brühlmann, F., & Schwab, W. (2003). Alternative pathway for the
- formation of 4,5-dihydroxy-2,3-pentanedione, the proposed precursor of 4-hydroxy-5-methyl-
- 500 3(2H)-furanone as well as autoinducer-2, and its detection as natural constituent of tomato
- fruit. Biochimica et Biophysica Acta (BBA) General Subjects, 1623(2-3), 109-119.
- Kovács, K., Fray, R.G., Tikunov, Y., Graham, N., Bradley, G., Seymour, G.B., Bovy, A.G., &
- 503 Grierson, D. (2009). Effect of tomato pleiotropic ripening mutations on flavour volatile
- 504 biosynthesis. *Phytochemistry*, 70(8), 1003-1008.
- Krumbein, A., Peters, P., & Brückner, B. (2004). Flavour compounds and a quantitative
- descriptive analysis of tomatoes (*Lycopersicon esculentum Mill.*) of different cultivars in
- short-term storage. Postharvest Biology and Technology, 32(1), 15-28.
- Lewinsohn, E., Sitrit, Y., Bar, E., Azulay, Y., Ibdah, M., Meir, A., Yosef, E., Zamir, D., &
- Tadmor, Y. (2005). Not just colours-carotenoid degradation as a link between pigmentation
- 510 and aroma in tomato and watermelon fruit. Trends in Food Science & Technology, 16(9), 407-
- 511 415.

- Linforth, R.S.T., Savary, I., Pattenden, B., & Taylor, A.J. (1994). Volatile compounds found
- 513 in expired air during eating of fresh tomatoes and in the headspace above tomatoes. Journal of
- 514 the Science of Food and Agriculture, 65(2) 241-247.
- Mathieu, S., Cin, V.D., Fei, Z.J., Li, H., Bliss, P., Taylor, M.G., Klee, H.J., & Tieman, D.M.
- 516 (2009). Flavour compounds in tomato fruits: identification of loci and potential pathways
- affecting volatile composition. *Journal of Experimental Botany*, 60(1), 325-337.
- 518 Maul, F., Sargent, S. A., Sims, C.A., Baldwin, E.A., Balaban, M.O., & Huber, D.J. (2000).
- Tomato flavour and aroma quality as affected by storage temperature. Journal of Food
- 520 Science, 65(7), 1228-1237.
- Mayer, F., Takeoka, G.K., Buttery, R.G., Whitehand, L.C., Naim, M.N., & Rabinowitch, H.D.
- 522 (2008). Studies on the aroma of five fresh tomato cultivars and the precursors of cis- and
- 523 trans-4,5-epoxy-(E)-2-decenals and methional. *Journal of Agricultural and Food Chemistry*,
- *524 56*(10), 3749-3757.
- Riley, J.C.M., & Thompson, J.E. (1998). Ripening-induced acceleration of volatile aldehyde
- 526 generation following tissue disruption in tomato fruit. *Physiologia Plantarum*, 104, 571-576.
- Riley, J.C.M., Willemot, C., & Thompson, J.E. (1996). Lipoxygenase and hydroperoxide
- 528 lyase activities in ripening tomato fruit. *Postharvest Biology and Technology*, 7(1/2), 97-107.
- Robinson, D.S., Wu, Z.C., Domoney, C., & Casey, R. (1995). Lipoxygenases and the quality
- 530 of foods. *Food Chemistry*, *54*(1), 33-43.
- Rodrigo, D., Jolie, R., Van Loey, A., & Hendrickx, M. (2007). Thermal and high pressure
- 532 stability of tomato lipoxygenase and hydroperoxide lyase. *Journal of Food Engineering*,
- 533 79(2), 423-429.

