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Abstract11

We present a new approach for the outflow boundary conditions of Navier-12

Stokes equations in hemodynamics. We first describe some existing 3D-0D cou-13

pling methods and highlight benefits and disadvantages of each of them. We then14

introduce a new method that consists in adding a 3D artificial part where the15

Navier-Stokes equations are modified to obtain an equivalent energy balance to16

a standard coupling with a 3-element Windkessel model. We investigate theoreti-17

cally the stability of the system and compare it to previously introduced methods.18

Finally we compare these coupling methods for numerical simulations of blood19

flow in three patient-specific models, which represent different flow regimes in20

the pulmonary and systemic circulations. The new method, especially in its hybrid21

form, is a possible alternative to existing methods. It can be in particular convenient22

in codes that do not allow users to implement non-standard boundary conditions.23

1. Introduction24

The three-dimensional Navier-Stokes simulation of blood flow in large vessels re-25

quires inlet and outlet boundary conditions that represent hemodynamics at these26

locations. However, in patient-specific settings, pressure or velocity are rarely clin-27

ically measured exactly there, or they can be part of the desired output [43]. Thus,28

boundary conditions are usually substituted for transmission conditions with re-29

duced models of the rest of the circulation. This typically involves coupling to 1D30

models (e.g. [8, 15, 33, 41]), or simple lumped parameter 0D models (e.g. [18,31

37, 42, 44]) or closed loop lumped parameter 0D models (e.g. [3, 10, 25, 28, 30]).32

This coupling methodology transfers in various forms pressure and flow rate be-33

tween 3D and reduced models, for which there is a loss of information. Moreover,34

reverse flow may occur in parts of or on entire coupling boundaries. This calls for35
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careful coupling conditions, so that the scheme is stable, without altering too much36

the local flow dynamics.37

38

A first coupling method consists in enforcing a uniform pressure obtained from the39

reduced model at the coupling boundary. When a variational formulation is used,40

e.g. with the finite element method, it is more natural to replace the pressure with41

the normal component of the normal stress. However stability analyses show that42

the convective term on the boundary can be responsible for numerical instabilities43

in the presence of reverse flow. Some Navier-Stokes formulations involve the total44

pressure in their natural boundary conditions (e.g. [5]). This has been shown to45

lead to an energetically stable coupling between 3D and reduced models of blood46

flow (e.g. [16, 17]). Several authors have been expecting instabilities when the47

total pressure is not included in the transmission conditions but have not seen them48

numerically [9, 17]. In formulations based on static pressure, a dissipative stabi-49

lization has been proposed to counteract the destabilizing effect of the convective50

boundary term (see [4]). We also refer to [11, 12] where similar ideas were intro-51

duced. A boundary condition based on enforcing the continuity of pressure on the52

one hand and of a linear combination of flow and energy fluxes on the other hand,53

has been proven to be energetically stable, but it does not necessarily conserve mass54

[14]. More recently, a local regularization of the fluid velocity along the tangential55

directions has been developed in [6]. In all these methods, the reduced model pres-56

sure is imposed as a uniform boundary condition for the Navier-Stokes equations.57

But in complex flow, such as with reverse flow, there is a priori no reason that the58

normal traction or the total pressure is uniform on a coupling boundary. For sta-59

bilized methods, the added term introduces some non-uniformity that has also no60

obvious reason to correspond to the physiological flow at hand.61

62
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In this article, we propose a new method to handle the outflow boundary condi-63

tions, by coupling the 3D Navier-Stokes equations with another 3D compartment.64

This artificial compartment involves modified Navier-Stokes equations that mimic65

a three-element Windkessel model [19] (as an example of reduced model). The66

advantages of such an approach are that the coupling 1) does not enforce a uniform67

traction at the interface, 2) is energetically close to the usual 3D Navier-Stokes68

- Windkessel solution, without the potentially destabilizing convective boundary69

term, 3) is provably stable in the energy norm without needing a total pressure for-70

mulation. Besides, a strategy of adding an artificial 3D part can be very useful in71

a commercial code that does not allow the users to implement any 0D boundary72

conditions.73

Our contributions with respect to the existing works considering a 3D com-74

partment (e.g. [27]) are the following. First, our artificial compartment is more75

complex since it includes two different kinds of dissipation and one term repre-76

senting an elastic potential energy. This allows us to mimic an RCR Windkessel77

model, which is important in our applications. Second, we investigate how this78

artificial compartment affects outflow instabilities typically encountered in hemo-79

dynamics; third, we make a numerical comparison of different outflow boundary80

conditions in realistic hemodynamics test cases.81

82

In the next part of this article we present existing coupling methods, derive the cor-83

responding energy balance. In this context, we present our new modified Navier-84

Stokes system and analyze its stability. The last part of the methods section is85

devoted to the numerical implementation. The results are then illustrated on differ-86

ent reverse flow situations, namely three patient-specific cases of numerical blood87

flow simulations in arteries in the pulmonary and the systemic sides for healthy or88

diseased configurations. The different methods are compared qualitatively, looking89
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at the velocity fields at the coupling interface, and quantitatively on the flow and90

pressure. In some cases, the results are compared to a reference solution obtained91

on a larger geometry. Finally, a discussion with results of the literature is proposed92

and possible extensions are presented.93

2. Methods94

2.1. Problem formulations95

Blood is assumed to be a Newtonian fluid flowing in a rigid domain Ω1. The96

incompressible Navier-Stokes equations are solved with no-slip condition on the97

wall Γ and with a Dirichlet boundary condition on the velocity at the inlet Γin (the98

notation is defined in Figure 1):99

ρ
∂u
∂t

+ ρ(u · ∇u) + ∇p − 2µ∇ · ε(u) = 0 (1)

∇ · u = 0 (2)

u|Γ = 0 (3)

u|Γin
= uin (4)

where u : Ω1 × R+ → R3 is the velocity, p : Ω1 × R+ → R is the pressure, and100

ε(u) = 1
2 (∇u + ∇uT ) denotes the strain rate tensor.101

The system (1)-(4) has to be complemented with boundary conditions at the out-102

let Γout, where the Navier-Stokes equations are coupled to a reduced-order model103

which takes into account the rest of the vessels. Here the names “inlet” and “out-104

let” are chosen for convenience, but any of these can have some positive or negative105

flow rate over time. Three possible approaches that have been proposed in the lit-106

erature are presented below. Then, the main contribution of this study, based on a107

3D-3D coupling, is introduced.108
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Figure 1: top: 3D-0D coupling scheme, bottom: 3D-3D coupling scheme.