- 534 Schäfer, K. (1998). Accelerated solvent extraction of lipids for determining the fatty acid
- composition of biological material. *Analytica Chimica Acta*, 358(1), 69-77.
- 536 Schwab, W., Davidovich-Rikatani, R., & Lewinsohn, E. (2008). Biosynthesis of plant-derived
- flavour compounds. *The Plant Journal*, *54*(4), 712-732.
- 538 Stern, D.J., Buttery, R.G., Teranishi, R., Ling, L., Scott, K., & Cantwell, M. (1994). Effect of
- storage and ripening on fresh tomato quality, Part 1. Food Chemistry, 49(3), 225-231.
- 540 Surrey, K. (1964). Spectrophotometric method for determination of lipoxidase activity. *Plant*
- 541 *Physiology*, 39(1), 65-70.
- 542 Ties, P., & Barringer, S. (2012). Influence of lipid content and lipoxygenase on flavour
- volatiles in the tomato peel and flesh. *Journal of Food Science*, 77(7), C830-C837.
- Tikunov, Y., Lommen, A., de Vos, C.H.R., Verhoeven, H.A., Bino, R.J., Hall, R.D., & Bovy,
- A.G. (2005). A novel approach for nontargeted data analysis for metabolomics. Large-scale
- profiling of tomato fruit volatiles. *Plant Physiology*, 139(3), 1125-1137.
- 547 Tikunov, Y.M., de Vos, R.C.H., Paramas, A.M.G., Hall, R.D., & Bovy, A.G. (2010). A role
- 548 for differential glycoconjugation in the emission of phenylpropanoid volatiles from tomato
- fruit discovered using a metabolic data fusion approach. *Plant Physiology*, 152(1), 55-70.
- 550 Trad, M., Ginies, C., Gaaliche, B., Renard, C.M.G.C., & Mars, M. (2012). Does pollination
- affect aroma development in ripened fig [Ficus carica L.] fruit? Scientia Horticulturae, 134,
- 552 93-99.

553 Ullrich, F., & Grosch, W. (1987). Identification of the most intense volatile flavour 554 compounds formed during autoxidation of linoleic acid. Zeitschrift für 555 Lebensmitteluntersuchung und -forschung A, 184(4), 277-282. Vick, B.A. (1991). A spectrophotometric assay for hydroperoxide lyase. Lipids, 26(4), 315-556 557 320. 558 Vogel, J.T., Tieman, D.M., Sims, C.A., Odabasi, A.Z., Clark, D.G., & Klee, H.J. (2010). Carotenoid content impacts flavour acceptability in tomato (Solanum lycopersicum). Journal 559 560 of the Science of Food and Agriculture, 90(13), 2233-2240. 561 Xu, Y.C., & Barringer, S. (2010). Comparison of volatile release in tomatillo and different 562 varieties of tomato during chewing. Journal of Food Science, 75(4), C352-C358. 563 Zanor, M.I., Rambla, J.L., Chaib, J., Steppa, A., Medina, A., Granell, A., Fernie, A.R., & 564 Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato 565 allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. 566 567 Zhang, Z.M., Zeng, D.D., & Li, G.K. (2008). Study of the volatile composition of tomato 568 during storage by a combination sampling method coupled with gas chromatography/mass 569 spectrometry. Journal of the Science of Food and Agriculture, 88(1), 116-124.

570	Caption to figures
571	
572	Figure 1: Time-course evolution of firmness and hue angle for LCx and Levovil tomatoes
573	stored at 20 °C and 4 °C. Each point is the average (and standard deviation) of three replicates
574	of 5 tomatoes each.
575	o: LCx, stored at 20 °C; △ : LCx, stored at 4 °C; ▲ : LCx; stored at 4 °C then reconditioned
576	for 24 h at 20 °C.
577	□ : Levovil, stored at 20 °C; ◊ : Levovil, stored at 4 °C; ♦ : Levovil, stored at 4 °C then
578	reconditioned for 24 h at 20 °C.
579	
580	Figure 2: Time-course evolution of the sum of volatiles of LCx and Levovil tomatoes stored
581	at 20 °C and 4 °C. Each point is the average (and standard deviation) of three replicates of 5
582	tomatoes each.
583	o: LCx, stored at 20 °C; △: LCx, stored at 4 °C; ▲: LCx, stored at 4 °C then reconditioned
584	for 24 h at 20 °C.
585	□: Levovil, stored at 20 °C; ◊: Levovil, stored at 4 °C; ♦: Levovil, stored at 4 °C then
586	reconditioned for 24 h at 20 °C.
587	
588	Figure 3: Principal component analysis of the volatiles composition of tomatoes as a function
589	of their storage conditions.
590	Variables were selected based on a PCA carried out with all variables and all samples,
591	followed by eliminating all but one of each highly correlated variables group. Each point is
592	the average of three replicates of 5 tomatoes each.
593	Panel A: map of samples (tomatoes) projected onto the principal components 1 x 2 plane.