2.2. Review of three existing approaches109

Formulation 1: 3D-0D . The most common idea consists in enforcing a uniform110

normal stress at the outlet, equal to a pressure pc given by a reduced model:111

σ · n = − pcn, on Γout, (5)

where σ = −pI + 2µε(u). In a finite element framework, this is easily done with a112

Neumann boundary condition. The advantage of this formulation is its simplicity.113

Although stable in many practical situations, instabilities can be observed in pres-114

ence of complex reverse flow. It will be shown in Section 2.4 that an uncontrolled115

term appears in the energy balance. This is a possible reason of the observed insta-116

bilities. In addition, enforcing a uniform normal stress on a section where the flow117

is complex may generate spurious vortices that can also lead to instabilities.118
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Formulation 2: 3D-0D-Stab . To cure the instabilities that may appear during119

backflow with Formulation 1, a stabilization method was proposed in [4]. This120

approach consists in modifying (5) as follows (here written in a slightly more gen-121

eral form):122

σ · n = −pcn− ρθ(u · n)−u, on Γout, (6)

where (u · n)− is equal to −(u · n) if u · n ≤ 0, and is equal to 0 if not, and where θ123

has to be fixed.124

This method is simple to implement and can be shown to be stable in the energy125

norm for θ ≥ 0.5. In practice, it proves to be very efficient at reducing the outlet126

instabilities. It was successfully tested in particular in [29, 36]. Two situations have127

to be distinguished here. When the backflow is due to spurious vortices induced by128

the presence of an artificial boundary, this effect is desirable. But it is well-known129

that a physical backflow can appear in some vessels during diastole. In those cases,130

the stabilization term artificially takes out of the system an energy that should enter131

through the outlet.132

Formulation 3: 3D-0D-Ptot . Another approach considers a formulation of the133

Navier-Stokes equations that involves the total pressure (e.g. [5, 22]):134

σ · n−
ρ

2
|u|2n = −pcn, on Γout. (7)

This formulation, advocated in particular in [16, 17], can be proved to be stable in135

the energy norm (see below). But in blood flow, the total stress is far from being136

uniform on a section. Note that this is even not true for Poiseuille or Womersley137

flows. As a consequence, this formulation leads to large spurious velocity vectors,138

even for simple configurations [22]. As in Formulation 1, spurious vortices can be139

generated at this interface and can eventually trigger instabilities.140
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2.3. A new formulation141

Formulation 4a: 3D-3D . We propose a possible alternative to the previous ap-142

proaches. System (1)-(4) is coupled to a modified Navier-Stokes system. Instead143

of a 0D model, an artificial 3D domain Ω2 is added to the 3D domain of interest Ω1144

(bottom of Figure 1). In Ω2, the Navier-Stokes equations are modified by adding145

terms to recover an energy balance similar to the one obtained with Formulation 3.146

The resulting system can be written in a compact form in Ω1 ∪Ω2:147

ρ
∂u
∂t

+ ρu · ∇u + ∇p − 2µ∇ · ε(u) + γu + ρ
u
2
∇ · u = 0 (8)

α
∂p
∂t

+ βp + ∇ · u = 0 (9)

u|Γ∪Γ2
= 0 (10)

where α, β and γ vanish in Ω1, to recover the standard equations (1)-(4), and are148

positive in Ω2. As indicated in Figure 1, the surface Γ2 consists of the wall of149

the added artificial volume, i.e. Γ2 = ∂Ω2 \ Σ. In other words the added artificial150

surface acts as a “cork”.151

Parameter α is a distributed version of the capacitance (C) in the Windkessel model.152

Parameters γ and 1/β play the role of the proximal (Rp) and distal (Rd) resistances153

respectively. Their values will be discussed in Section 2.4. Note that the term βp154

acts as a sink, whereas the term α∂t p acts as a sink when the pressure increases and155

as a source when the pressure decreases. The additional term ρu
2∇·u is necessary to156

ensure stability in the energy norm, because the fluid is no longer incompressible in157

the artificial domain Ω2. The equations in the two domains Ω1 and Ω2 are coupled158

through the usual transmission conditions, with n being defined on Σ as going from159

Ω1 to Ω2:160

u1 = u2, and σ1 · n = σ2 · n, on Σ, (11)
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which are automatically satisfied when a standard variational formulation of equa-161

tions (8)-(10) is set on the whole domain Ω1 ∪Ω2.162

Contrary to what happened with the three previous formulations, the information163

coming from the “downstream part” is not uniform on the outflow section Γout.164

Contrary to Formulation 1, an inequality can be proved to control the energy of the165

system. Compared to Formulation 2, it can let energy enter into the system through166

Γout in the presence of a physical backflow.167

Formulation 4b. As a variant, we also propose a hybrid 3D-3D-0D coupling method168

where the Navier-Stokes equations are coupled to the modified Navier-Stokes model,169

which is itself coupled to a 3-element Windkessel reduced model, as shown in Fig-170

ure 2 .171

172

Figure 2: 3D-3D-0D coupling approach (formulation 4b), where Ω1 is the domain of interest, Ω2 is
an artificial added part, coupled to a 3-element Windkessel model.
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In the whole domain Ω1 ∪Ω2,173

ρ
∂u
∂t

+ ρ(u · ∇u) + ∇p − 2µ∇ · ε(u) + γu = 0 (12)

∇ · u = 0 (13)

u|Γ1∪Γ2
= 0 (14)

u|Γin
= uin (15)

where γ = 0 in Ω1, with the usual transmission conditions (11). We finally couple174

a 3-element Windkessel model to the system (12)-(15) with the 3D-0D coupling175

method,176

σ · n = − pcn, on Γout, (16)

2.4. Stability analysis177

In this section, the energy equations of the various formulations presented above178

are derived. Without loss of generality, the reduced-order model providing the179

pressure pc in Formulations 1, 2 and 3, is assumed for now to result from a standard180

RCR Windkessel model (Figure 1, top):181

C
dpp

dt
+

pp − pd

Rd
= q (17)

pc − pp = Rpq (18)

where q =
∫
Γout

u·nds. For the sake of simplicity, we assume that the distal pressure182

pd is constant and equal to zero.183

184

Multiplying (18) by q and (17) by pp leads to the energy equation of the lumped185

parameter model:186

pcq = C
d
dt

( p2
p

2

)
+ Rpq2 +

p2
p

Rd
(19)
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We define the kinetic energy EKΩ1
, the viscous power PVΩ1

and the energy Pin

entering the domain through Γin, respectively by:

EKΩ1
=

∫
Ω1

ρ

2
|u|2dx, (20)

PVΩ1
= 2µ

∫
Ω1

ε(u) : ε(u)dx, (21)

Pin =

∫
Γin

σ · n · uds − ρ
∫

Γin

|u|2

2
n · uds. (22)

Energy balance of Formulation 1 (3D-0D coupling). Multiplying (1) by u and187

integrating over Ω1:188

d
dt

∫
Ω1

ρ

2
|u|2dx+ρ

∫
Ω1

u · ∇
(
|u|2

2

)
dx + 2µ

∫
Ω1

ε(u) : ε(u)dx+

∫
Ω1

∇p · udx = 0.(23)

Using (2) and the no-slip condition on the wall, the energy equation in Ω1 reads:189

d
dt

EKΩ1
+ PVΩ1

= Pin +

∫
Γout

σ · n · uds − ρ
∫

Γout

|u|2

2
n · uds.