Coding of the sample points: L, levovil; X, LCx; the first number gives storage temperature,
followed by duration of storage. The "+1" indicates that the sample was left for 1 day at 20 °C
after storage at 4 °C. Thus L_4_15+1 designated tomatoes of the Levovil variety, stored at 4
°C for 15 days then left for 1 day at 20 °C to recover volatile production. Blue denotes storage
598 at 4 °C, and red denotes storage at 20 °C.
Panel B: variables (volatile compounds) projected on the correlation circle defined by
principal components 1 x 2. Each arrow corresponds to one of the variables. The colours
denote biochemical origins: blue for volatiles derived from fatty acid degradation by LOX,
purple from carotenoids, green for amino acids, orange for phenylpropanoids, and red from
603 carbohydrates.
604

605 **Tables**

Table 1: Volatile compounds quantified: retention index, odourant potential and biosynthetic origin

Volatile compound	RI	Contribution to tomato aroma ^b	Biosynthetic origin
Hexanal	a	++	Lipid ^{c, e}
(E)-2-hexenal	a	+	Lipid ^{c, e}
(Z)-3-hexenal	a	+++	Lipid ^{c, e}
1-penten-3-one	a	+	Lipid ^{c, e}
(E)-2-pentenal	1115		Lipid ^{c, e}
1-penten-3-ol	1168		Lipid ^{c, e}
3-methyl-1-butanol	1219	+	Leucine/isoleucine c, e
2-pentylfuran	1245		Lipid ^c
1-pentanol	1262		Lipid ^{c, e}
2-methylthioacetaldehyde	1282		Sulfur-containing amino acid ^{b,f}
1-octen-3-one	1313	+	Lipid ^{b, h}
2-hexanol	1326		Lipid ^e
(Z)-2-heptenal	1341		Lipid ^c
6-methyl-5-hepten-2-one	1354		Open chain carotenoid ^c , lycopene ^e
1-hexanol	1366		Lipid ^e
(Z)-3-hexen-1-ol	1399		Lipid ^e
2-isobutylthiazole	1422	+	Leucine/isoleucine c, e
(E)-2-octenal	1449	+	
Methional	1470	+	Sulfur-containing amino acidbb,f
Benzaldehyde	1550		Phenylalanine ^e
2-methylthioethanol	1554		Sulfur-containing amino acidf
β-cyclocitral	1642		Cyclic carotenoid ^c , β-carotene ^d
Phenylacetaldehyde	1671	++	Phenylalanine ^e
3-methylbutanoic acid	1701	+	Leucine/isoleucine c, e
(E,E)-2,4-nonadienal	1723		Lipid ^b
3-methylthiopropanol	1741		Sulfur-containing amino acid ^f
Geranial	1754		Open chain carotenoid ^c , lycopene ^d
(E,Z)-2,4-decadienal	1786	+++	Lipid ^c
Methyl salicylate	1804		Phenylpropanoid ^c
(E,E)-2,4-decadienal	1820	+++	Lipid ^c
Geranylacetone	1874		Open chain carotenoid ^c , phytoene phytofluene ^d
2-methoxyphenol	1889		Phenylpropanoid ^c
Benzyl alcohol	1905		Phenylalanine ^e
2-phenylethanol	1939		Phenylalanine ^e
β-ionone	1962	+	Cyclic carotenoid ^c , β-carotene ^d
Cis-4,5-epoxy-(E)—-2-decenal	2005		Lipid ^b
5,6-Epoxy β-ionone	2016		Cyclic carotenoid ^c , β-carotene ^d
Trans-4,5-epoxy-(E)—-2-decenal	2025	++	Lipid ^b
Furaneol	2057	+++	Carbohydrates ^{f,g}
Pseudo-ionone (unknown configuration)	2154		Cyclic carotenoid ^c , β-carotene ^{d,f}

607 608	a: quantification on DB5 colum		
608		n; b: from Mayer, Takeol	ca, Buttery, Whitehand, Naim, & Rabinowitch (200
	c: from Tikunov, Lommen, de V	Vos, Verhoeven, Bino, Ha	all et al. (2005); d: from Lewinsohn, Sitrit, Bar, Az
609	Ibdah, Meir et al. (2005); e: from	m Mathieu, Cin, Fei, Li, I	Bliss, Taylor, et al. (2009); f: from Schwab,
610	Davidovitch-Rikatani, & Lewin	nsohn (2008); g: from Hau	nck, Hübner, Brühlmann & Schwab (2003); h: fron
	COLINA		

Table 2: Time-course evolution of the physical characteristics of tomatoes during storage at different temperatures. For all data, n = 3 repetitions of 5 tomatoes each.

	Si	orage				Colo	
7	Famm	Duration (days)	Weight	Firmness (N)	L*	C*	h* (degrees)
Levovil	Гетр	(days)	(g) 128	24.5	37.9	31.9	43.2
	20 °C	1	128	23.6	37.9	30.4	43.2 44.9
2	20 C	3	129	23.6	37.4	30.4	43.5
		6	123	21. 4 17.1	37.2	31.9	43.3 41.9
,	4 °C	1	129	26.2	37.3	32.8	43.5
4	+ C	6	129	18.3	38.4	32.8	46.5
		15	129	14.0	38.3	31.9	49.7
		30	127	15.5	37.0	28.3	49.6
4 °C + 1 d	ay 20						
°C		1	119	26.7	37.6	32.2	42.2
		6	130	16.9	37.2	31.8	44.1
		15	127	17.6	37.6	29.4	
		30	125	15.8	37.0	27.5	48.8
LCx		0	31	40.3	37.8	30.6	42.7
2	20 °C	1	27	40.0	37.9	30.7	39.5
		3	27	36.0	36.3	30.2	37.9
		6	29	26.1	36.8	30.1	38.4
4	4 °C	1	29	37.6	38.1	30.0	41.0
		6	31	37.7	36.7	29.6	39.7
		15	31	20.6	35.4	28.9	40.0
100 . 1 1	- 20	30	33	31.6	35.3	30.5	41.1
4 °C + 1 d °C	ay 20	1	31	41.1	36.4	30.0	39.3
C		6	30	30.8	36.1	28.8	39.6
		15	32	22.3	36.0	28.4	40.0
		30	30	16.6	37.1	28.6	42.8
Pooled sta	undand		42/6	5.4	1.4	2.9	2.5
6							

Table 3: Time-course evolution of volatiles of carotenoid origin, phenylpropanoid origin and carbohydrate origin in stored tomatoes (µg/kg fresh weight, in 4-nonanol equivalents). For all data, n = 3 repetitions of 5 tomatoes each.

		Carotenoid origin	rigin								Phenylprc	Phenylpropanoid origin	air		Carbohydrate origin
Storage	e,	Open-chain carotenoids	arotenc	spic		cyclic carotenoids	noids					5			
		6-methyl-		7	Ĺ	Ħ	Epoxy	Dihydro		β		2-	_	4-vinyl-2-	
Temp	Duration (days)	5-nepten-2- one	Gera nial	Geranyl	Geranyl Farnesyl acetone acetone	β-ionone ion	β- ionone	actinidi olide	o ionone	cyclo citral	methyl salicylate	methoxy phenol	Eugen ol	methoxy phenol	Furaneol
Levovil	0	81	23	36	71	8	10	21	11	3	92	74	35	8	7
20°C	1	98	24	36	57	7	7	17	10		83	55	19	5	S
	3	152	27	54	83	8	8	21	12	8	85		27	4	111
	9	358	37	75	122	6	10	28	17	3	TT 1	55	23	3	3
4°C	1	68	22	28	43	7	∞	17	6	3	95	62	31	5	4
	9	96	25	26	33	4	9	21	7	2	53		24	3	26
	15	96	34	39	62	5	5	25	15	3	29			1	40
	30	45	15	16	27	4	3	28		1	5			1	21
4° C + 1 day 20° C	ر ر	100	30	51	75	∞	∞	18	12	3	108			9	9
	9	52	15	20	27	5	5	20		2	69	58		5	13
	15	54	18	30	50	9	5	28	5	2	40	36	17	2	26
	30	43	14	20	40	9	4	33	L	2	3	9	3	—	29
LCx	0	156	22	82	214	16	18	37	10	5	2	0	0	35	34
20°C	1	190	29	103	275	18	17	38	14		2	0	0	14	23
	3	236	4	143	367	21	20	47	23	9	2	0		11	17
	9	381	99	207	208	29	26	61	35		3	0	0	9	12
4°C	1	133	22	71	186	14	13	33	6	4	2	1	0	15	29
	9	156	37	85	172	14	15	40	12	2	2	2	0	6	20
	15	06	28	52	89	10	11	48	6	4	2	0	0	15	3
	30	72	23	81	152	12	10	51	10	4	1	0	0	13	16
4° C + 1 day 20° C	C 1	163	31	109	274	18	18	40	14	5	2	0		13	28
	9	145	36	109	240	18	18	49	15	5	1		0	6	8
	15	81	23	59	96	11	13	48	12	4	2			18	9
			•												
				>		32	7								