Considering the coupling condition (5) and the energy equation of the 0D model190

(19), the global energy balance of the 3D-0D coupling method is obtained:191

d
dt

EKΩ1
+ PVΩ1

+ C
d
dt

p2
p

2
+

p2
p

Rd
+ Rpq2 = Pin − ρ

∫
Γout

|u|2

2
n · uds (24)

In the presence of reverse flow at an outlet (u · n < 0) the last term may thus have192

a destabilizing effect.193

Energy balance of Formulation 2 (3D-0D-Stab coupling). With the same compu-194

tation as in Formulation 1, but considering (6) instead of (5) as a coupling condi-195

tion, the energy equation of Formulation 2 reads:196

d
dt

EKΩ1
+ PVΩ1

+ C
d
dt

p2
p

2
+

p2
p

Rd
+ Rpq2 =


Pin −

ρ
2

∫
Γout
|u|2(u · n)ds, if u · n ≥ 0

Pin − ρ( 1
2 − θ)

∫
Γout
|u|2(u · n)ds, if u · n < 0

(25)
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This formulation is therefore stable in the energy norm for θ ≥ 0.5. If θ = 0.5,197

as in [29, 36], the potentially destabilizing term of (24) is exactly balanced by the198

artificial dissipation when u · n < 0. In some publications, a stronger dissipation is199

chosen (e.g. θ = 1 in [4]).200

Energy balance of Formulation 3 (3D-0D-Ptot coupling): . When coupling is done201

with the total pressure (7), the potentially destabilizing term of (24) disappears in202

the energy balance:203

d
dt

EKΩ1
+ PVΩ1

+ C
d
dt

p2
p

2
+

p2
p

Rd
+ Rpq2 = Pin (26)

This formulation is therefore stable in the energy norm.204

Energy balance of Formulation 4a (3D-3D coupling):. As in Formulation 1, the205

energy equation in the domain of interest Ω1 reads:206

d
dt

EKΩ1
+ PVΩ1

= PΩ1
in +

∫
Σ

(σ · n · u − ρ
|u|2

2
n · u)ds (27)

Similarly, in the artificial domain Ω2, from the modified Navier-Stokes equation207

(8)-(9)-(10):208

d
dt

EKΩ2
+ PVΩ2

+ γ

∫
Ω2

|u|2dx −
∫

Ω2

p∇ · udx = −

∫
Σ

σ · n · uds + ρ

∫
Σ

|u|2

2
n · uds(28)

Using equation (9),209

d
dt

EKΩ2
+ PVΩ2

+ α
d
dt

∫
Ω2

p2

2
dx + β

∫
Ω2

p2dx + γ

∫
Ω2

|u|2dx

= −

∫
Σ

σ · n · uds+ρ

∫
Σ

|u|2

2
n · uds (29)

Adding these two relations, the boundary terms in the right-hand side cancel out,210

due to the transmission condition (11), and the energy balance of Formulation 4a211

is obtained:212

d
dt

EΩ1∪Ω2
K + PΩ1∪Ω2

V + α
d
dt

∫
Ω2

p2

2
dx + β

∫
Ω2

p2dx + γ

∫
Ω2

|u|2dx = PΩ1
in . (30)
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This formulation is therefore stable in the energy norm. Comparing (30) with (26),213

we notice an analogy between α, β, γ and the standard Winkessel parameters. From214

this observation, we can set:215

α ≈ C/V, β ≈ 1/(RdV), γ ≈ RpS/L, (31)

where V , S and L respectively denote the volume, the section and the length of the216

artificial domain Ω2.217

Similarly, the energy balance of Formulation 4b (3D-3D-0D coupling) is thus:218

d
dt

EΩ1∪Ω2
K + PΩ1∪Ω2

V + γ

∫
Ω2

|u|2dx

+C
d
dt

p2
p

2
+

p2
p

Rd
+ Rpq2 = PΩ1

in − ρ

∫
Γout

|u|2

2
n · uds. (32)

In this hybrid formulation, the outlet inertial term reappears, but, as will be seen in219

the results, this formulation is stable in practice.220

2.5. Numerical schemes221

The RCR Windkessel model is discretized with a first-order scheme: assuming that222

pn
p and qn are known, then pn+1

p and pn+1
c are defined by223

C
pn+1

p − pn
p

∆t
+

pn+1
p

Rd
= qn,

pn+1
c = pn+1

p + Rpqn. (33)

Denoting RdC by τ, the pressure transmitted to the 3D model at time tn+1 is given224

by:225

pn+1
c =

τ
∆t pn

p + Rdqn

1 + τ
∆t

+ Rpqn. (34)

The 3D formulations are discretized with a first-order time scheme and P1/P1 sta-226

bilized finite element [35]. The nonlinear advection term of the Navier-Stokes227
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equations is treated semi-implicitely. In the following the finite element test func-228

tions for the momentum and continuity equations are respectively denoted by vh229

and qh.230

Formulation 1 (3D-0D ). Defining the bilinear form:231

AΩ
1 (un

h; (un+1
h , pn+1

h ), (vh, qh)) =

∫
Ω

(
ρ

∆t
un+1

h + ρun
h · ∇un+1

h

)
· vhdx

+

∫
Ω

µ∇un+1
h : ∇vhdx −

∫
Ω

(
pn+1

h ∇ · vh + qh∇ · un+1
h

)
dx, (35)

the variational formulation of the 3D-0D method reads: Find un+1
h and pn+1

h such232

that for every vh and qh,233

AΩ1
1 (un

h; (un+1
h , pn+1

h ), (vh, qh)) =

∫
Ω1

ρ

∆t
un

h · vhdx −
∫

Γout

pn+1
c n · vhds (36)

Remark 2.1. Note that the weak form of the viscous term is based on the relation234

µ∆u = 2µ∇ · ε(u), valid for an incompressible fluid. The natural condition cor-235

responding to this formulation is compatible with Poiseuille and Womersley flows236

contrary to the one based on ε(u) (e.g. [22]). We made this choice to avoid pertur-237

bations of the velocity field at the outlet for these basic flows, but the formulation238

based on ε(u) can also be used in practice.239

Formulation 2 (3D-0D-Stab ). Considering the bilinear form (35) and boundary240

conditions (6) with θ = 0.5, the 3D-0D-Stab method variational formulation reads:241

Find un+1
h and pn+1

h such that for every vh and qh,242

AΩ1
1 (un

h; (un+1
h , pn+1

h ), (vh, qh)) =∫
Ω1

ρ

∆t
un

h · vhdx −
∫

Γout

pn+1
c n · vhds −

∫
Γout

ρ

2
(un

h · n)−(un+1
h · vh)ds (37)

Formulation 3 (3D-0D-Ptot ). Defining the bilinear form:243

AΩ
2 (un

h; (un+1
h , pn+1

h ), (vh, qh)) =

∫
Ω

(
ρ

∆t
un+1

h + ρ (∇ × un+1
h ) × un

h

)
· vhdx

−

∫
Ω

ρ

2
un+1

h · un
h∇ · vhdx +

∫
Ω1

µ∇un+1
h : ∇vhdx −

∫
Ω

(
pn+1

h ∇ · vh + qh∇ · un+1
h

)
dx.(38)
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The variational formulation of the 3D-0D-Ptot method reads: Find un+1
h and pn+1

h244

such that for every vh and qh,245

AΩ1
2 (un

h; (un+1
h , pn+1

h ), (vh, qh)) =

∫
Ω1

ρ

∆t
un

h · vhdx −
∫

Γout

pn+1
c n · vhds (39)

Remark 2.2. In this formulation, the total pressure only appears in the boundary246

condition but the pressure unknown is still the static pressure. It is also possible247

to consider a formulation, based on the relation u · ∇uT = ∇
(
|u|2
2

)
, where the static248

pressure is replaced by the total pressure as an unknown [22].249

Formulation 4a (3D-3D ). Defining the bilinear form:250

AΩ
3 (un

h; (un+1
h , pn+1

h ), (vh, qh)) =

∫
Ω

(
ρ

∆t
un+1

h + ρun
h · ∇un+1

h

)
· vhdx

+

∫
Ω

µ∇un+1
h : ∇vhdx −

∫
Ω

(
pn+1

h ∇ · vh + qh∇ · un+1
h

)
dx

+

∫
Ω

γun+1
h · vhdx +

∫
Ω

ρ

2
un+1

h · vh∇ · un
hdx −

∫
Ω

(
α

∆t
+ β

)
pn+1

h qhdx (40)

where, α = β = γ = 0 in Ω1.251

The variational formulation of the 3D-3D method reads: Find un+1
h and pn+1

h such252

that for every vh and qh,253

AΩ1∪Ω2
3 (un

h; (un+1
h , pn+1

h ), (vh, qh)) =

∫
Ω1∪Ω2

(
ρ

∆t
un

h · vh −
α

∆t
pn

hqh

)
dx (41)

The variational formulation of Formulation 4b (3D-3D-0D ) is the same with the254

addition on the right hand side of −
∫
Γout

pn+1
c n · vh dx, and taking α = 0, β = 0.255

3. Results256

In this section we present results of all these coupling methods for patient-specific257

cases in the systemic and the pulmonary sides where the flow regimes are very258

different. The first case is a typical case of flow in pulmonary arteries: the flow259
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field is not so complex, and yet prescribed inlet back flow generates stability is-260

sues. For the second case the main advantages are first that the effect of artificially261

cutting the geometry can be assessed, and second that, due to the bifurcation close262

to the inlet, it is a case of more complex flow, although at the inlet no back flow is263

imposed. Finally, the third case tests a typical systemic hemodynamics scenario:264

instabilities there are generally observed during deceleration after peak systole.265

These three cases thus reflect the diversity of typical numerical instabilities seen in266

cardiovascular simulations. Through them, we highlight differences, benefits and267

disadvantages in the instability treatments.268

269

For each case, the choice of Windkessel parameters is described. For the 3D-3D270

model, parameters were chosen following equations 31, given the specific added271

volume dimensions. Finally, parameters of the hybrid 3D-3D-0D method were de-272

fined as follows: in the artificial parts, γ is chosen as 10% of the γ in the 3D-3D273

model, while correspondingly the proximal resistance of the Windkessel model is274

decreased by 10% compared to the original value.275

276

3.1. Adult patient-specific pulmonary artery: a case with inlet backflow277

This patient specific geometrical model is an adult pulmonary artery (PA). Velocity278

is prescribed at the inlet of the model, as a plug profile following the flow tracing of279

Figure 3. There is around 16% of reverse flow. The maximum flow rate is around280

378cm3/s, leading to a highest Reynolds number of 2400. During the decelera-281

tion after systole, physical reverse flow occurs with a minimal flow rate around282

−66cm3/s. Figure 3 also shows on the left-hand side the original geometrical283

model containing 107K tetrahedra, with both outlets coupled to 3-element Wind-284

kessel models by successively the 3D-0D, 3D-0D-Stab and 3D-0D-Ptot methods.285
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On the right-hand side, the geometrical model with the added artificial parts con-286

sists of 127K tetrahedra: there the coupling is done with the 3D-3D and 3D-3D-0D287

methods.288

289

Figure 3: Original geometrical model in blue (left) and geometrical model with the added outlet 3D
artificial parts in red and purple (right). Inlet flow tracing over two cardiac cycles.

Table 1 summarizes the parameters of the different coupling methods. On the left-290

hand side, the Windkessel model parameters are the ones of the 3D-0D, 3D-0D-291

Stab and 3D-0D-Ptot coupling approaches. They were chosen to represent physio-292

logical PA pressure pulses, assuming symmetry between the two lung vasculatures293

[21]. The 3D-3D (right) and 3D-3D-0D (below) parameters in the artificial added294

parts are displayed, given that the added volumes are such that V , S and L are re-295

spectively 5 cm3, 2.5 cm2, and 2 cm on both sides.296
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297

LPA RPA Lc Rc
Rp 4 101 4 101 γ 4.9 101 4.9 101

C 1 10−3 1 10−3 α 2 10−4 2 10−4

Rd 3 102 3 102 β 6.7 10−4 6.7 10−4

Lout Rout Lc Rc
Rp 3.6 101 3.6 101 γ 4.9 4.9
C 1 10−3 1 10−3 α 0 0
Rd 3 102 3 102 β 0 0

Table 1: Rp and Rd in g cm−4 s−1, and C in g−1 cm4 s2, α in g−1 cm s2, β in g−1 cm s, and γ in g cm−3

s−1.