30	89	20	65	121	12	11	50	6	ъ	1	0	0	16	14
Pooled standard deviation	26.6	5.9	16.1	39.5	2.9	2.1	4.1	2.9	0.7	18.6	12.2	9.9	4.4	10.6
					33									

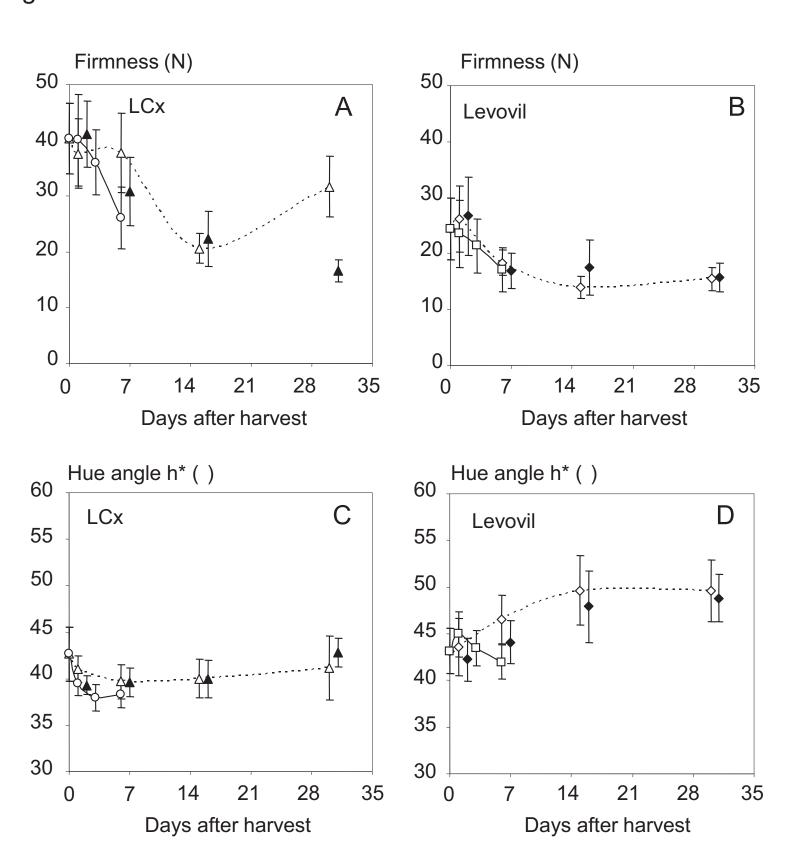
Table 4: Time-course evolution of volatiles of amino acid origin in stored tomatoes (µg/kg fresh weight, in 4-nonanol equivalents). For all data, n = 3 repetitions of 5 tomatoes each.