This example is a typical PA physiological case. In Figure 4 velocity fields are298

shown during forward peak flow (top) and in presence of backflow (bottom), com-299

paring the 3D-0D, 3D-0D-Stab , 3D-3D and 3D-3D-0D coupling methods. During300

forward flow, the four approaches lead to very similar velocity fields. In fact, in301

this configuration the convective stabilization is off, which is verified by the same302

results obtained for the 3D-0D or 3D-0D-Stab methods. During backflow, the303

3D-0D coupling method exhibits perturbations with inward vectors which are very304

large relative to the flow rate for a few time steps. The 3D-0D-Stab method, while305

stable, perturbs the hemodynamics by reducing the velocity vectors to almost zero.306

The 3D-3D approach allows to recover a backflow without instabilities, and simi-307

larly for 3D-3D-0D .308

In Figure 5, the 3D-0D-Ptot method exhibits velocity vectors with strong spu-309

rious radial components at the outlet surface [22]. Spurious in and out of plane310

vectors can also be seen, even though flow is maximally forward. Moreover,311

computations are not diverging but lead to a very large in-plane pressure gradi-312

ent (∆P = 26.50 mmHg), which is not relevant from a physiological point of view.313

314
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Figure 4: Velocity fields at the LPA interface, when flow at the inlet is maximal forward (top, t=0.10s,
Qmax = 378 cm3/s) and is reverse (bottom, t=1.06s, Qmin = −66 cm3/s) with the 3D-0D, 3D-0D-
Stab, 3D-3D and 3D-3D-0D coupling methods from left to right.

Figure 5: In-plane pressure relative to its minimum value (left) and velocity fields (right) at the LPA
interface during maximal forward flow (t=0.1s) with the 3D-0D-Ptot coupling method.
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The time-varying flow rates and average pressure at the coupling surfaces are now315

analyzed (Figure 6 shows the LPA). For each coupling method, similar flow and316

pressure results are found on both the left and right-hand sides. Flow and pressure317

from the 3D-0D-Ptot method are not represented as the obtained values were non-318

physiological: although the simulation did not diverge, they were too high with319

spurious high-frequency tracings. For all other coupling methods, flow varies over320

time very similarly. Pressure varies over 3 to 20 mmHg, in exactly the same way321

for the 3D-0D and 3D-0D-Stab methods, but a few mmHg lower for the 3D-3D322

model, while for the 3D-3D-0D model it is closer to the other couplings.323

At this point however, it is hard to conclude on which method is best reproduc-324

ing the real flow behavior, because we do not have access to the three dimensional325

downstream domain. But this case is highlighting the robustness of the 3D-0D-326

Stab and 3D-3D coupling methods to avoid large numerical artefacts due to phys-327

iological reverse flow in a patient-specific case.328

329

3.2. Diseased child pulmonary arteries: a challenging fluid dynamics case330

This patient specific geometry is the first generation of a pulmonary arterial tree of331

a child affected by a congenital heart disease, the single ventricle pathology (pul-332

monary atresia with intact ventricular septum). This patient underwent a so-called333

stage 1 surgical procedure consisting of an anastomosis between the systemic and334

pulmonary circulatory systems via a 3.5mm artificial shunt. For more information335

about this patient and its model reconstruction see [1].336

337

Figure 7 represents the complete geometrical model (918K tetrahedra, six outlets),338

the short model with cut pulmonary artery branches (471K tetrahedra, two outlets),339

and the short model with its artificial parts to the outlet surfaces (505K tetrahedra,340
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Figure 6: Flow rate and pressure over two cardiac cycles in the LPA for the different coupling models.
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Figure 7: From left to right: complete model (with outlets 1 − 6), short model (two outlets, R for the
RPA and L for the LPA), and short model with the two artificial three dimensional parts on each side,
Rc and Lc. Top: imposed inflow shown over two cycles, with the two dots representing maximum
flow and decelerating flow respectively.
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2 outlets). As in the previous case, velocity was prescribed at the inlet with a341

plug profile, following a typical shunt flow tracing. The highest Reynolds num-342

ber is 3000. The flow rate varies over one cardiac cycle between 5.8cm3/s and343

11.2cm3/s: there is thus no physical flow reversal prescribed at the inlet. The main344

advantages of this case are first that the effect of artificially cutting the geometry345

can be assessed, and second that, due to the bifurcation close to the inlet, it is a346

case of more complex flow than previously.347

In Table 2 the values of proximal and distal resistances, and capacitances are given348

for each of the six outlets of the complete geometrical model. These values were349

generated to reflect clinical measurements [1, 2]. A first simulation is run with the350

3D-0D coupling approach on the complete geometry. All the coupling methods351

with the short models are then compared to this reference simulation.352

353

1 2 3
Rp 3.19 101 4.73 101 6.38 100

C 4.40 10−4 1.79 10−4 5.50 10−3

Rd 2.45 102 6.13 102 2.95 101

4 5 6
Rp 1.71 101 4.26 101 5.75 100

C 1.14 10−3 2.35 10−4 1.06 10−2

Rd 1.11 102 4.63 102 1.58 101

Table 2: Rp and Rd in g cm−4 s−1, and C in g−1 cm4 s2 for the six Windkessel model outlets of the
reference simulation in the complete geometrical model.

In Table 3, the reduced model parameters for the short geometries are given. They354

were generated from the reference model parameters: at both outlets, an equiva-355

lent impedance is computed from the three distal outlet Windkessel model of the356

complete model. Windkessel model parameters are then optimized to match this357

impedance. This Windkessel model is then coupled to the 3D Navier-Stokes equa-358

tions with the 3D-0D, 3D-0D-Stab and 3D-0D-Ptot methods. The 3D-3D param-359

eters in the artificial added parts are displayed, given that the added volumes are360

such that V , S and L are respectively 0.066 cm3, 0.33 cm2, and 0.2 cm for the left361
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side and 0.1 cm3, 0.49 cm2, and 0.2 cm for the right side, reflecting the smaller362

dimensions of this child anatomy. The 3D-3D-0D parameters are hybrid between363

the 3D-0D and 3D-3D as described in the beginning of the section.364

365

R L Rc Lc
Rp 4.44 100 5.28 100 γ 7.13 100 1.29 101

C 1.29 10−2 6.20 10−3 α 1.96 10−1 6.35 10−2

Rd 1.33 101 2.51 101 β 1.14 100 4.09 10−1

Table 3: Parameters for the different coupling methods in the short models: Rp and Rd in g cm−4 s−1,
and C in g−1 cm4 s2, α in g−1 cm s2, β in g−1 cm s, and γ in g cm−3 s−1.

In Figure 8 velocity fields in the RPA are compared between the different meth-366

ods at the same location during maximal forward flow (left) and deceleration flow367

(right). The reference case (top) presents no instability because the flow is smoother368

at its distal outlets, which is typical of bifurcations quite downstream of complex369

flow [39]. At maximal forward flow, it shows complex flow in the RPA. This be-370

havior is retrieved on the short model with the 3D-0D coupling method but with371

inwards velocity vectors. However, the computation is close to divergence. The372

3D-0D-Stab coupling method efficiently kills the reverse velocity vectors at the373

coupling surface so that a similar forward flow motion to the 3D-0D coupling374

method is retrieved without backflow. Note that the 3D-3D coupling leads to a375

velocity profile closer to the reference case.376

Regarding blood flow behavior during the decelerating phase (right column in377

Figure 8), there is reverse flow in the reference case and a large proportion of the378

forward flow is located at the bottom of the surface area. With the 3D-0D cou-379

pling method at outlet surfaces of the cut model, the computation is diverging, but380

the 3D-0D-Stab coupling method leads to a blood flow behavior where velocity381

vectors are underestimated at the center and top of the coupling surface area. In382
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Figure 8: Velocity fields in RPA at peak inlet flow (left, t=0.0936s, Qmax = 11.2 cm3/s) and during
decelerating flow (right, t=0.156s) comparing the reference, 3D-0D, 3D-0D-Stab , 3D-3D and 3D-
3D-0D coupling methods from top to bottom. The two times are shown as dots on the inflow Figure
7. Color encodes velocity magnitude from 0 (blue) to 90 cm/s (red).
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the 3D-3D coupling approach, flow motion is more homogeneous in terms of size383

and direction of the velocity vectors. The 3D-3D-0D coupling method leads during384

maximal forward flow to a velocity field close to the coupling of reduced model385

with the 3D-0D-Stab method. During deceleration the majority of flow is located386

at the bottom of the coupling surface and backflow is authorized in the upper part.387

The obtained flow behavior is thus close to the reference case.388

The velocity field for the 3D-0D-Ptot coupling method behaves as in the previous389

patient-specific case of adult pulmonary arteries. However, the computation is di-390

verging.391

392

In the figures above, the RPA side is presented. In fact, the LPA is turning in the393

downstream 3D domain of the reference case in such a way that hemodynam-394

ics are even more different between the reference and the cut models than for the395

RPA. Next, the resulting flow rates are compared at coupling surfaces (Figure 9396

shows as an example the RPA), between the 3D-0D , 3D-0D-Stab , 3D-3D and397

3D-3D-0D coupling models. In all cases, most of the flow goes to the RPA, fol-398

lowing a dynamics close to that of the inlet flow, with a peak in systole followed399

by a rapid decay. The flow rates oscillate in time in diastole due to the complex400

flow structures created by the interaction of the impinging inflow and the patient-401

specific geometry. However, for the 3D-0D case the flow rates largely oscillate402

before the simulation diverges. In terms of magnitude, the coupling method that is403

closer to the reference case is the 3D-0D-Stab method, on both sides. The 3D-3D404

coupling approach is leading to a satisfying blood flow behavior but changes the405

distribution of flow between the left and right-hand sides for this choice of param-406

eters: it slightly overestimates flow in the RPA and thus underestimates flow in the407

LPA. However, the hybrid coupling method 3D-3D-0D is close to the reference408

case. The diverging 3D-0D-Ptot results are not represented because the simulation409
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diverged early on (t=0.0936s).410
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Figure 9: Flow rate (left) and pressure (right) over two cardiac cycles in the RPA for the different
coupling methods.
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Lastly, Figure 9 shows the corresponding pressure waveforms. The time dy-411

namics are similar for all cases and on both sides, except for the 3D-0D case which412

diverges in the first cardiac cycle. After the transitory first cycle, the second cycle is413

closer to a periodic solution with a sharp rise in systole, followed by a smooth dias-414

tole decay. The closest results to the reference case is the 3D-0D-Stab method for415

both sides. The 3D-3D approach underestimates pressure for both sides. However416

the hybrid 3D-3D-0D coupling approach more closely reproduces the reference417

results.418

419

To summarize this case, both 3D-0D and 3D-0D-Ptot couplings lead to divergence420

of the simulation, although there is negative flow rate neither at the inlet nor at the421

outlets. This is highlighting the need for robust numerical methods in the pres-422

ence of complex flow, such as the 3D-0D-Stab and 3D-3D or 3D-3D-0D coupling423

methods. The three presented similarities and differences with the reference case,424

which is the ground truth, 3D-3D-0D being the best compromise in this example.425

426

3.3. Adult patient-specific aorta: complex flow generated during deceleration427

This last patient-specific case is an abdominal adult aorta. Figure 10 consists of428

the inlet flow rate over time and the three tested geometrical models: the complete429

3D model containing 608K tetrahedra and 9 outlet surfaces, the short model con-430

taining 473K tetrahedra and 6 outlet surfaces where the abdominal aorta was cut431

to remove the iliac branches, and the same cut model but with an artificial 3D part432

at its descending aorta outlet, containing 499K tetrahedra. Velocity is prescribed433

at the inlet of the model, as a plug profile following the flow tracing of Figure 10.434

As is typical in the supra celiac descending aorta, this flow rate does not contain435

reverse flow over the entire cardiac cycle. The maximal flow is Qmax = 177 cm3/s436

28



and the minimal flow is Qmin = 7 cm3/s. Deceleration is large enough to gener-437

ate complex flow behavior in all the geometrical models regardless of the outlets438

coupling methodology at hand. The complete model is the reference where three439

dimensional Navier-Stokes equations are coupled to reduced models at every outlet440

with the 3D-0D coupling method.441

442

Figure 10: Top: imposed inflow (cm3/s) shown over two cycles. Below, from left to right: the
complete 3D model, the cut 3D model and the cut 3D model with its artificial 3D part tagged “cork”.
The outlets are all labeled for future reference.

Table 4 contains the values of the proximal and distal resistances, and capacitances443
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for each of the nine outlets of the complete geometrical model. These values have444

been set to match clinical measurements [41].445

1 2 3 4 7
Rp 9.63 102 2.96 102 5.98 102 3.57 102 1.46 103

C 6.21 10−5 7.67 10−4 3.80 10−6 1.40 10−6 3.03 10−5

Rd 3.36 104 1.03 104 1.48 104 2.51 104 1.14 105

8 9 10 11
Rp 1.08 103 4.86 102 2.70 101 1.59 103

C 6.91 10−5 3.70 10−6 2.13 10−5 3.09 10−5

Rd 4.35 104 1.49 104 1.55 104 1.15 105

Table 4: Reduced model parameters for each outlet of the reference model, as labeled in the full
model of Figure 10. Rp and Rd in g cm−4 s−1, and C in g−1 cm4 s2.

Table 5 contains values of proximal and distal resistances, and capacitances446

for each of the six outlets of the cut geometrical model. These reduced model447

parameters for the cut abdominal outlet surface (cut2) were not generated from the448

ones of the four outlet surfaces of the reference model (labeled 1,7, 8 and 11) as449

was done in the previous test case, as this was leading to too inaccurate results.450

Instead, the three Windkessel model parameters of this cut outlet were identified451

by a Kalman filtering approach based on the flow and pressure tracings from the452

reference simulation [34, 35].453

cut1 cut2 cut3 cut4 cut6 cut7
Rp 4.86 102 8.21 102 3.57 102 2.96 102 2.70 101 5.98 102

C 3.70 10−6 2.05 10−4 1.40 10−6 7.67 10−4 2.13 10−5 3.80 10−4

Rd 1.49 104 2.13 104 2.51 104 1.03 104 1.55 104 1.48 104

Table 5: Reduced model parameters for each of the six outlet of the cut model (for the 3D-0D and
3D-0D-Stab coupling methods), as labeled in Figure 10. Rp and Rd in g cm−4 s−1, and C in g−1 cm4

s2.