S	Storage	·	Leuci	Leucine or isoleucine	cine		Phenylalanine	anine		Sulfur-contai	Sulfur-containing amino acids	qs	
		direction	2 mother	2-	3-methyl	Dong	Dhenvil	2-	Dongul	Cidthydam C	2- motheribio	3-	
T	Temp	duration (days)	3-memyi- 1-butanol,	thiazole	outanoic acid,	benz aldehyde	rnenyi acetaldehyde	pnenyi ethanol	Delizyi Alcohol	acetaldehyde	ethanol	memyrmo propanol	methional
Levovil		0	69	12	51	16	6	52	50		28		1
2	20 °C	1	123	18	78	14	12	99	48	2	37	12	4
		3	306	34	338	16	17	134	99	4	44		7
		9	523	99	545	14	34	243	43	5	09		
4	4 °C	_	93	25	42	14	10	58	50	2	39		3
		9	28	14	10	∞	4	24	27	(4	9 61		
		15	10	14	3	5	3	-	4	2	9 40	2	3
		30	5	6	3	3	2	1	3)	3		
4 °C + 1 day 20 °C	ay 20 °C	1	100	17	61	12	13	27	28	2	2 43	10	
		9	51	12	34	9	5	4	5	2	35	9	
		15	6	12	4	4	5	1	3	1	8		2
		30	9	~	9	4	3	1	4	0	0	0	
LCx		0	308	7	291	109	17	258	1100	5	5 93	37	1
2	20 °C	1	327	8	288	69	91	218	734	(7 109		1
		3	297	10	255	44	14	208	308	6	136		6
		9	349	23	226	35	17	189	158	12	200		
4	4 °C	1	254	S	79	55	6	234	692	α,	3 91	46	
		9	47	4	19	29	6	84	189	Ψ,	5 107	6	
		15	25	2	14	17	4	-	11	2	36		
		30	13	1	10	14	5	_	4	0) 1	1	
$4~^{\circ}\text{C} + 1~\text{day}~20~^{\circ}\text{C}$	20 °C	1	318	9	216	51	111	177	584	9	5 125	19	6
		9	295	2	120	28	9	22	99	(7 189	ω	
		15	38		30	14	6	2	7	1	14	6	
		30	15	0	16	12	4	1	4	_	2		
							34						

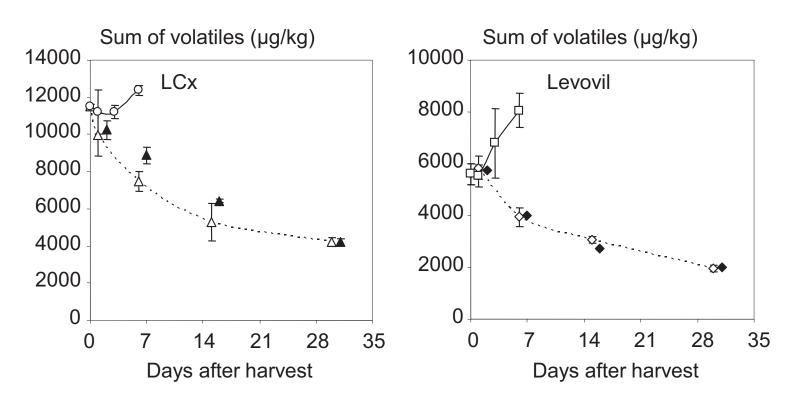
1.2	
8.6	
24.6	
1.1	
49.8	
20.8	
3.6	35
5.6	
59.7	
4.8	
49.0	
Pooled standard deviations	

Table 5: Lipid-derived volatiles in stored tomatoes (µg/kg fresh weight, in 4-nonanol equivalents, except for 1-penten-3-one, hexanal, (E)-2-hexenal and (Z)-3-hexenal, in $\mu g/kg$ fresh weight). For all data, n = 3 repetitions of 5 tomatoes each.