Table 6 contains values of proximal and distal resistances, and capacitances for454

each of the five outlets of the original part and coefficient α, β and γ for the 3D-3D455

model in the artificial part. The latter were chosen given that the added volumes456
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are such that V , S and L are respectively 1.8 cm3, 1.8 cm2, and 1 cm. For the457

3D-3D-0D model, the values are the same, except for the artificial part for which458

changes are described at the beginning of the results section.459

460

cut1 cut3 cut4 cut6 cut7
Rp 4.86 102 3.57 102 2.96 102 2.70 101 5.98 102

C 3.70 10−6 1.40 10−6 7.67 10−4 2.13 10−5 3.80 10−6

Rd 1.49 104 2.51 104 1.03 104 1.55 104 1.48 104

cork
γ 1.49 103

α 1.13 10−4

β 2.60 10−5

Table 6: Reduced model parameters for each outlet of the 3D-3D coupling model, as labeled in the
cut model with “cork” in Figure 10. Rp and Rd in g cm−4 s−1, and C in g−1 cm4 s2, α in g−1 cm s2, β
in g−1 cm s, and γ in g cm−3 s−1.

Hemodynamics are compared through the cut abdominal aortic surface of the ref-461

erence simulation with the abdominal aortic outlet of the other models. On the left462

column of Figure 11, i.e. during forward flow, the velocity field behavior is closer463

to the reference for the 3D-0D coupling and thus also for 3D-0D-Stab method464

since the vectors are all pointing outwards. The 3D-3D approach leads to a flatter465

velocity profile. 3D-3D-0D is in between these two methods. However, during re-466

verse flow, the reference case concentrates the higher velocity magnitudes on the467

exterior part of the surface area. The 3D-0D coupling method results in high cen-468

tral velocity vectors, eventually leading to divergence of the simulation. This time,469

the 3D-0D-Stab and 3D-3D-0D coupling exhibit some backflow but with a homo-470

geneous distribution of velocity vectors on the surface area. The 3D-3D model is471

similar, but with velocity magnitude closer to the average reference case.472

Figure 12 shows the Ptot coupling method results, with spurious radial velocity473

vectors, exhibiting here particularly the well-known effect of the total pressure474

coupling [22]. In this case the simulation actually diverges.475

476
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Figure 11: Velocity fields at two different times, t=0.21s (maximal forward inlet flow, left) and
t=0.46s (maximal reverse flow at outlet, right) for from top to bottom: reference, 3D-0D, 3D-0D-
Stab , 3D-3D and 3D-3D-0D coupling models. Color encodes for velocity magnitude from 0 (blue)
to 50 cm/s (red).
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Figure 12: Velocity fields during maximal forward flow with the 3D-0D-Ptot coupling model.

Next, in Figure 13, the resulting time-varying flow rates are compared at the same477

surface, between the 3D-0D , 3D-0D-Stab , 3D-3D and 3D-3D-0D coupling mod-478

els. All cases follow a dynamics with a peak in systole followed by a rapid decel-479

eration with significant flow reversal and then forward flow again in the last part480

of diastole. The curves are neither completely synchronized in time nor match-481

ing completely in amplitudes. This time, for the 3D-0D case the flow rate does482

not largely oscillate before the simulation diverges. Moreover the 3D-0D-Stab483

coupling method is disturbing the blood flow behavior, with a flow rate amplitude484

lower than the reference one, where maximum flow is lower and minimum flow is485

higher than reference flow rate. The 3D-3D follows closely. The coupling method486

that reproduces as best as possible the flow tracing from the reference case is the487

3D-3D-0D coupling method even if the minimum flow is overestimated.488

In Figure 14, the corresponding pressure curves are compared: although they489

all follow the same typical pressure dynamics of a peak in systole followed by a490

smooth decay in diastole, all coupling methods overestimate the reference pres-491

sure. They are all shifted in time differently than for the flow rates. The 3D-0D492

case overestimates pressure the least, but it diverges in diastole. For this test case,493

the 3D-0D-Stab method is the furthest from the reference case whereas the 3D-494

3D-0D coupling model is the closest. The 3D-3D coupling approach is in between495

in terms of magnitude, but with an additional time shift.496
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Figure 13: Flow rates over two cardiac cycles at the infrarenal (cut2) coupling interface, with the
different coupling methods.
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In summary for this case, one can observe that both 3D-0D and 3D-0D-Ptot cou-498

plings lead to divergence of the simulation, due to the negative flow rate at the499

outlet, although the flow is entering at the inlet. Such a flow rate difference is500

typical of these abdominal aorta locations [41]. In all the converging cases during501

back flow, the velocity vectors are all aligned in the same inward direction. The502

3D-0D-Stab , 3D-3D and 3D-3D-0D coupling methods presented similarities and503

differences with the reference case, which is the ground truth, 3D-3D-0D being504

again the best compromise in this example.505

506

4. Discussion and Conclusion507

4.1. Divergence behavior508

Different existing methods have been implemented and compared to couple three-509

dimensional finite element Navier-Stokes simulations to lumped parameter models,510

and in particular to the three-element Windkessel model. Differences in numerical511

implementations that might also affect numerical stability (e.g [31] and references512

therein) are not discussed here, but rather coupling approaches at the continuous513

level. The first (standard) idea has been to impose weakly that at the coupling inter-514

face the normal component of the stress tensor is equal to a surface-homogeneous515

pressure computed from the reduced model. Such a coupling was shown above to516

lead to an (uncontrolled) convective boundary energy term, potentially destabiliz-517

ing with flow reversal at the interface. In presence of complex flow at that location,518

simulations are diverging in the patient-specific examples presented above. This519

behavior is consistent with other examples from the literature [1, 40]. Note that for520

the two last patient-specific cases, although the same 3D-0D coupling was imposed521

in the full 3D-models, the simulations did not diverge: as the geometry branches522

off, flow gets more streamlined as observed in [39, 40]. To get rid of this poten-523
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tially destabilizing boundary convective term, the 3D-0D-Ptot coupling method524

was also implemented. This coupling approach was considered for example in525

[5, 22]. Similarly to what [22] observed already for stationary flow in a pipe, ab-526

normally large radial components of the velocity vectors at the coupling surface527

were observed during forward flow. Likely because of higher Reynolds numbers528

and more complex flow in these patient-specific cases, spurious peripheral inward529

and out of plane velocity vectors were seen, even in case of forward flow. This530

generated abnormally large in-plane pressure gradient and eventually lead to diver-531

gence of the simulations when forward flow became higher.532

533

4.2. About the convective stabilisation534

These two methods highlighted the sensitivity of the simulation stability to the535

choice of coupling method. It is not a priori possible to predict which simulation536

will be stable throughout or diverge. Since the first coupling only diverges typi-537

cally with some inward and non-zero tangential velocity vector or complete back538

flow at the coupling interface, natural ideas are to enforce the tangential compo-539

nent to be zero or to even constrain the whole velocity profile. As these have been540

shown to be non-ideal [29], here the convective 3D-0D-Stab method was retained.541