Storage				Fre	From linoleic acid	sic acid			From linolenic acid	enic acid					X					
					(E.E)-2.4-	,	Cis-4.5-	Trans-4.5-					-				(Z)-3			(E.E)-2.4-
Temp	Duration (days)	Hexanal	2- I hexano	2- Hexanal hexanol	Deca Deca	2,4-Deca dienal	Epoxy-2-decenal	Epoxy-2- decenal	(E)-2- Hexenal	(Z)-3- Hexenal	1-penten- 3-one	(E)- 2- Pentenal,	<u> </u>	2-pentyl furan, 1	2-pentyl (Z)-2- furan, 1-Pentanol Heptenal	(Z)-2- Heptenal,		(E)- 2- locten- Octenal, 3-one	locten- 3-one	nona dienal
Levovil	0	741	81	23		6	103	310	99	1 669		25		71	171	94		58	10	7
20 °C	1	731	70	16	23	8	91	263	106	1 775	116	25	55	59	131	87	92	39	7	7
	3	832	69	20	27	12	109	291	149	2 027	123	26	62	64	151	104	9/	45	8	~
	9	1 024	89	20	29	12	121	336	168	2 048	112	24	56	65	157	114	62	48	∞	10
4 °C	1	894	89	14	19	7	93	271	98	2120	115	25	51	43	124	06	61	36	∞	9
	9	259	67	12	21	4	39	106	09	1262	1117	26	43	49	57	39	113	20	9	3
	15	202	54	7	4	4	19	45	32	512	78	19	27	114	38	14	36	18	4	2
	30	1111	48	10	40	3	12	27	22	170	49	12	16	66	34	41	41	17	4	1
$4 ^{\circ}\text{C} + 1 \text{day } 20$	50									\										
9	<u>က</u>	9//	75	12	30	12	66	265	112	1762	114	24	54	59	140	86	20	51	6	10
	9	325	92	∞	21	4	42	112	98	1292	119	23	48	4	72	46	48	24	7	2
	15		50	7	42	4	23	28	57	419	82	19	25	119	43	25	41	21	4	1
	30	108	48	7	39	3	11	56	25	109	48	12	18	82	32	14	40	17	3	1
LCx	0	1815	106	53	52	34	144	372	490	3024	203	45	119	86	308	180	257	126	23	15
20 °C	1	1536	90	37	4	35	149	374	371	3508	221	51	119	82	284	170	160	95	18	11
	3	1530	26	4	36	22	178	485	306	3518	217	53	121	83	290	177	227	87	19	10
	9	1899	79	61	38	65	163	417	267	3455	220	51	112	83	321	206	197	87	19	12
4 °C	1	1217	66	4	39	27	116	303	275	3436	192	48	108	81	224	133	265	80	16	7
	9	739	69	31	36	52	74	188	245	2675	181	44	96	99	165	86	181	55	14	7
	15	417	75	37	43	5	64	166	177	1715	153	35	75	74	117	65	313	31	10	4
	30	408	57	24	9	9	36	98	218	744	146	34	54	68	69	45	182	27	7	3
4 °C + 1 day 20	50					\														
•	ر ر	1235	121	39	41	31	134	339	239	3274	196	20	109	75	249	153	195	98	19	6
	9	616	80	37	40	37	95	248	237	3011	214	52	1113	98	215	137	229	9/	18	∞
	15	681	99	27	38	9	90	226	249	2489	231	50	88	80	124	86	184	41	14	9
	30	394	48	24	09	9	31	73	180	996	173	40	62	57	72	49	186	26	∞	3
									36											
		3																		

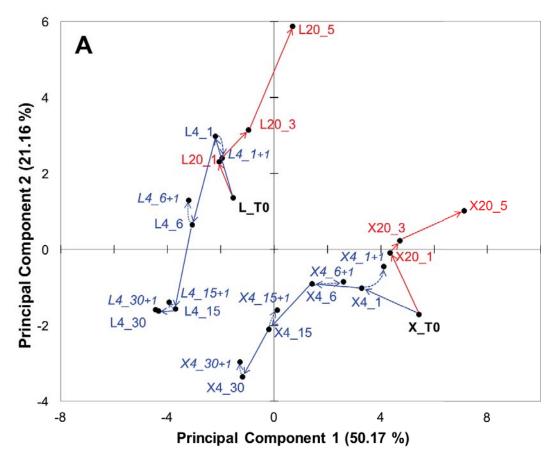

2.3

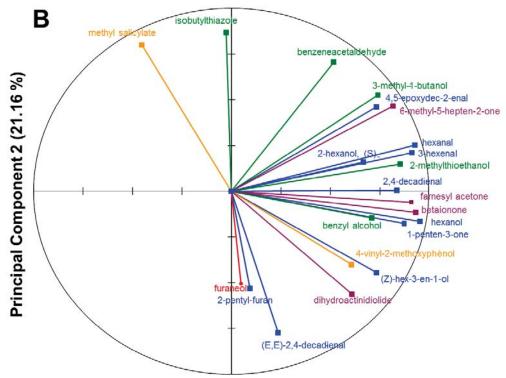
8.79 18.5 32.9 22.0 8.0 5.3 29.7 471.6 51.4 55.2 19.8 12.5 7.9 II.IPooled standard deviation 199.0 10.9


Table 6: Time-course evolution of LOX pathway enzymes and substrates in tomatoes during storage at different temperatures. Lipoxygenase (LOX) and hydroperoxylase (HPL) activities are given as variation of absorbance per min per ml of tomato extract in their respective assays. For all data, n = 3 repetitions of 5 tomatoes each.

	Storage	En	Enzymes	Unsaturated fatt	Unsaturated fatty acids (mg/kg)	
Temp	Duration (days)	LOX	HPL	Linoleic acid	Linolenic acid	
Levovil	0	0.23	0.108	142	19	
20 °C	1	0.23	0.114	86	13	
	3	0.25	0.086	123	16	
	9	0.23	0.092	141	17	
4 °C	1	0.21	0.083	147	21	
	9	0.34	0.058	172	31	
	15	0.28	0.071	173	35	
	30	0.34	0.067	165	34	
$4^{\circ}C + 1 \text{ day } 20$	•		0	,	;	S
ر د	Ī		0.085	160	7.7	
	9		0.069	154	29	
	15	0.32	0.084	190	33	
	30	0.29	0.081	182	39	
LCx	0	0.32	0.106	139	23	1
20 °C	1	0.45	0.118	135	23	
	3	0.55	090.0	137	22	
	9		0.078	113	18	
4 °C	1	0.35	990.0	94	14	
	9	0.37	0.076	145	24	
	15	0.33	0.070	139	27	
	30	0.29	0.041	201	43	
4 °C + 1 day 20						
သွ	1	0.45	0.073	109	13	
	9		0.087	127	21	
	15		0.094	Not done	35	
	30	0.32	090.0	176	41	
Pooled standard deviation	deviation	0.095	0.0082	22.I	2.7	
					38	
			>			

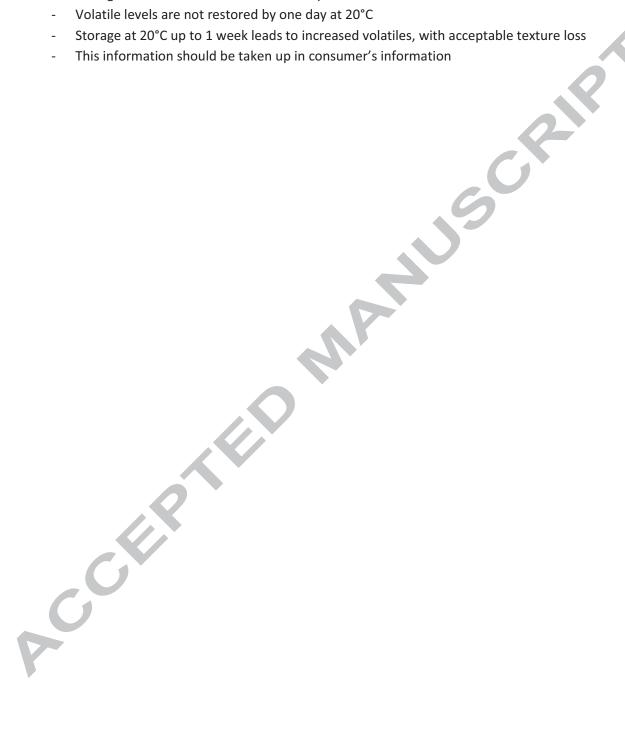
Renard et al. Tomato storage Fig. 1




Renard et al. Tomato storage Fig. 2

Renard et al. Tomato storage

Fig. 3



Principal Component 1 (50.17 %)

Highlights

- We study evolution of volatiles in two contrasted tomato lines at 20°C and 4°C
- Storage at 4°C is detrimental for volatile production and hence aroma
- Volatile levels are not restored by one day at 20°C
- Storage at 20°C up to 1 week leads to increased volatiles, with acceptable texture loss