Recall that it only acts when velocity vectors point inwards at the coupling inter-542

face. It was introduced in [4] for cardiovascular applications with an energetically543

over-stabilizing effect as discussed above, and successfully tested with a smaller544

energy-dissipative coefficient (a value of θ of 0.5 or less was found enough to en-545

sure stability) in [29, 31, 32] in cardiovascular and respiratory contexts. In these546

papers, without this stabilization the simulations would have diverged. Here the547

version that exactly annihilates the energetically destabilizing convective term was548

implemented. It leads in fact to a similar stabilizing behavior. The present re-549
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sults highlight the robustness of this method under different conditions of complex550

and back flows. However such a coupling involves enforcing an ad-hoc inhomo-551

geneous normal stress over the interface area and in practice generally induces an552

over-killing of the inward velocity vectors. Besides, as noted by [36], this leads to553

a weak formulation that is not consistent with the original strong boundary condi-554

tion of the reduced model coupling. A consistent formulation (with a value of θ555

of one) has been proposed by [20] in respiratory mechanics (see this reference for556

earlier references about imposition of total momentum flux) but it requires to also557

prescribe the convective term and thus to know the velocity vectors at the coupling558

boundary or to make some further assumption on the velocity profile at the bound-559

ary [20, 23]. The convective stabilization with θ = 1 resulted in single tube cases560

in a flatter velocity profile than in their total momentum flux case. It is interesting561

to note that in respiratory applications for which the back flow is very significant562

(whole expiration phase), the necessity to stabilize the convective term one way or563

another was found crucial [23, 26, 32].564

565

4.3. Discussion on the modified Navier-Stokes method, its advantages and limits566

One of our main aims was thus to develop a new three-dimensional finite element567

coupling method where reduced model parameters were three-dimensionally dis-568

tributed in a modified Navier-Stokes equation into a small outer portion. The goal569

was to obtain a blood flow behavior as close as possible to a 3D-0D coupling into570

an extended geometrical model with more branches. From a theoretical point of571

view, this approach has the advantage that it does not necessitate a coupling condi-572

tion at the interface: it thus does not enforce the normal component of the stress to573

be homogeneous as in the 3D-0D method or inhomogeneous in an ad-hoc way as in574

the 3D-0D-Stab method. Another advantage is that it generates an energy balance575
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that is similar to the 3D-0D method, but, if the distal boundary of the modified part576

is set to zero velocity (as was done in the 3D-3D simulations), it does not include577

the potentially destabilizing convective boundary term. If this distal velocity is not578

zero (as was the case in the 3D-3D-0D simulations), the velocity field is damped579

and smoothed by the modified portion before it reaches the boundary, so it does580

not develop instabilities in practice.581

Numerically, as a general trend, the results suggest that the 3D-0D-Stab coupling582

method is more accurately reproducing forward flow whereas during deceleration583

or reverse flow it is less invasive to use the three-dimensional coupling 3D-3D ap-584

proach than the robust 3D-0D-Stab model. An excellent compromise was reached585

by the 3D-3D-0D method, a hybrid method which regularizes the flow in an ar-586

tificial portion, with a small dissipative term, representing a small fraction of the587

proximal resistance. It effectively stabilized the simulations, without significantly588

affecting forward flow but allowing more freely inward velocity vectors than the589

3D-0D-Stab method. Regarding pressure and flow tracings at the coupling inter-590

faces of the three patient-specific cases, all coupling methods could reproduce the591

general temporal dynamics, unless they diverged. However, quantitative pressure592

and flow differences could be observed. In fact, in biomedical applications, the ex-593

isting coupling methods and the ones developed in this article all involve tuning of594

the distal parameters in order to be as coherent as possible to clinical hemodynam-595

ics measurements [43]. Such tuning was not the focus of this work, and is matter of596

intense recent research (e.g [1, 7, 13, 24, 34, 35, 38, 39]). Here, when the reference597

model (extended model with Windkessel reduced models at its ends) was available,598

it was quite simple to deduce or automatically tune the corresponding Windkessel599

model at the coupling interface of the cut model. This made sure that the 3D-0D600

and 3D-0D-Stab results were close to the reference case. However, such equiv-601

alence or tuning was less obvious to do for the new 3D-3D parameters (α, β and602
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γ): a better match of the pressure and flow waveforms could be achieved by man-603

ually tuning these parameters, but we thought it would make more sense to present604

the results with the most straightforward parameterization. Actually in general the605

reference model would not be available (otherwise it would be used without cut-606

ting) and the modified Navier-Stokes parameters (in its original or hybrid version)607

would be tuned in order to match clinical hemodynamics measurements instead of608

matching reduced model parameters Rp, C and Rd. This approach is not developed609

at this time and could be part of future work. Another important question that was610

not addressed in detail here is the length of the artificial domain. Size should not of611

course be too large to avoid unnecessary additional computational cost. If it is too612

small, pressure and velocity change too abruptly (3D-3D) or the velocity field is613

not regularized enough before hitting the outlet (3D-3D-0D). We have not carried614

out an extensive sensitivity analysis on the subject, but we noticed that multiplying615

the cork volume of the presented results by a factor two did not affect the numerical616

stability of the solution.617

618

4.4. Comparison between cut and reference models619

Interestingly, several methods lead to more similar results between each other than620

compared to the non-cut reference model. This is particularly true when the down-621

stream part is geometrically different than the upstream, as was the case of the LPA622

in the child pulmonary example. The distribution of flow rates among the different623

downstream vessels can also affect the flow in the non-cut upstream region. This624

highlights the importance of including enough downstream geometry to not affect625

the area of interest in the three-dimensional part in biomedical applications [1, 39].626

627
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4.5. Possible extension of the work628

Finally, this 3D-3D method could be extended to a more extensive lumped pa-629

rameter model through the β term. The latter could include a distal pressure, rep-630

resenting the link with the rest of the reduced model. Furthermore, it would be631

interesting to implement a space-varying γ parameter. This dissipative term in the632

Navier-Stokes equation is known to regularize the velocity profile to a plug-like633

profile (like at the interface with a porous medium), which helps here to stabilize634

the simulation but is also responsible for a significant impact on the velocity field635

at the interface. The coupling approach would be less invasive in particular dur-636

ing forward flow if this parameter was changing more smoothly. This is probably637

why the 3D-3D-0D was found to be the best compromise between robustness and638

non-invasiveness.639
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